IMAGE RESTORATION -

Some methods and examples



Gaussian Uniform Salt & Pepper



Spatial filters for de-noising
additive noise

= Skills similar to image enhancement

= Mean filters

= Order-statistics filters
= Adaptive filters

Courtesy: Jen-Chang Liu



Mean filters

s Arithmetic mean

e y)=—— 2. 8(s,0)

Mn (snes,,
"~ Window centered at (x,y)

s Geometric mean

f(x.y)= LS I g(s. r)}



Other Means (cont...)

Harmonic Mean:
mn

Z 1

(s,0)ES,, g(Sa t)

f(x,y)=

Works well for salt noise, but fails for pepper noise.
Also does well for other kinds of noise such as Gaussian noise.



Other Means (cont...)

Contraharmonic Mean:

D g(s,0°"

A (s.0€S,,
X, y)=

(s,0)ES,, Q=-1, harmonic

Q=0, airth. mean

Q is the order of the filter.
Positive values of QO eliminate pepper noise. Q=+, ?
Negative values of QO eliminate salt noise.

It cannot eliminate both simultaneously.




Order-statistics filters

= Based on the ordering(ranking) of pixels
= Suitable for unipolar or bipolar noise (salt and pepper noise)

= Median filters

= Max/min filters

= Midpoint filters

‘= Alpha-trimmed mean filters




Order-statistics filters

= Median filter
f(x,y) = median{g(s,t)}

(s,0)ES,,
= Max/min filters

f(x,y)= max {g(s,t)}

(s,0)ES,,

f(x,y)= min {g(s,7)}

(s,0)ES,,



Order-statistics filters (cont.)

= Midpoint filter
P, :1[ max {g(s,)} + min {g(s,r»}

2 (s,2)ES,, (s,0)ES,,

= Alpha-trimmed mean filter
= Delete the d/2 lowest and d/2 highest gray-level pixels

A |
f(x,y)= — g,(s,1)
M= (508, "~ Middle (mn-d) pixels




Adaptive filters

= Adapted to the behavior based on the statistical
characteristics of the image inside the filter region S,

= Improved performance v.s increased complexity
= Example: Adaptive local noise reduction filter



Adaptive local noise reduction
filter

= Simplest statistical measurement
= Mean and variance

= Known parameters on local region S,
= g(X,y): noisy image pixel value
= 62,. Noise variance (assume known a prior)
= M, : local mean
= o2 : local variance



Adaptive local noise reduction
filter (cont.)

= Analysis: we want to do
= If 62, is zero, return g(x,y)
= If 62> o?,, return value close to g(x,y)
= If 6% = &2, return the arithmetic mean m_

s Formula
2

A 0}
f(,»)=g(xy)——=|g(x,y)-m,]

O
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mean
/X7

Geometr
mean
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Periodic noise reduction (cont.)

= Bandreject filters

= Bandpass filters

= Notch filters

= Optimum notch filtering




Bandreject filters

* Reject an isotropic frequency

ideal Butterworth Gaussian

i

L

FIGURE 5.15 From left to right, perspective plots of ideal, Butterworth (of order 1), and Gaussian bandreject
filters.



bandreject




Bandpass filters

L pr(U,V)= 1' Hbr(U,V)

B {G(ua V)pr (M, V)}




Notch filters

= Reject(or pass) frequencies in predefined
neighborhoods about a center frequency

Butterworth

i

Gaussian




Horizontal
Scan lines




Estimation by modeling (1)

k(2 +v2)%

= Ex. Atmospheric model H (u,v)=e

k=0.0025

k=0.00025




Estimation by modeling (2)

= Derive a mathematical model
= EX. Motion of image

g(x.p) = [ fx=x,(0). 7=y, (1))
N

Fourier Planar motion
transform

| .
G(u,v)=F(u,v) IO g/l (D] gy



Estimation by modeling: example

original Apply motion model




Inverse filtering

= With the estimated degradation function
H(u,v)
Unknown
G(u,v)=F(u,v)H(u,v)+N(u,v) /noise

=2 F(u,v)= Gu,v) =F(u,v)+ N(u,v)
H(u,v) H(u,v)

{ r

Estimate of Problem: O 'or small values

original image Sol: limit the frequency

around the origin




Example Wiener filter

Original |

Noise added

Pseudo-inverse

Wiener filter

Theo Schouten



Wiener Filter: Adaptive Inverse Filter

Estimate the local mean and variance in the neighborhood
around each pixel

u=V DY f(x.y) 0 =) 2L (ey) =4

Wiener filter formulation, for no blur:

0_2

2
— nv
w(x, y) =+ ———(f(x,3)—4)
Where n, is the , O

standard deviation for noise.

Typical response
For Wiener filter




Wiener Filter Formulation

= Least Mean Square Filter

G(u, v) H (u, v)

 Hw, v +[S,(u, v/S . (u, v)]
= In practice

H (u,v)
H(u,v)|" +K

G(u,v)=



Wiener filtering

- Using notation:
minimum mean square error: ¢> = E{ (f-f*)?} G(u.v) = H(u,v)F(uv)

Fe(u,v) =[1/H(u,v)] [ [H(u,v}]* / ((H(u,v[* +S, (u,v)/S{u,v))] G(u,v)

S, (u,v) = [N(u,v)|* power spectrum of noise

Approximations of S, (u,v)/Sy(u,v):
K (constant)
v |P(u,v)|? (power spectrum of Laplacian)
v found by iterative method to minimize e?

(constrained least squares filtering)

Theo Schouten



Inverse Filter

Recall the degradation model:

Given H(u,v), one may directly estimate the
original image by

G(u,v)=Hu,v)F(u,v)+ N(u,v)

original, f degraded: g

. 20 40 60 "0 40 60
At (u,v) where H(u,v) = 0, the noise N(u,v) inverse filter

term will be amplified!

ﬁ(ua V) — G(M, V) / H(u V) Invfildemo.m
N(u,v)
H(u,v)

20 40 60

=F(u,v)+———



Wiener Filtering

* Minimum mean-square error filter

— Assume f'and 77 are both 2D
random sequences, uncorrelated to

each other.
— Goal: to minimize £ { } orginl, degraded: g
— Solution: Frequency selective 1 i

scaling of inverse filter solution!

2
~ ‘H u V ‘ G P o 0o
F(uﬂ V) — ( ’ ) * (u, V) in%grseﬁ'ﬁter %0 20 40 _80

Wiener filter, K=0.2
H(u,v)| +S,u,v)/S, u,v) Hwu,v)

— White noise, unknown Sy(u,v):

20 40 60 20 40 60

: Huwy)| G,y
H (u, v)\ +K H(u,v)




Derivation of Wiener Filters

Given the degraded image g, (= E{H f-h,g
the Wiener filter is an

= E{|F@y-H

win

(u,v)G(u,v)

By

optimal filter /,, such that = E{HF(u, V) \2}— H,, ) E{F" (u,)G(u,v)}
E{|| f= h,,.glIP} is
minimized. — H () E{F(u,v)G" ()} + |, )] - E{ |G|}

Assume that fand 77 are

uncorrelated zero mean =8, ,v)+ HHW (u,v)

‘2 -(HH(u,v)

-8, (u,v)+S, (u,v))

stationary ZD random ~H.,, (u,v)-Hu,v)- S, (u,v)~ H (u,v) H" (u,v)- S, (u,v)
sequences with known | |
?}(ﬁwer spectrum Syand S, Set dC/0H . (u,v)=0=
us, )
H ( ) H (u,v)Sf(u,v)
- win u,v)= ‘
E{JP@nl}=5, @ [H@ 'S, @)+, ()

E{HN(u,v)HZ} =S, (u,v)
E{F(u,v)NH (u,v)}
= E{F" (u,»)N(u,v)} =0






