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Local Feature DetectorsLocal Feature Detectors
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OverviewOverview

• Local invariant features• Local invariant features
• Keypoint localization

- Hessian detector
- Harris corner detector

• Scale Invariant region detection
- Laplacian of Gaussian (LOG) detectoraplacian of Gaussian ( OG) detector
- Difference of Gaussian (DOG) detector

• Local feature descriptorLocal feature descriptor
- Scale Invariant Feature Transform (SIFT)

Gradient Localization Oriented Histogram (GLOH)- Gradient Localization Oriented Histogram (GLOH)
• Examples of other local feature descriptors



MotivationMotivation
• Global feature from the whole image is often not desirable

• Instead match local regions which are prominent to the 
object or scene in the image.object or scene in the image.
• Application Area

Obj t d t ti- Object detection
- Image matching
- Image stitching



Requirements of a local featureRequirements of a local feature

• Repetitive : Detect the same points independently in each image.Repetitive : Detect the same points independently in each image.

• Invariant to translation, rotation, scale.

• Invariant to affine transformation.

• Invariant to presence of noise, blur etc.

• Locality :Robust to occlusion clutter and illumination change• Locality :Robust to occlusion, clutter and illumination change.

• Distinctiveness : The region should contain “interesting” 
structure.

• Quantity : There should be enough points to represent the image• Quantity : There should be enough points to represent the image.

• Time efficient.



General approachGeneral approachpppp
++

1. Find the interest points. +
+

+ ( )2. Consider the region 
around each keypoint.

+
+ ( )

local descriptor around each keypoint.
3. Compute a local 

d i t f thdescriptor from the 
region and normalize 
the feature.

4. Match local descriptors4. Match local descriptors

Slide credit: Bastian Leibe



Some popular detectorsSome popular detectors
• Hessian/ Harris corner detection
• Laplacian of Gaussian (LOG) detector 
• Difference of Gaussian (DOG) detector
• Hessian/ Harris Laplacian detector
• Hessian/ Harris Affine detectorHessian/ Harris Affine detector
• Maximally Stable Extremal Regions (MSER)

M th• Many others ….
Looks for change in image gradient in two direction - CORNERS

Change in both 
the directions

Change in one 
direction only

No change in 
any directionSlide credit: 

Fei Fei Li



Hessian Corner DetectorHessian Corner Detector
[Beaudet, 1978]

Searches for image locations which have strong change inSearches for image locations which have strong change in 
gradient along both the orthogonal direction.
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• Perform a non-maximum suppression using a 3*3 windowPerform a non maximum suppression using a 3 3 window.
• Consider points having higher value than its 8 neighbors.
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Hessian Detector Hessian Detector –– Result Result 

Effect: Responses mainly on corners and strongly textured areas.Effect: Responses mainly on corners and strongly textured areas.



Harris CornerHarris Corner
[Forstner and Gulch, 1987]

• Search for local neighborhoods where the image content hasSearch for local neighborhoods where the image content has 
two main directions (eigenvectors).
• Consider 2nd moment autocorrelation matrix• Consider 2 moment autocorrelation matrix
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Gaussian sums over all the pixels in circular local 
neighborhood using weights accordingly.
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Harris cornerHarris corner
Eigen decomposition: visualizationEigen decomposition: visualization

Slide credit: K. Grauman, B. Leibe



Harris Corner: Different approachHarris Corner: Different approach

Instead of explicitly computing the eigen values, the stead o e p c t y co put g t e e ge a ues, t e
following equivalence are used
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Harris Corner : ExampleHarris Corner : Example
Ix Iy

1. Image 
derivatives

2. Square of Ix
2 Iy

2 IxIy q
derivatives

3. Gaussian 
filter G(σI)

(I 2) (I 2)g(Ix
2) g(Iy

2)
g(IxIy)

4. Cornerness 
function – both 

leigenvalues are 
strong

Slide credit: K. Grauman, B. Leibe



CORNERNESS – HARRIS CORNERCORNERNESS HARRIS CORNER

α = .04 α = .08 α = .1

α = .17 α = .2 α = .25α = .14



Harris Corner : ResultHarris Corner : Result

Effect: A very precise corner detector.Effect: A very precise corner detector.



Scale Invariant region detectionScale Invariant region detection
Hessian and Harris corner detectors are not scale invariant.
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Solution:
Use the 

concept of p
Scale Space



LaplacianLaplacian of Gaussian (LOG) of Gaussian (LOG) pp
detector detector [[LindebergLindeberg, 1998], 1998]

• Using the concept of Scale Space.
• Instead of taking zero crossing (for edge detection), consider 
the point which is maximum among its 26 neighbors  (9+9+8).
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• LOG can be used for finding the characteristic 
scale for a given image locationscale for a given image location.
• LOG can be used for finding scale invariant 
regions by searching 3D (location + scale) extremaregions by searching 3D (location + scale) extrema
of the LOG.

LOG i l d f d d t ti• LOG is also used for edge detection.



LOG detector : FlowchartLOG detector : Flowchart
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LOG detector : ResultLOG detector : Result



Difference of Gaussian (DOG) Difference of Gaussian (DOG) 
Detector Detector [Lowe, 2004][Lowe, 2004]

Approximate LOG using DOG for computational efficiency
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k = 21/K

K = 0, 1, 2, … , constant

Consider the region where the 
DOG response is greater thanDOG response is greater than 
a threshold and the scale lies 
in a predefined range [ ]ssin a predefined range [ ]maxmin s,s



DOG detector : FlowchartDOG detector : Flowchart

X is selected 
if it is largerif it is larger 
or smaller 
than all 
neighbors.



DOG detector : ResultDOG detector : Result



Local DescriptorsLocal Descriptorspp

• We have detected the interest points in an imageWe have detected the interest points in an image.
• How to match the points across different images of 
the same object? 

Use Local DescriptorsUse Local Descriptors
Slide credit: Fei Fei Li



List of local feature descriptorsList of local feature descriptorspp

• Scale Invariant Feature Transform (SIFT)
• Speed-Up Robust Feature (SURF)Speed Up Robust Feature (SURF)
• Histogram of Oriented Gradient (HOG)
• Gradient Location Orientation Histogram (GLOH)
• PCA-SIFTPCA SIFT
• Pyramidal HOG (PHOG)
• Pyramidal Histogram Of visual Words (PHOW)
• Others (shape Context Steerable filters Spin images)Others….(shape Context, Steerable filters, Spin images).

Should be robust to viewpoint change or 
illumination changeillumination change



SIFT SIFT [Lowe, 2004][Lowe, 2004]

• Step 1: Scale-space extrema Detection - Detect 
interesting points (invariant to scale and orientation) using DOG.

• Step 2: Keypoint Localization – Determine location 
and scale at each candidate location, and select them 
based on stability.y

• Step 3: Orientation Estimation – Use local image 
gradients to assigned orientation to each localized keypoint. 
Preserve theta, scale and location  for each feature.,

• Step 4:  Keypoint Descriptor - Extract local image 
gradients at selected scale around keypoint and form a 
representation invariant to local shape distortion andrepresentation invariant to local shape distortion and 
illumination  them.



SIFT SIFT [Lowe, 2004][Lowe, 2004]

Step 1: Detect interesting points using DOG.

832 DOG extrema



SIFT : Step 2SIFT : Step 2pp
Step 2: Accurate keypoint localization

- Aim : reject the low contrast points and the points 
that lie on the edge.g

Low contrast points elimination:
Fit keypoint at      to nearby data using quadratic approximation.
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Low contrast points elimination:
Fit keypoint at      to nearby data using quadratic approximation.
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Calculate the local maxima of the fitted function { X = (x y σ)}
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SIFT : Step 2SIFT : Step 2
Eliminating edge response:

pp
g g p

DOG gives strong response along edges – Eliminate those responses
Solution: check “cornerness” of each keypointSolution: check cornerness  of each keypoint.
• On the edge one of principle curvatures is much bigger than 

anotheranother.
• High cornerness No dominant principle curvature component.
• Consider the concept of Hessian and Harris corner• Consider the concept of Hessian and Harris corner
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SIFT : Step 2SIFT : Step 2pp

729 out of 832 are left after contrast thresholding

536 out of 729 are left after cornerness thresholding536 out of 729 are left after cornerness thresholding
Slide credit: David Lowe



SIFT : Step 3SIFT : Step 3pp
Step 3: Orientation Assignment

- Aim : Assign constant orientation to each keypoint based 
on local image property to obtain rotational invariance.g p p y

To transformTo transform 
relative data 
accordingl

Th i d d i i f di f i h

accordingly

The magnitude and orientation of gradient of an image patch 
I(x,y) at a particular scale is:
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SIFT : Step 3SIFT : Step 3pp
Step 3: Orientation Assignment

• Create weighted (magnitude +Create weighted (magnitude + 
Gaussian) histogram of local 
gradient directions computed at g ad e t d ect o s co puted at
selected scale

• Assign dominant orientation of 
the region as that of the peak ofthe region as that of the peak of 
smoothed histogram

• For multiple peaks create multiple 
key pointskey points

Slide credit: David Lowe



SIFT : Step 4SIFT : Step 4pp
Already obtained precise location, scale and orientation to each keypoin

Step 4: Local image descriptor
Aim – Obtain local descriptor that is highly distinctive yetAim – Obtain local descriptor that is highly distinctive yet 
invariant to variation like illumination and affine change

• Consider a rectangular grid 16*16 in the direction of the• Consider a rectangular grid 16*16 in the direction of the 
dominant orientation of the region.

Di id th i i t 4*4 b i• Divide the region into 4*4 sub-regions.
• Consider a Gaussian filter above the region

which gives higher weights to pixel closer
to the center of the descriptor.p



SIFT : Step 4SIFT : Step 4pp
Step 4: Local image descriptor

b d h f h b• Create 8 bin gradient histograms for each sub-region
Weighted by magnitude and Gaussian window ( σ is half the 

i d i )window size)

Feature vector (128)( )
8*4*4 = 128

Finally normalize 128 dim vector to make it illumination invariantFinally, normalize 128 dim vector to make it illumination invariant



SIFT : Some ResultSIFT : Some Result
Object detectionj



SIFT : Some ResultSIFT : Some Result
Panorama 



GLOHGLOH
First 3 steps – same as SIFT
Step 4 – Local image descriptorStep 4 Local image descriptor

• Consider log-polar location grid with 3 different radii and 8 
angular direction for two of them in total 17 location binangular direction for two of them, in total 17 location bin
• Form histogram of gradients having 16 bins

F f t t f 272 di i (17*16)• Form a feature vector of 272 dimension (17*16)
• Perform dimensionality reduction and project the features 
to a 128 dimensional space.

192192 correct 
matches 
( ll ) d(yellow) and 
208 false 
matchesmatches 
(blue).



Some other examplesSome other examplespp

SURF
PHOW

HOG
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