
IMAGE RESTORATION –

Some methods and examples





Spatial filters for de-noising 
additive noise

 Skills similar to image enhancement
 Mean filters
 Order-statistics filters
 Adaptive filters

Courtesy:  Jen-Chang Liu



Mean filters
 Arithmetic mean

 Geometric mean
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Other Means (cont…)
Harmonic Mean:

Works well for salt noise, but fails for pepper noise.
Also does well for other kinds of noise such as Gaussian noise.
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Other Means (cont…)
Contraharmonic Mean:

Q is the order of the filter.
Positive values of Q eliminate pepper noise.
Negative values of Q eliminate salt noise.
It cannot eliminate both simultaneously.
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Order-statistics filters
 Based on the ordering(ranking) of pixels

 Suitable for unipolar or bipolar noise (salt and pepper noise)
 Median filters
 Max/min filters
 Midpoint filters
 Alpha-trimmed mean filters



Order-statistics filters
 Median filter

 Max/min filters
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Order-statistics filters (cont.)
 Midpoint filter

 Alpha-trimmed mean filter
 Delete the d/2 lowest and d/2 highest gray-level pixels
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Adaptive filters
 Adapted to the behavior based on the statistical 

characteristics of the image inside the filter region Sxy
 Improved performance v.s increased complexity
 Example: Adaptive local noise reduction filter



Adaptive local noise reduction 
filter

 Simplest statistical measurement
 Mean and variance

 Known parameters on local region Sxy
 g(x,y): noisy image pixel value
 σ2

η: noise variance (assume known a prior)
 mL : local mean
 σ2

L : local variance



Adaptive local noise reduction 
filter (cont.)

 Analysis: we want to do
 If σ2

η is zero, return g(x,y)
 If σ2

L> σ2
η , return value close to g(x,y)

 If σ2
L= σ2

η , return the arithmetic mean mL

 Formula
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Periodic noise reduction (cont.)
 Bandreject filters
 Bandpass filters
 Notch filters
 Optimum notch filtering



Bandreject filters

* Reject an isotropic frequency

ideal Butterworth Gaussian
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Bandpass filters
 Hbp(u,v)=1- Hbr(u,v)
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Notch filters
 Reject(or pass) frequencies in predefined 

neighborhoods about a center frequency

ideal

Butterworth Gaussian



Horizontal
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Estimation by modeling (1)
 Ex. Atmospheric model
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Estimation by modeling (2)
 Derive a mathematical model
 Ex. Motion of image
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Estimation by modeling: example

original Apply motion model



Inverse filtering
 With the estimated degradation function 

H(u,v)
G(u,v)=F(u,v)H(u,v)+N(u,v)
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Estimate of
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Problem: 0 or small values

Unknown
noise

Sol: limit the frequency 
around the origin



Theo Schouten

Example Wiener filter
Original

Noise added

Pseudo-inverse

Wiener filter



Wiener Filter: Adaptive Inverse Filter
Purpose: To Remove noise and/or bluriness in the image.

Estimate the local mean and variance in the neighborhood 
around each pixel
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 Least Mean Square Filter 

Wiener Filter Formulation
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Theo Schouten

Wiener filtering
minimum mean square error: e2 = E{ (f-fc)2}

Fc(u,v) =[1/H(u,v)] [ |H(u,v|2 / (|H(u,v|2 +Sη(u,v)/Sf(u,v))] G(u,v)

Sη(u,v) = |N(u,v)|2 power spectrum of noise

Approximations of Sη(u,v)/Sf(u,v):
K (constant)
γ |P(u,v)|2 (power spectrum of Laplacian)

γ found by iterative method to minimize e2

(constrained least squares filtering)

Using notation:
G(u,v) = H(u,v)F(u,v) 



Inverse Filter

• Recall the degradation model:

Given H(u,v), one may directly estimate the 
original image by

At (u,v) where H(u,v) ≈ 0, the noise N(u,v) 
term will be amplified!
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Wiener Filtering
• Minimum mean-square error filter

– Assume f and η are both 2D 
random sequences, uncorrelated to 
each other.

– Goal: to minimize 
– Solution: Frequency selective 

scaling of inverse filter solution!

– White noise, unknown Sf(u,v):
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Derivation of Wiener Filters

• Given the degraded image g, 
the Wiener filter is an 
optimal filter hwin such that 
E{|| f – hwing||2} is 
minimized. 

• Assume that f and η are 
uncorrelated zero mean 
stationary 2D random 
sequences with known 
power spectrum Sf and Sn. 
Thus,
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