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BASICS

Representation of Points in the 3D world: a vector of length 3
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Basics 3D Transformation equations
e Translation: P =P + AP

X X Ax
Yy [=|y |t Ay
S==CC Eiva
 Scaling: P=SP
=00
S=0 S, 0
_0 O SZ_

* Rotation : about an axis,
P’=RP




ROTATION - 2D

X' = xcos(8)—ysin ()

y =xsin (6)+ ycos(6)
In matrix form, this is :

R_{cos(a) -sin(6)
sin(@) cos(@)

Positive Rotations: counter clockwise about

ke~ Ao
CIIC VUl |H|||

For rotations, |R| = 1 and [R]T = [R]"1.
Rotation matrices are orthogonal.




Rotation about an arbitrary
point P 1IN space

As we mentioned before, rotations are
applied about the origin. So to rotate about
any arbitrary point P Iin space, translate so
that P coincides with the origin, then rotate,
then translate back. Steps are:

¢ Translate by (-P,, -P,)

e Rotate

¢ Translate by (P,, P,)




Rotation about an arbitrary
point P INn space

A A

P, 0
House at P, Rotation by 0
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Translation of Translation

P, to Origin back to P,




2D Transformation equations (revisited)

e Translation: P =P + AP

x| [x] [Ax 1 [1 0 Ax|
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* Rotation : about an axis,
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Rotation about an arbitrary
point P In space

Rgen = T1(-Pyx, =Py) * Ry(0) * T5(P,, P,)

gen

0 —P| |cos@ -—-sin@) 0| (1 0O P
1 —P|*|sin(@) cos(@ 0(*0 1 P
0 1 0 0 0 0 1

1
=0
0

cos(@) —sin(@) P:*(cos(@)—1)— P *(sin(@)
=|sin(d) cos(@) Py *(cos(@)— 1)+Px*sm(6‘)
0 0

Using Homogeneous system




Homogeneous representation of a
point in 3D space:

P=|xyzw]|

(w=1,for a3Dpoint)

Transformations will thus be
represented by 4x4 matrices:

P’ = A.P




Homogenous Coordinate systems

* In order to Apply a sequence of transformations to
produce composite transformations we introduce the
fourth coordinate

« Homogeneous representation of 3D point:

Xy z h|T (h=1 for a 3D point, dummy coordinate)
 Transformations will be represented by 4x4 matrices.
1 0 0 Ax S, 0 0 0
0—1—=U0—A O—>5—0—0
= 2 = y
0 0 1 Az U—0—»-—0
0 0 0 1] - s 1

Homogenous Tranglation
matrix

Homogenous Scaling

matrix
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Rotation about z axis by angle y

How can one do a Rotation about an arbitrary Axis in Space?




3D Transformation equations (3)
Rotation About an Arbitrary Axis in Space
Assume we want to perform a rotation about an

axis in space, passing through the point (X, Y. Zp)
with direction cosines (c,, C,), by @ degrees.

1) _ First of all, translate by: (xo, Yor Zo) = | T}

2) Next, we rotate the aX|s into one o’? the principle
axes. Let's pick, Z (|R,|, [Rl).

3) We rotate next by 6 degrees in Z (|R.(8)]).

4) Then we undo the rotations to align the axis.

95) We undo the translation: translate by (Xx,, v, Z;)

The tricky part is (2) above.

11119 19 SUIIIH VYV LlAdNT 4 IUI.GI.IU 19,
i) about x (to place the axis in the x-z plane)
and

ii)_al)oout y (to place the result coincident with the z
axis).




z | Rotation about x by o::
How do we determine o?

Project the unit vector, along
OP, into the y-z plane. The y
and z components are c, and
C,, the directions cosines of
the unit vector along the
arbitrary axis. It can be seen
from the diagram above, that :

d =sqgrt(c,*+c,?), cos(a)=c,/d

sin(e) =c,/d

Rotation by 8 about y:
How do we determine 3?
: Similar to above:




Determine the angle 3 to rotate the result into the Z axis:
The x component is c, and the z component is d.
cos(f) =d = d /(length of the unit vector)
sin(#) =c, = c,/(length of the unit vector).

Final Transformation:
M= |T|7 [Ry™ R, R, IRy| IR, IT]

If you are given 2 points instead, you can calculate
the direction cosines as follows:

V. = | (Xy-Xg) (Y1 Yo) (21 -20) |"
Cy = (Xq -Xo) |V]
Cy = (Y1 -Yo) VI
C, = (24 -Zp)! |V,

where |V| is the length of the vector V.




Inverse transtormations
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Concatenation of transformations

* The 4 X 4 representation 1s used to perform a
sequence of transformations.

» Thus application of several transformations
in a particular sequence can be presented by
a single transformation matrix

v =R, (S(Tv))=A4v, A=R,.S.T

» The order of application 1s important... the
multiplication may not be commutable.




Commutivity of Transformations

If we scale, then translate to the origin,
and then translate back, is that equivalent to
translate to origin, scale, translate back?

When is the order of matrix
multiplication unimportant?

Whendoes T, *T, =T, * T,?

Cases where T, *T, =T, * T;:

Scale (uniform) | rotation




COMPOSITE TRANSFORMATIONS

If we want to apply a series of
transformations T,, T,, T; to a set of points,
We can do it in two ways:

1) We can calculate p'=T;*p, p''= T,*p/,
plll=T3*pll
2) Calculate T= T,*T,*T;, then p'''= T*p.

Method 2, saves large number of additions
and multiplications (computational time) -
needs approximately 1/3 of as many operations.
Therefore, we concatenate or compose the
matrices into one final transformation matrix,
and then apply that to the points.




Spaces

Object Space
definition of objects. Also called Modeling space.

World Space
where the scene and viewing specification is made

Eye space (Normalized Viewing Space)
where eye point (COP) is at the origin looking down the Z
axis.

3D Image Space
A 3D Perspected space.
Dimensions: -1:1 inx &Yy, 0:1 in Z.
Where Image space hidden surface algorithms work.

Screen Space (2D)
Coordinates 0:width, 0:height




Projections

We will look at several planar geometric 3D to 2D

projection:

-Para
Ort
Ob

lel Projections
nographic

ique

-Perspective

Projection of a 3D object Is defined by straight

projection

rays (projectors) emanating from the

center of projection (COP) passing through each
point of the object and intersecting the projection
plane.




Perspective Projections

Distance from COP to
projection plane is finite.
The projectors are not
parallel & we specify a
center of projection.

Center of
projection /$&&

4
4

Center of Projection is

also called the Perspective Projection

Projection plane
- normal

AI.AI‘AA l"A AI.AI‘AA

rmapeuuve I‘EIEIEIIUB
Point
COP = PRP




Z-axis vanishing point

Z-axis vanishing point

 Perspective foreshortening: the size of the perspective
projection of the object varies inversely with the
distance of the object from the center of projection.

 Vanishing Point: The perspective projections of any set
of parallel lines that are not parallel to the projection
plane converge to a vanishing point.






Projection

Plane

(top view) Projectors
A for
Projectors for |4 ¢" side view
top view [

Projection
Plane
(side view

Projectors for
front view

(front view)

Example of Orthographic Projection




Example of Isometric Projection:

Projection
plane

Projecto

Projection-
plane normal




Example Oblique Projection

Projection
plane

Projection-plane normal




END OF BASICS




Real image




THE CAMERA MODEL:
perspective projection

p(X,y,z)

Camera lens

(x,y,z)- 3D world
f # (X,Y) - 2D Image plane




Perspective Geometry and Camera Models

XorY | =7 P(X,Y,2)

(I//’/)! -Z
¥ P(X,Y,2)

P XorY;
/ X, OF Y,

(coL) O




X ,Y 7

CASE -1

By similarity of triangles

At ——1F =}
foz=f f z- -
=
=7 fz :
X=_———y_ 2
e e —

P(-X,-Y)

p(x,y,z

Image plane before the
camera lens

Origin of coordinate
systems at the image
plane

Image plane at origin of
coordinate system




PP

p(X.y;z)
CASE-1.1
By similarity of triangles 4
— " — ==
—F——7——F——
e Image plane before the
X = l’ Y = 1 camera lens
= = » Origin of coordinate
S X systems at the camera iens
/ /  Image plane at origin of
f coordinate system




X,y
PP
CASE - 2 p(x,y,z)
X, Y
By similarity of triangles (X,Y)
(coL) =
X X  — O f
f - ? f P *-----—-—-- >
Y - f v = vf « Image plane after the
— = camera lens
Z 3
= * Origin of coordinate
X=—FH_ Y= == systems at the camera lens

Z Fom =
/f == e Focal length f




PP

B 4 p(x,y,2)
CASE-21 X,y
By similarity of triangles (COL) L z
{_x Yy = *O
f—ftz—f—f+z
* Image plane after the
_ — b/ cameralens
f+z Stz « Origin of coordinate system

L SN\ M

not at COP

—1+7f’ _1+7f  Image planeorigin coincides
with 3D world origin




Consider thefirst case....

XY | Xy
- Notethat the equations P(X,y,2)
are non-linear

« We can develop a matrix
formulation of the
equations given below

Ty - ——=
1—7f 1—%___ =

X 1 0O 0| Akx

Y{{o1 0 O0fk

=2 z| |00 1 ofk

(Z isnot important and is | 0= I %

eliminated)




Inverse perspective projection

—0—0—b P(X0:Y0,Z0)
== =010

~0—Q 10

0 0 1/f 1 =
/ = P(XaYh)

Xl 00 O Tt | KX s
WZyG:OlOOk};:kI@:YG
"1z, |0 0 1 ofo0 0 0

B e ey A I e O e

Hence no 3D information can be retrieved with the inverse
transformation




So we introduce the dummy variable i.e. the depth Z
Let the image point be represented as: [kX - kYO k/ k]T

- —0—0—05cx;
A Y0 1L 0—"0 | £Y;
w, = -
25 § B § e e A E
m e R s T —
7z o

— = Sz f -z
° f+Z—>Z_f—ZO:>f+Z_Z_ =

R x(,:%(f—zo), yo=?(f—zo)




CASE -1 PP
Forward: 3D to 2D

X——% E_
f——f——f
e
f—z
X7 ——
1- 2/ 1= 2/,

: % :E =
KXo = :: (f=20)— Yy f(f 0)




CASE -2 3
X,y
Forward: 3D to 2D PP
p(x,y,2)
{zf = — X, Y
= ’ F—
(X,Y)
Xzﬁj v-¥  (coy -
z z O ;
X
ey
e
I/ I/
Inverse: 2D to 3D e v
_ <94 2oLy
Xo = s Yo




Observations about Perspective
projection
* 3D scene to 1image plane 1s a one to one

transformation (unique correspondence)

* For every image point no unique world
coordinate can be found

* So depth information cannot be retrieved using a
single image ? What to do?
* Would two (2) images of the same object (from

different viewine anoles) heln?

e Termed - Stereo Vision




Stereo Vision

Y /o,

L ens center

Optical axis

S~
~
-~

p(x.y,2)
World point

=T
S~
~




Stereo Vision (2)

Ster eo Imaging involves obtaining two separ ate image
views of an object (Inthisdiscussion the world point)

The distance between the centers of thetwo lensesis
called the basaline width.

The projection of the world point on the two image
planesis (X, Y,) and (X,, Y,)

Theassumption isthat the cameras are identical

The coordinate system of both cameras are perfectly
aligned differing only in the x-coordinate location of the
origin.

Theworld coordinate system Is also bought into the
coincidence with one of theimage X, Y planes (say
Image plane 1) . Soy, z coordinates are same for both
the camer a coor dinate systems.




Top view of the stereo imaging system with origin
at center of first imaging plane.

X1
(X1, Y1)

O,

lmage 1

| mage 2




First bringing the first camera into coincidence with
the world coordinate system and then using the second
camera coordinate system and directly applying the
formula we get:

- —Z =£ —Z
= (f=2;), x, = & —z,)

Because the separation between the two cameras is B
= — = ¥ 1 %k
X, =x,+B, z,=z,=z(?) /*Solveit now */
X X
X =—-(f-2) x1+3=72(f—2)

5
=(X2_X1) fB

X =

B

(f—Z), Z=f

f _(Xz_Xl)




» The equation above gives the depth directly from
the coordinate of the two points

» The quantity given below 1s called the disparity

D=(X2 _X])f /B
(f=2)

 The most difficult task 1s to find out the two
corresponding points 1n different images of the
same scene — the correspondence problem.

* Once the correspondence problem is solved —

(hon qnqlxr al e ot D Then
iVli—aiialy utladl ), we g0L 1LJ. 111011 U

using: —F /B )=f[1—%]

>3
-




Alternate Model 2 —— >y
i —— —
Case 111 f z f z

==t = Yz

— _, R ———

f f




Top view of the stereo imaging system with origin
at center of first camera lens.

v

X IP1 |
i
I
Ol E\\\\\ : >

: =S =l
—> \(Xl’Yl) |
. =~ I
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B e W(XY, 2)
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Compare the two solutions

= /B _B
Z—f (Xz_Xl) _f[I A)l

D= =) =22
(f=2)

10 =B.]7
= & D =(X, _Xl):E

=

What do you think of D ?




The Correspondence Problem

B. /B =
Z = % DZ(XI_XZ)Z? YI_YZ
If D>0; then X, <X
o e e by ——]—— - - - e
® (X1, Y1 A (qu Yz)
Y, Y,
> = >
) & LAY,
Image Plane - | Image Plane - I

EPIPOLAR Line




Error in Depth Estimation

ZzB.% 5(2)&)= _B.f/D2

Expressing in terms of depth (z), we have:

5(z) :_B.f: = z2
oD D?

D—RF

What is the maximum value of depth (z), you can
measure using a stereo setup ?

z . =B.f




Even if correspondence is solved correctly, the
computation of D may have an error, with an upper
bound of 0.5; i.e. (0D), ., = 0.5.

=
Z

2B.f

Larger baseline width and Focal length (of the
camera) reduces the error and increases the maximum
value of depth that may be estimated.

That may cause an error of: 5(2) —

What about the minimum value of depth (object

closest to the cameras) ?
=B.f/D__
WhatisD__., ? ~

max * — e
I')max = xmax

depends on f and image resolution

zmin

X

max

(in other words, angle of field-of-view or FOV).
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General Stereo Views




Perfect Stereo Views




We can also have arbitrary pair of views from two
cameras.

« The baseline may not lie on any of the principle axis
« The viewing axes of the cameras may not be parallel
« Unequal focal lengths of the cameras

« The coordinate systems of the image planes may not be
aligned

Take home exercises/problems:

What about Epipolar line in cases above ?

?

~w da riva thea am ua 'I- 'F aninA Nna %
T1OvVw U0 Hve uic cgual N of an cpipl e

U Aa Aalarlhin
UcC iar i

\V/a)
2

In general we may have multiple views ( 2 or more) of
a scene. Typically used for 3D surveillance tasks.




The Epipolar line in case of Arbitrary Views

Image Plane - | Image Plane - I

m
O
O
@)
=
>
p

r-
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Process of Rectification

Image rectification is the process of applying a pair of 2
dimensional projective transforms, or homographies, to a pair of
images whose epipolar geometry is known so that epipolar lines in
the original images map to horizontally aligned lines in the
transformed images.




Left image Right image

Rectified left image Rectified right image

—







Classical Depth Estimation

Depth estimation of image points — need at least two
views of the same object

General Stereo

Arbitrary multiple
view geometry




Camera Image formulation

Action of eye Is simulated by an abstract camera model
(pinhole camera model)

3D real world is captured on the image plane. Image is
projection of 3D object on a 2D plane.

F (X Yo Zw) = (X, )
1 0
Y A H G - D ].
0 0
X /va‘orld
C mage > \/\/nrlrl (X\m? w2 \I\I)
X W
f / |mage_(f_ _)
ZW

W

| = OO
o OO OJ
s T e T
O e O

_ i

= O o




Pinhole Camera schematic diagram




Camera Geometry

Camera can be considered as a projection matrix, x =P,,,X
A pinhole camera has the projection matrix as

P=diag(f, f,1)|l

Principal point offset

X,Y,2) > (fX/Z+p,fY/Z+p,)
X y

f 0
K=|0 f
0 0

<
;

0

| 0]

Camera with rotation and translation

x = K|R [ t]X




Camera Geometry

Y

Camera internal
parameters

A

A

X
X / world

B
|

Camera matrix,

V4
Yimg / P=(P, py)
Ximg
@, Scale factor in x- coordinate direction
o, S Py . | -
@y Scale factor in y- coordinate direction
o, Py S Camera skew
| %s Aspect ratio
0(y
P=K[R]|t] R Rotation

t Translation vector




Camera skew factor/parameter, s:

The parameter “s” accounts for a possible non-
orthogonality of the axes in the image plane.

This might be the case if the rows and columns of
pixels on the sensor are not perpendicular to each other.

+—+—¢j'¢_
r*-' Il
*t HH ?f

bddtt—t

i*f-*"

Plncushlon,
non-linear distrortion




The Reconstruction Problem

Given a set of images of a particular 3D scene, can we
reconstruct the scene back?

3D representation of an object is difficult because of the
problem of depth estimation.

Image Is projection of 3D object on a 2D plane.
F (X, Y Zy) = (X, Y)

(X Yo Z,) are real world coordinates and .

(X, y) are Image coordinates X\
Reverse ma is n n \ /

el aVtall Talalaral
UICLUUIU. Xi'

AN

71




3D Reconstruction

Given a set of images of a particular 3D scene, can we
reconstruct the scene back?

Classical inverse problem of the computer vision

[a]. Oxford Keble College




Reconstruction from turntable

sequence

The images acquired from L
various poses using an § | Mook

“‘HE}




Epipolar lines and Fundamental matrix

X
L

y

epipolar plane T \

A A X, |

AN ‘: N\ 4/ e
x / .

rd
forx

An epipolar plane is a plane containing the camera centers
(baseline) and the object point.

An epipolar line is the intersection of an epipolar plane with the
Image plane.

Fundamental Matrix (F) gives the constraint between
corresponding image points of same 3D object point [

[a] A. Zisserman, Multiple View Geometry ‘02 74




\/\/ m”Fm — 0,<= X" Fx=0
I < . I

Point m in I, produces a line,
I” (=Fm), as:

. m' '=0;

\
P=KI[Il]|O]

F =K RKT[KR't],

=[] K'RK™ =K RK"[e],

m
P
Epipoles satisfy: s
/ Fe=0=F'e;

P' — K '[ R | t] Read Camera Calibration

methods for P estimation

Left view Right view




Typical methods used to estimate F:

- 8-pt DLT algo. m'' Fm — 0,
- RANSAC =>
Af =0;

- Normalize data, using Transformation matrix T.g
- DLT; F is the “smallest singular” vector of A
- replace F by F~, using SVD, where det (F7) =0
- Denormalize, as: y
F=T"FT
Also, look at Gold Standard method based on MLE




Scene Homography (points)

A homography is an invertible mapping of points and lines
on a projective plane. Its an invertible mapping to itself, such that
collinearity is preserved. It is represented as:

7 M — Hgfz
where:

— pl, ¢" are homogeneous 3D vectors

— H € R3%3 is called a homography matrix and has 8 degrees
of freedom, because it 1s defined up to a scaling factor (H =

cA 1 B where ¢ is any arbitrary scalar)

e The mapping defined by (1) 1s called a 2D homography

e Since the homography matrix 4 has 8 degrees of freedom, 4 cor-

responding (p, ¢) pairs are enough to constrain the problem
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Scene Homography (Lines)

[Tph =0 _ mTgh =

From above, derive, | = f(H, m) ??
I"Tp"=0=1"Hg"=0=m"q"; where |

c=I"H

(H )"

What about H, from above ??
H — (IT)—I mT

Possible to compute H, now ??

—|"T=m'H™







_ o _ Rectification (Zhang’'s)
Properties of rectified image pair:

- All epipolar lines are parallel to horizontal (x- or u-axis)

- Corresponding points have identical y- or v-coordinates.
Let H and H' be the homographies to be applied to images 7 and 7 respectively. and letm € T

and m' € 7' be a pair of points that satisfy Eq. (1). Consider rectified image pointsm and m' defined
m-=Hm and m' = H'm'.
AR 10
It follows from Eq. (1) that m™ ¥m = (),
n'' Fm 0, | — =
m H'FHm (. ¥ v
F C e[S 406 C
I ) I
resulting 1n the factorization | \ i V
F-HT"[i.H. > —
Fundamental matrix 0 0 0
for a rectified image pair: (1], (0 0 ]
Whatisi ?? 1 ()

- . B T . . .
where, i = [1 0 0]7, is X-VP (at Inf.) “T o Up Ue
Let, . . o T T H = V{ | = Vg U Ve

He = [ u'e vie wle ] = [ I 0 0 ] w! w, Wy W,

Then, the corresponding lines v and v’, w and w’ must be epipolar
lines, for minimal distortion due to rectification; H = H,,.H.H,




Homography: x = HX/;

T
Relationship with Fundamental matrix, F: <= X" Fx=0

Hx’ lies on the corresponding epipolar line: Ex’:
Thus, He'=e; H-le=e’;

F =K' RKT[KR"t], =[¢]| K'RK ' =K' T RK[e],
=lel. PP =[elH,

where, H_ is the homography imposed by epipolar plane
I'=[€'],H_x=Fx=F[e]l;
| =F'[e]l'

Simple steps of Rectification, given F:

- Estimate H, to any one of the image pairs, for making epipolar
lines coincident
(4-point pairs and RANSAC -RANdom SAmple Consensus);

- Epipolar lines are made parallel to x-axis;

Three constraints for rectification: He = i. H'e' = i and H'rT [i- .H=F




Left image Right image

Rectified right image




Solving Homography using point correspondences

c ? —H ; ., (2.1)
1 1

: AT AT
where ¢ is any non-zero constant, ( u v 1 ) represents x’, ( r y 1 )

hi ho hj
represents x, and H = he hs he |.
h hs hg

—hixz — hoy — hy + (hrx 4+ hgy + hg)u =0

—hgx — hsy — he + (h7x + hgy + hg)u =0

—
2
l-ll"

—

Aih =0

where A; =

and h = (




Aih =0

Since each point correspondence provides 2 equations, 4 correspondences
are sufficient to solve for the 8 degrees of freedom of H. The restriction is
that no 3 points can be collinear (i.e., they must all be in “general position”).
Four 2x9 A; matrices (one per point correspondence) can be stacked on top
of one another to get a single 8 x9 matrix A. The 1D null space of A is the
solution space for h.

This is the basic DLT algorithm, which only requires
normalization (pixel coordinates) and de-normalization steps,
prior and after the solution of the homogeneous system.

Also a cost minimization approach (use RANSAC) is used
for a over-determined set of systems, for a robust solution.

For Homography using line correspondences:

ao— [ 0 wr —v 0 vz —1 0 =z
L 0 —wu uwy 0 —v vy 0 =1 y

( u v 1 )T represents 1 and ( x y 1 )T represents 1




Estimate H (Altn. Method)

Given n>=4 2-D point pairs;

- - . Y
Algo:  FoHE=00 E =y
— OT _W'E? ;_T 1\
jovi YiXi h
n e —7
Use- — wz.xg- 031 _xfxf hz =O:}ih=0
- F_;{P I_z’ 1
L - ‘u:;x;r 0 —-’f-’:a";r h3

- Assemble n 2*¥9 matrices A; into a single 2n*9 matrix A, by
stacking horizontally row-wise;

- SVD of A, gives: A=UDV":

- h9*1 is the last column of V (unit singular eigen-vector
corresponding to smallest singular value)

- __ _ | 1 | _ o __=__ __ P —_ . __ B — L
- Form H;.3, by arranging eiements of 1l

- May need normalization of coordinates

If the stereo is calibrated; i.e P and P’ knhown, use:

A compact algorithm for rectification of stereo pairs; Andrea Fusiello, Emanuele Trucco, Alessandro Verri ;
Machine Vision and Applications (2000) 12: 16-22 Machine Vision and Applications; Springer-Verlag 2000;




'k RE ATION! BMVUC 2010 dor- 10 5244/C 24 89|
a is to transform both images so I]hl.'EHI vt]he ﬂmdamenlaﬂ majnrnx gets the form [i]...

The ide

Unlike the other mf:mnds which dl.[ECﬂ}' parametenze the homographies fmm the l:unstramlts
He = i. i-I" "=iand H"[i|.H = F and find an optimal pair by minimizing a measure of

distortion, we shall compute the homography by explicitly rotating each camera around its
optical {:ﬁmﬂ' The algorithm is decomposed into three steps (Fig. 1)
' w i 1
o
1. Com "
left ¢ ™~
r 15 step
€ ,10
{ i B . B EI Gl-' . - 5B
~ 1 Y C (e C' (e
L. Rota vy i Ly ;;-
(1,0 v
2 step
3. Rota
tion .
kS X ;
C (e) Y L cle) | | C'(e)
1T Ty’ 13. Ty

Figure 1: Three-step rectification. First step: the image planes become parallel to CC'.
Second step: the images rotate in their own plane to have their epipolar lines also parallel
to CC'. Third step: a rotation of one of the image planes around CC’ aligns corresponding
epipolar lines in both images. Note how the pairs of epipolar lines become aligned.




MONASSE et al.: THREE-STEP IMAGE RECTIFICATION| BMVC 2010 dor-10.5244/C 24.89
Input: F, computed using correspondences;

which gives epipoles e and e’; Let,
x, =K[I|0]X;= K™'x, =[I|0]X
Steps: 1 & 2: X, = K.R[I|0]X;

(e e 0 =X, =K.RK"X, =Hx;

where, Homography is:
— -1

RK e = K (ey,e,,0)7 1 =K.RK -

rotates the vector a = K le to h=K! ff?_i-,f?}-,D}T K=

Hie = (e;,e,.0)" and Hie' = _
H, =KRK !and H; = KR'K'

e Iul"-..."lu|'-'r'-:

0
f
0

D O~

R{E‘,t] =1 +sinB[t],. + (1 —cda..ﬂ}:t]g{

minimal angle 6 is acu::s{;‘T']’le and the rotation axis t is I:-ﬁfl:

H;, H), H; and H} are all parametrized by f

-~

Step 3: Rotation R", of one camera about baseline: | = I{—T[i]} REK !

H; is obtained after obtaining optimal K (or f)




Epipolar line homography:

(a) There is a pencil of epipolar lines in each image centred on the
epipole. The correspondence between epipolar lines, li « l'i, is defined by the
pencil of planes with axis the baseline.

(b) The corresponding lines are related by a perspectivity, with centre at any
point p on the baseline. It follows that the correspondence between epipolar
lines in the pencils is a 1D homography.




Vanishing points

Points on a line in 3 space thraugh point A and direction
D=(d' ) are X(A)=A+ AD.AsA goesfrom zero to
infinity, then X{A) varies fram finite point A to point D at <.
Assume P = K[| 0], then image of X{A} is given by

x(A)=PX(A)=PA +APD =a+AKd
v=lim x(\)= lim (a+AKd)=Kd

note that v depends only on the direction d of the line, not
on its position specified by A

= Conclusion: the vanishing point of lines with
direction d in 3 space is the intersactionv of the
image plane with a ray through the camera center witl
direction d, namelyv = Kd

d X(A)

oo fie worid noing
the world poin

— e e = == =B g 2= | e - B.. R ——
APFGIECH OFFT IR WOITIED {ifIC . TP00 INETT SR

T EC [C LCN ' = AlE) A
iy ELTEENY. IR iFIE

L and a1 x the




Vanishing lines ;

C\@zzz/

n

lg\ )

Fig. 8.16. Vamishing line formation. (a) The two sets of parallel lines on the scene plane converge 1o
the vanishing points vy and v, in the image. The line | through vy and v is the vanishing line of the
plane. (b) The vanishing line | of a plane 7 is obtained by intersecting the image plane with a plane
through the camera centre C and parallel to w.
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. Reconstruction Framework
i ‘ e 400
R i 3D world object 20
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Find Correspondence

X" Fx=0 or X' Ex=0
Fundamental; P=I[I10] and P'=[[€], F|€]

) : T
Essential Matrix E=K'" FK;

" Projective Reconstruction
g XxPX =0

(Triangulation process ) 1@ AX = 0
[a] R.Hartley, CVIU ‘94 92




Ambiguity In Reconstruction

From Image correspondences, the scene and the
camera can be reconstructed to a projective
equivalent of the original scene and camera

Projective Reconstruction theorem:

x, =PX, =(PH"JH X,)

Additional information (scene
parallel lines, camera internal

Nnarametare) raaiiirad for metrie
quu ulll\/LUIUl IUWUIIUU I\JI1 I 1IN UL I\

reconstruction
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GENERIC STEREO RECONSTRUCTION (sec. 10.6, pp 277; H&2)

Input: Two Uncalibrated images;

Output: Reconstruction (metric) of the scene structure
and camera

Algo. Steps:

 Projective reconstruction
« Compute Fundamental matrix, F
« Compute P and P’ (camera matrices) using F
« Use triangulation (with rectification) to get X, from x; and x;’

« Rectify from projective to Metric (M), using either

(a) Direct:
Estimate homography H, from grnd. Control pts.,;
Py=P.H1; P'y,=P'.H1; X, = HX..

OR

(b) Stratified (use, VP, VL, Homography, Abs. conic etc.):
Affine;
Metric

94




In case of a set of arbitrary views (multi-view
geometry) used for 3-D reconstruction (object structure,
surface geometry, modeling etc.), methods used involve:

- KLT (Kanade-Lucas-Tomasi)- tracker

- Bundle adjustment and RANSAC

- 8-point DLT algorithm

- Zhang’s scene homography
- Tri-focal tensors

- Cheriality and DIAC

- Auto-calibration
- Affine to Metric reconstruction
- Stratification

- Kruppa’s eqn. for infinite homography







Example of
3-D reconstruction

3D surface point and wireframe
reconstruction from multiview
photographic images; Simant
Prakoonwit, Ralph Benjamin;
IVC - 2008/9




Robust Recovery of Shapes with Unknown

Topology from the Dual Space;

Chen Liang and Kwan-Yee K. Wong,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE.
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End of Lectures on -

Transformations,
Imaging Geometry,
Stereo Vision
and
3-D Reconstruction




