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BASICS
Representation of Points in the 3D world:  a vector of length 3

y
T

Right handed 
P(x,y,z) P’(x’,y’,z’)

coordinate system

x
4 basic transformations 

x
Transformations 
of points in 3D

• Translation
Affinez of points in 3D • Rotation

• Scaling

Affine 
transformations

Scaling

• Shear



Basics 3D Transformation equationsBasics 3D Transformation equations
• Translation : P’ = P + ΔP

• Scaling: P’= SP

β

α
γ• Rotation : about an axis,

P’ = RPP  = RP



ROTATION - 2D Y
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Positive Rotations: counter clockwise about
the originthe origin            

For rotations, |R| = 1 and [R]T = [R]-1. 
Rotation matrices are orthogonal. 



Rotation about an arbitraryy
point P in space

As we mentioned before, rotations are
applied about the origin. So to rotate aboutpp g
any arbitrary point P in space, translate so
that P coincides with the origin, then rotate,g , ,
then translate back. Steps are:

• Translate by (-Px, -Py)y

• Rotate

• Translate by (P , P )• Translate by (Px, Py)



Rotation about an arbitrary
point P in space

P1 θ

House at P1 Rotation by θ

P1

Translation of 
P t O i i

Translation 
1

P1 to Origin back to P1



2D Transformation equations (revisited)2D Transformation equations (revisited)
• Translation : P’ = P + ΔPTranslation : P  P  ΔP

• Rotation : about an axisRotation : about an axis,
P’ = RP 





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
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)sin(-)cos(
θθ
θθ

R 



 )cos()sin( θθ



Rotation about an arbitrary
i t P ipoint P in space

Rgen = T1(-Px, -Py) * R2(θ) * T3(Px, Py) 

Using Homogeneous system



Homogeneous representation of a 
point in 3D space:po p

|| |wzyx | T=P
point)3Dafor 1,w( =

Transformations will thus beTransformations will thus be 
represented by 4x4 matrices:

P’ = A.P



Homogenous Coordinate systemsHomogenous Coordinate systems
• In order to Apply a sequence of transformations to 

d it t f ti i t d thproduce composite transformations we introduce the 
fourth coordinate

• Homogeneous representation of 3D point: 
|x y z h|T (h=1 for a 3D point, dummy coordinate)|x y z h| (h 1 for a 3D point, dummy coordinate)

• Transformations will be represented by 4x4 matrices.

Homogenous Translation Homogenous ScalingHomogenous Translation 
matrix

Homogenous Scaling 
matrix



Rotation about x axis by angle α Rotation about y axis by angle β

Change of 
sign?

Rotation about z axis by angle γ

How can one do a Rotation about an arbitrary Axis in Space?



3D Transformation equations (3)
Rotation About an Arbitrary Axis in SpaceRotation About an Arbitrary Axis in Space

Assume we want to perform a rotation about an 
axis in space passing through the point (x y z )axis in space, passing through the point (x0, y0, z0)
with direction cosines  (cx, cy, cz), by θ degrees. 

) f ( ) | |1) First of all, translate by:  - (x0, y0, z0) = |T|.
2) Next, we rotate the axis into one of the principle  

axes Let's pick Z (|R | |R |)axes. Let s pick,  Z (|Rx|,  |Ry|).
3) We rotate next by θ degrees in Z ( |Rz(θ)|).
4) Then we undo the rotations to align the axis. 
5) W d th t l ti t l t b ( )5) We undo the translation: translate  by (x0, y0, z0)

The tricky part is (2) above.

This is going to take 2 rotationsThis is going to take  2 rotations, 
i)  about x  (to place the axis in the x-z plane) 
and 
ii) b ( l h l i id i h hii) about y  (to place the result coincident with the z 
axis).



Rotation about x by α:  
H d d t i ?

z
How do we determine α? 

Project the unit vector along

cy

d Project  the unit vector, along 
OP, into the y-z plane. The y 
and z components are c and0

P cz

d

and z components are cy and 
cz, the directions cosines of 
the unit vector along theycx the unit vector along the 
arbitrary axis.  It can be seen 
from the diagram above that :

x
y

z
from the diagram above, that : 

d = sqrt(cy
2 + cz

2), cos(α) = cz /d 
P( 0 d)

cx q ( y z ), ( ) z 

sin(α)  = cy /d
0

P(cx, 0 ,d)

y

0
d Rotation by β about y:             

How do we determine β?
x

y How do we determine β? 
Similar to above:



Determine the angle β to rotate the result into the Z axis: 
The x component is cx and the z component is d.The x component is cx and the z component is d. 

cos(β) = d =  d /(length of the unit vector) 
sin(β) = c = c /(length of the unit vector).sin(β)   cx   cx /(length of the unit vector). 

Final Transformation:Final Transformation: 
M = |T|-1 |Rx|-1 |Ry|-1 |Rz| |Ry| |Rx| |T| 

If you are given 2 points instead, you can calculate 
the direction cosines as follows:the direction cosines as follows: 

V = | (x x ) (y y ) (z z ) |TV   =  | (x1 -x0)  (y1 -y0)  (z1 -z0) |T 

cx =  (x1 -x0)/ |V| 
( )/ |V|cy =  (y1 -y0)/ |V| 

cz =  (z1 -z0)/ |V|,
h |V| i th l th f th t Vwhere |V| is the length of the vector V. 



Inverse transformations

Inverse Translation Inverse scaling

Inverse Rotation

Rα
-1 Rγ

-1Rβ
-1



Concatenation of transformationsConcatenation of transformations
• The 4 X 4 representation is used to perform aThe 4 X 4 representation is used to perform a 

sequence of transformations. 
• Thus application of several transformations 

in a particular sequence can be presented byin a particular sequence can be presented by 
a single transformation matrix

• The order of application is important… the pp p
multiplication may not be commutable.



Commutivity of Transformations 
If we scale, then translate to the origin,

and then translate back, is that equivalent toand then translate back, is that equivalent to
translate to origin, scale, translate back?

When is the order of matrix
multiplication unimportant?

Cases where T * T = T * T :

When does T1 * T2 = T2 * T1?

Cases where T1 * T2 = T2 * T1:         

T1 T21 2
translation translation

scale scalescale scale
rotation rotation

Scale (uniform) rotation



COMPOSITE TRANSFORMATIONS
If we want to apply a series of 

transformations T1 T2 T3 to a set of pointstransformations  T1, T2, T3 to a set of points, 
We can do it in two ways: 

1) We can calculate p'=T1*p, p''= T2*p',    
p'''=T3*p''p T3 p  

2) Calculate T= T1*T2*T3, then p'''= T*p. 

Method 2, saves large number of additions
and multiplications (computational time) –p ( p )
needs approximately 1/3 of as many operations.
Therefore, we concatenate or compose the, p
matrices into one final transformation matrix,
and then apply that to the points.



SpacesSpaces
Object Space

d fi iti f bj t Al ll d M d lidefinition of objects. Also called Modeling space. 

World SpaceWorld Space
where the scene and viewing specification is made 

Eye space (Normalized Viewing Space)
where eye point (COP) is at the origin looking down the Z 
iaxis. 

3D Image Space3D Image Space
A 3D Perspected space. 
Dimensions: -1:1 in x & y, 0:1 in Z. y,
Where Image space hidden surface algorithms work. 

S S (2D)Screen Space (2D) 
Coordinates 0:width, 0:height



ProjectionsProjections
We will look at several planar geometric 3D to 2Dp g

projection: 

-Parallel Projections
Orthographic O t og ap c
Oblique

-Perspective 

Projection of a 3D object is defined  by  straight 
projection rays (projectors) emanating from theprojection  rays (projectors) emanating from the 
center of projection (COP) passing through each 
point of the object and intersecting the projectionpoint of the object and intersecting the  projection 
plane.



Perspective ProjectionsPerspective Projections

Distance from COP to 
j ti l i fi itprojection plane is finite.  

The projectors are not 
parallel  & we specify a 
center of projection. p j

Center of Projection is
Perspective 
Projection

Center of Projection is 
also called the 
Perspective Reference jPerspective Reference 
Point 

COP PRPCOP = PRP



• Perspective foreshortening: the size of the perspective p g p p
projection of the object varies inversely with the 
distance of the object from the center of projection. j p j

• Vanishing Point: The perspective projections of any set 
of parallel lines that are not parallel to the projection 
plane converge to a vanishing point. 





Projection

Projectors

j
Plane
(top view)

Projectors for 
t i

for 
side view

( )

top view

Projection

P j t f

Projection
Plane
(side view)

Projection
Plane

Projectors for 
front view

( )

E l f O th hi P j ti

(front view)

Example of Orthographic Projection



Example of Isometric Projection: 

Projection
plane 

P j tProjector

P j tiProjection-
plane normal



Example Oblique ProjectionExample Oblique Projection 

ProjectionProjection
plane y

Projectorz x

Projection-plane normal



END OF BASICS





THE CAMERA MODEL: 
i j iperspective projection

y,Y
p(x,y,z)

y,

Camera lens

x,XI

z
0

z

COL

P (X Y)P (X,Y)
(x,y,z)- 3D world

f (X,Y) - 2D Image plane



Perspective Geometry and Camera Models

F P(X,Y,Z)X or Y

ZZ

( )
IP X or Y P(X,Y,Z)

PP
xp or yp

(COL) ZO



X ,Y
PP
x,y

CASE - 1

X ,Y
p(x,y,z)

x,y

CASE - 1

(COL) Z
O

(COL) Z

P(-X,-Y)
fBy similarity of triangles

• Image plane before the 
camera lenscamera lens

• Origin of coordinate 
t t th isystems at the image 

plane 

• Image plane at origin of 
coordinate system



PP

CASE - 1 1
x ,y p(x,y,z)X,Y

CASE - 1.1

Z
O

(COL) Z

P(-X,-Y)
f

By similarity of triangles

f

• Image plane before the 
camera lenscamera lens

• Origin of coordinate 
t t th lsystems at the camera lens 

• Image plane at origin of g p g
coordinate system



x ,y

CASE  - 2 p(x,y,z)
PP

X Y

P(X Y)

X, Y

By similarity of triangles
(COL)

Z
P(X,Y)

O

By similarity of triangles

f
O

• Image plane after the 
camera lenscamera lens

• Origin of coordinate 
t t th lsystems at the camera lens 

• Focal length fg



PP

CASE – 2 1
X ,Y p(x,y,z)
x,yCASE – 2.1

P(X Y)

x,y

(COL) Z
P(X,Y)

O

By similarity of triangles

f O

• Image plane after the 
camera lens

• Origin of coordinate system 
not at COPnot at COP 

• Image plane origin coincides g p g
with 3D world origin



PPConsider the first case ….
X ,Y

p(x,y,z)
x,y

• Note that the equations 
are non linear

Z
O

are non-linear

• We can develop a matrix 
(COP) Z

P(-X,-Y)
f

formulation of the 
equations given below

f

(Z is not important and is 
eliminated)



Inverse perspective projectionInverse perspective projection
p(x0,y0,z0)p( 0,y0, 0)

P(X0,Y0)

Hence no 3D information can be retrieved with the inverseHence no 3D information can be retrieved with the inverse 
transformation



So we introduce the dummy variable i.e. the depth Z

Let the image point be represented as:



CASE  - 1
X ,Y

PP
x,yF d 3D 2D X ,Y

p(x,y,z)
x,yForward: 3D to 2D

(COL) Z
O

(COL) Z

P(-X,-Y)
f

Inverse: 2D to 3DInverse: 2D to 3D



CASE  - 2
x ,y

F d 3D 2D
p(x,y,z)

PP

X Y

Forward: 3D to 2D

P(X Y)

X, Y

(COL)
Z

P(X,Y)

O
f

O

Inverse: 2D to 3D



Observations about Perspective p
projectionp j

• 3D scene to image plane is a one to one 
transformation ( niq e correspondence)transformation (unique correspondence) 

• For every image point no unique world y g p q
coordinate can be found

• So depth information cannot be retrieved using a• So depth information cannot be retrieved using a 
single image ? What to do?

• Would two (2) images of the same object (from 
different viewing angles) help?different viewing angles) help? 

• Termed - Stereo Vision



Stereo VisionStereo Vision
Image 1

X
Y

L t
(X1,Y1) Lens center

Optical axis

( 1, 1)

Image 2
B

X
Y

B

p(x y z)X p(x,y,z)
World point

(X2,Y2)



Stereo Vision (2)( )
• Stereo imaging involves obtaining two separate image 

views of an object  ( in this discussion the world point)j ( p )
• The distance between the centers of the two lenses is 

called the baseline widthcalled the baseline width.
• The projection of the world point on the two image 

planes is (X Y ) and (X Y )planes is (X1, Y1) and (X2, Y2)
• The assumption is that the cameras are identical 
• The coordinate system of both cameras are perfectly 

aligned differing only in the x-coordinate location of the g g y
origin.

• The world coordinate system is also bought into theThe world coordinate system is also bought into the 
coincidence with one of the image X, Y planes (say 
image plane 1) So y z coordinates are same for bothimage plane 1) . So y, z coordinates are same for both 
the camera coordinate systems.



Top view of the stereo imaging system with origin 
t t f fi t i i l

X
at center of first imaging plane.

(X1,Y1)

O1 f

z1

Image 1

B
W(x, y, z)

Image 2

f

Image 2

z2

(X Y )

f
O2

2

(X2,Y2)



First bringing the first camera into coincidence with 
th ld di t t d th i th dthe world coordinate system and then using the second 
camera coordinate system and directly applying the 
formula we get:formula we get:

Because the separation between the two cameras is Bp



• The equation above gives the depth directly from 
the coordinate of the two points
Th tit i b l i ll d th di it• The quantity given below is called the disparity

• The most difficult task is to find out the two 
corresponding points in different images of thecorresponding points in different images of the 
same scene – the correspondence problem.

• Once the correspondence problem is solved –
(non-analytical) we get D Then obtain depth(non-analytical), we get D. Then obtain depth 
using:



Alternate Model 
– Case III



Top view of the stereo imaging system with origin 
at center of first camera lens.

X IP 1

O1 z
(X1,Y1)

z1

f

B W(x, y, z)

(X2,Y2) z2

IP 2

O2
2

IP 2



C th t l tiCompare the two solutions

What do you think of D ?What do you think of D ?



The Correspondence Problem

21 YY =

12   ;0  XXthenDIf <> 12;f

(X Y )
Y2Y1

(X1, Y1) (X2, Y2)

XX X2X1

Image Plane - I Image Plane - II
EPIPOLAR LineEPIPOLAR Line



Error in Depth Estimation

Expressing in terms of depth (z), we have:

What is the maximum value of depth (z), you can 
measure  using a stereo setup ?



Even if correspondence is solved correctly, the 
t ti f D h ithcomputation of D may have an error, with an upper 

bound of 0.5;   i.e. (δD)max = 0.5.

That may cause an error of:

Larger baseline width and Focal length (of the g g (
camera) reduces the error and increases the maximum 
value of depth that may be estimated.

What about the minimum value of depth (object 
closest to the cameras) ?closest to the cameras) ?

What is D ? XDWhat is Dmax ?
maxmax XD =

X depends on f and image resolutionXmax depends on f and image resolution 
(in other words, angle of field-of-view or FOV).







General Stereo Views



Perfect Stereo Views



We can also have arbitrary pair of views from two 
camerascameras. 

• The baseline may not lie on any of the principle axisy y p p

• The viewing axes of the cameras may not be parallel

• Unequal focal lengths of the cameras

Th di t t f th i l t b• The coordinate systems of the image planes may not be 
aligned

Take home exercises/problems:

What about Epipolar line in cases above ?

How do you derive the equation of an epipolar line ?

In general we may have multiple views ( 2 or more) of

How do you derive the equation of an epipolar line ?

In general we may have multiple views ( 2 or more) of 
a scene. Typically used for 3D surveillance tasks.



The Epipolar line in case of Arbitrary Views

(X Y ) (X Y )
Y1

(X1, Y1) (X2, Y2)

XX1

Image Plane - I Image Plane - II
EPIPOLAR LineEPIPOLAR Line



(X Y )
Y1 Y2

(X1, Y1)

(X’2, Y’2)

X X2

( 2, 2)

X1 2



Process of RectificationProcess of Rectification
Image rectification is the process of applying a pair of 2 

di i l j ti t f h hi t i fdimensional projective transforms, or homographies, to a pair of 
images whose epipolar geometry is known so that epipolar lines in 
the original images map to horizontally aligned lines in the 
transformed images.







Classical Depth EstimationClassical Depth Estimation
 Depth estimation of image points need at least two Depth estimation of image points – need at least two 

views of the same object
C2

C1

C

ximage
x’

C3

X

x imag
e x’’image

Xworld

X
C2General Stereo

Xworld ximage

x’image
Arbitrary multiple 

65C1

y p
view geometry



Camera Image formulationCamera Image formulation
 A ti f i i l t d b b t t d l Action of eye is simulated by an abstract camera model 

(pinhole camera model)
 3D real world is captured on the image plane. Image is 

projection of 3D object on a 2D plane.
),(),,(: iiwww yxZYXF →

X
Y

X
Π

X
worldX

imagex
C ),,( www ZYX=worldX

Z

f

)( wwwworld

),( ww

Z
Yf

Z
Xf=imagex

f ww ZZ



Pi h l C h ti diPinhole Camera schematic diagram



Camera GeometryCamera Geometry
 Camera can be considered as a projection matrix, Xx 4*3P=

 A pinhole camera has the projection matrix as

[ ]0|)1 ,,( IffdiagP =

 Principal point offset
y

( ) ( )TT /,/,, yx pZfYpZfXZYX ++→





 00 xpf

p

camy

camx











=
0
0

100
0 y

x

pf
f

K [ ]X0x |IK= ),( yx pp=p

 Camera with rotation and translation

[ ] YtR,[ ]Xtx |RK=
,

X

Z



Camera GeometryCamera Geometry
Y XΠ

X worldX

imagex
Zp

)(

imageC

imgx
imgy ),( yx pp=p









=
xx

p
ps

K α
α

xα

yα
Scale factor in x- coordinate direction

Scale factor in y- coordinate direction
s Camera ske

Camera internal 
parameters








=
1

yy pK α

y

x

α
α

Aspect ratio

s Camera skew

Camera matrix, ]|[ tRKP = R Rotation
Translation vectort



Camera skew factor/parameter, s:p ,

The parameter “s” accounts for a  possible non-
orthogonality of the axes in the image planeorthogonality of the axes in the image plane. 

This might be the case if the rows and columns of 
i l h di l h hpixels on the sensor are not perpendicular to each other.

Pincushion, 
non-linear distrortion



The Reconstruction ProblemThe Reconstruction Problem
 Given a set of images of a particular 3D scene can we Given a set of images of a particular 3D scene, can we 

reconstruct the scene back?
 3D representation of an object is difficult because of the 3D representation of an object is difficult because of the 

problem of depth estimation.
I i j ti f 3D bj t 2D l Image is projection of 3D object on a 2D plane.

),(),,(: yxZYXF www →

(Xw, Yw, Zw) are real world coordinates and ?wX

(x, y) are Image coordinates

 Reverse mapping is not one to one

wX

 Reverse mapping is not one to one. 
ix

'ix

71
C 'C



3D Reconstruction3D Reconstruction
 Given a set of images of a particular 3D scene can we Given a set of images of a particular 3D scene, can we 

reconstruct the scene back?

[a]

 Classical inverse problem of the computer vision

72
[a]. Oxford Keble College



Reconstruction from turntable 
sequence
 The images acquired from 

various poses using an 
ordinary camera can be usedordinary camera can be used 
to generate the 3D model

 How stable is the two-view 
reconstruction process?

 Is there some rotation value 
where the reconstruction iswhere the reconstruction is 
better than others?

73



Epipolar lines and Fundamental matrixp p

 An epipolar plane is a plane containing the camera centers p p p p g
(baseline) and the object point. 

 An epipolar line is the intersection of an epipolar plane with the 
i limage plane.

 Fundamental Matrix (F) gives the constraint between 
corresponding image points of same 3D object point [a]

74

corresponding image points of same 3D object point [a]

[a] A. Zisserman, Multiple View Geometry ‘02



0' =<= Fxx T

Point m in I, produces a line,
l’ (=Fm), as: ;0'' =lm T

Epipoles satisfy: 

;'0 eFFe T==
>−

]|['' tRKP =]0|[ IKP = Read Camera Calibration
methods for P estimation 

[ ] [ ]−−
×

−=

RKKRKK

tKRRKKF
TT

TTT

'''

]['
1[ ] [ ]×× == eRKKRKKe TT''' 1

;0=
=>
Af



Typical methods used to estimate F:

- 8-pt DLT algo.

=>- RANSAC

;0=
=>
Af

- Normalize data, using Transformation matrix TTS
- DLT; F is the “smallest singular” vector  of A
- replace F by F~, using SVD, where det (F~) = 0 
- Denormalize, as:

TFTF T
~

' TFTF T'=
Also, look at Gold Standard method based on MLE



Scene Homography (points)

A homography is an invertible mapping of points and linesA homography is an invertible mapping of points and lines 
on a projective plane. Its an invertible mapping to itself, such that 
collinearity is preserved. It is represented as:y p p





Scene Homography (Lines)

From above, derive, l = f(H, m) ??
;00

=
===

Hlc
qmHqlpl

T

hThThT

1−= Hml
Hlc

TT
TT mlH 1)( −=

What about H, from above ??

)(
Possible to compute H, now ??





Rectification (Zhang’s)
Properties of rectified image pair: 
- All epipolar lines are parallel to horizontal (x- or u-axis)- All epipolar lines are parallel to horizontal (x- or u-axis)
- Corresponding points have identical y- or v-coordinates.

Fundamental matrixFundamental matrix 
for a rectified image pair:
What is i ??
where, i = [1 0 0]T, is X-VP (at  Inf.)
Let,

Then, the corresponding lines v and v’, w and w’ must be epipolar
lines, for minimal distortion due to rectification;      H = Hsh.Hrs.Hp



Homography:  x = Hx’;

Relationship with Fundamental matrix F: 0' =<= Fxx T
Relationship with Fundamental matrix, F:

Hx’ lies on the corresponding epipolar line: Fx’; 
Thus, He’=e; H-1e=e’;

0< Fxx

[ ] [ ]
[ ] [ ]

eRKKRKKetKRRKKF TTTTT

+

×
−−

××
− === '''][' 1

Thus, He e;   H e e ;

[ ] [ ] πHePPe ×
+

× == '''
where, Hπ is the homography imposed by epipolar plane

']'[

;][]'['

leFl

leFFxxHel
T

×

××

=

=== π

Simple steps of Rectification, given F:

][ lel ×

- Estimate H, to any one of the image pairs, for making epipolar
lines coincidentes co c de

(4-point pairs and RANSAC -RANdom SAmple Consensus);

- Epipolar lines are made parallel to x-axis;

Three constraints for rectification:

- Epipolar lines are made parallel to x-axis;





Solving Homography using point correspondences



This is the basic DLT algorithm, which only requires  s s e as c a go , c o y equ es
normalization  (pixel coordinates) and de-normalization steps, 
prior and after the solution of the homogeneous system. 

Also a cost minimization approach (use RANSAC) is used 
for a over-determined set of systems, for a robust solution.

For Homography using line correspondences:



Estimate H (Altn. Method)

Gi en n> 4 2 D point pai sGiven n>=4   2-D point pairs;

Algo:

Use: 
-

- Assemble n 2*9 matrices Ai into a single 2n*9 matrix A, byAssemble n 2 9 matrices Ai into a single 2n 9 matrix A, by 
stacking horizontally row-wise;

SVD of A gives : TUDVA- SVD of A, gives :

- h9*1 is the last column of V (unit singular eigen-vector 

;TUDVA =

9 1 ( g g
corresponding to smallest singular value)

Form H by arranging elements of h- Form H3*3, by arranging elements of h

- May need normalization of coordinates
If the stereo is calibrated;  i.e P and P’ known, use:

A compact algorithm for rectification of stereo pairs; Andrea Fusiello, Emanuele Trucco, Alessandro Verri ; 
Machine Vision and Applications (2000) 12: 16–22 Machine Vision and Applications;  Springer-Verlag 2000; 





Input:  F, computed using correspondences;
which gives  epipoles e and e’; ,Letg p p ;

Steps 1 & 2
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where
.R

:is Homography 
KKH .R

Step 3: Rotation R^, of one camera about baseline:

H3 is obtained after obtaining optimal K  (or f)



(a) (b)

Epipolar line homography:

(a) There is a pencil of epipolar lines in each image centred on the
epipole. The correspondence between epipolar lines, li ↔ l′i, is defined by the 
pencil of planes with axis the baseline.pencil of planes with axis the baseline. 

(b) The corresponding lines are related by a perspectivity, with centre at any 
point p on the baseline. It follows that the correspondence between epipolarpoint p on the baseline. It follows that the correspondence between epipolar 
lines in the pencils is a 1D homography.



Vanishing points

( ) ( ) λKdaλPDPAλPXλx +=+==
( ) ( ) KdλKdalimλxlimv =+== ( ) ( )

λλ ∞→∞→



Vanishing lines
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(Triangulation process ) [a] 
0

0
=AX

x

[a] R.Hartley, CVIU ‘94



Ambiguity in ReconstructionAmbiguity in Reconstruction
 From Image correspondences the scene and the From Image correspondences, the scene and the 

camera can be reconstructed to a projective 
equivalent of the original scene and cameraequivalent of the original scene and camera

 Projective Reconstruction theorem:

( )( )iii XHPHPXx 1-==

 Additional information (sceneAdditional information (scene 
parallel lines, camera internal 
parameters) required for metricparameters) required for metric 
reconstruction
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GENERIC STEREO RECONSTRUCTION (sec. 10.6, pp 277; H&Z)

Input: Two Uncalibrated images;Input:  Two Uncalibrated images;
Output:  Reconstruction (metric) of the scene structure

and cameraand camera 

Algo. Steps:

• Projective reconstruction 
• Compute Fundamental matrix, FCompute Fundamental matrix, F
• Compute P and P’ (camera matrices) using F
• Use triangulation (with rectification) to get X, from xi and xi’

• Rectify from projective to Metric (M), using either
(a) Direct:

E ti t h h H f d C t l tEstimate homography H, from grnd. Control pts.,;
PM=P.H-1; P’M=P’.H-1; XMi = HXi.

OR
(b) Stratified (use, VP, VL, Homography, Abs. conic etc.):

Affine;
Metric
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In case of a set of arbitrary views (multi-view 
geometry) used for 3-D reconstruction (object structure, 
surface geometry modeling etc ) methods used involve:surface geometry, modeling etc.), methods used involve:

- KLT (Kanade-Lucas-Tomasi)- tracker( )

- Bundle adjustment and RANSAC

- 8-point DLT algorithm

Zh ’ h h- Zhang’s scene homography

- Tri-focal tensorsTri focal tensors

- Cheriality and DIAC

- Auto-calibration 

- Affine to Metric reconstruction

- Stratification- Stratification  

- Kruppa’s eqn. for infinite homography





Example ofp
3-D reconstruction

3D surface point and wireframe3D surface point and wireframe 
reconstruction from multiview 
photographic images; Simant 
Prakoonwit, Ralph Benjamin;Prakoonwit, Ralph Benjamin;
IVC – 2008/9



Robust Recovery of Shapes with Unknown
Topology from the Dual Space;Topology from the Dual Space;
Chen Liang and Kwan-Yee K. Wong,
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE.
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End of Lectures on -

T f iTransformations, 
Imaging GeometryImaging Geometry,

Stereo VisionStereo Vision
andand

3-D Reconstruction


