SMOOTHING, RESTORATION
AND

ENHANCEMENT



Smoothing - Spatial Domain

The simplest approach is neighborhood averaging, where each
pixel is replaced by the average value of the pixels contained in some
neighborhood about it.

The simplest case is probably to consider the group of pixels
centered on the given pixel, and to replace the central pixel value by the
un-weighted (for weighted - Gaussian function is commonly used )
average of these (nine, in case of 3*3 neighborhood) pixels.

For example, the central pixel in Figure below is replaced by the value:

10 112 | 11

11 | 23 | 12
10 | 14 | 15

13 (the nearest integer to the average).

If any one of the pixels in the neighborhood has a faulty value
due to noise, this fault will now be smeared over nine pixels as the
image is smoothed. This tends to blur the image.



A better approach is to use a median filter.

A similar neighborhood around the pixel under consideration
is used, but this time the pixel value is replaced by the median pixel
value in the neighborhood.

Thus, if we have a 3*3 neighborhood, we write the 9 pixel
values in sorted order, and replace the central pixel by the fifth highest
value. For example, again taking the data shown in Figure above, the
central pixel is replaced by the value:

12
This approach has two advantages.
o Occasional spurious high or low values are not averaged in --
they are ignored
o The sharpness of edges is preserved. To see this, consider the

pixel data shown in the next slide.
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When the neighborhood covers the left-hand nine pixels, the
median value is 10; when it covers the right hand ones, the median value
is 20; thus the edge is preserved.

. If there are large amounts of noise in an image, more than one
pass of median filtering may be useful to further reduce the noise.

. A rather different real space technique for smoothing is to
average multiple copies of the image.

. The idea is that over several images, the noise will tend to cancel
itself out if it is independent from one image to the next.

. Statistically, we expect the effects of noise to be reduced by a
factor n-2, if we use n images. One particular situation where this
technique is of use, is in low lighting conditions.
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Median Filtered Image Filtered using Wiener Filter




Median Filtered Image Filtered using Wiener Filter



MATHEMATICAL MODEL OF IMAGE DEGRADATION
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s
H(u,v) = e* (u+v)P

Obtain restoration as:

F(u,v)= H_l(u,v)G(u,v)

Minimize: E[g(x’ _,V) & h(x" _,V) ™ f(X_. y)]z



Modern methods of Noise Removal use:

Iterative and Adaptive Kalman Filtering
Particle Filtering

Discrete Wavelet (multi-channel) transform

SVD (PCA) * Level Set Methods

Basis Pursuit
Fuzzy-based methods

 Graph-based approaches
Optimization frameworks

« Stanford —- DUDE
Non-linear ANNs

 Minimax Risk

Anisotropic diffusion (filtering) Manifold-based learning

Bilateral filtering « CLAHE

Non-local means « Shock Filter



IMAGE RESTORATION (WIENER) AND ENHANCEMENT
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LENA-IMAGE RESTORATION (REGULARIZATION) AND ENHANCEMENT

Original Image High Blur image Reg. Image-0.000003NP

LENA-IMAGE RESTORATION (WIENER) AND ENHANCEMENT

Original Image High Blur Image Wiener Image,NSR 0.003

ygram equalization




IMAGE RESTORATION-WIENER DECONVOLUTION
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IMAGE RESTORATION- REGULARIZATION
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PENR=21.64 PSNR=22.97
35IM=0.4016 SSIM=0.6550
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Image Enhancement

CONTRAST STRETCHING

This is a pixel-based operation, where a given gray level
r e [0, L] mapped into a gray level s € [0, L] according to a transformation

function:
s = T(r)

This process is mainly used to enhance done to handle
low-contrast images occurring due to poor or non-uniform lighting
conditions or due to non-linearity or small dynamic range of the
imaging sensor.

Following examples shows some typical contrast
stretching transformations.
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Original image After contrast stretching



S=T(r)
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How to find a s = T(r), which depends on the image data

and hence produces a global transform/enhancement of the

image, and not simply a local transformation of the pixel ??

Let us look at Histogram Equalization next.




