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BASICS

Representation of Points in the 3D world: a vector of length 3
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Basics 3D Transformation equations
e Translation: P =P + AP

 Scaling: P=SP
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* Rotation : about an axis,

P’=RP




ROTATION - 2D
x'=xcos (6)— ysin (6)

y'=xsin (6)+ ycos (6)

In matrix form, this is :

cos(f) -sin(0)
sin(@) cos(6)

Positive Rotations: counter clockwise about

e~ Ao
CIIC VIl |H|||

For rotations, |R| = 1 and [R]T = [R]"1.
Rotation matrices are orthogonal.




Rotation about an arbitrary
point P in space

As we mentioned before, rotations are
applied about the origin. So to rotate about
any arbitrary point P Iin space, translate so
that P coincides with the origin, then rotate,
then translate back. Steps are:

¢ Translate by (-P,, -P,)

e Rotate

¢ Translate by (P,, P,)




Rotation about an arbitrary
point P in space

4 A

P, 0
House at P, Rotation by 0
P,
Translation of Translation

P, to Origin back to P,




2D Transformation equations (revisited)

e Translation: P =P + AP
et A x'] [1 O T x
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* Rotation : about an axis,
P>’=RP
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Rotation about an arbitrary
point P in space

Rgen — Tl('le 'Py) z Rz(e) x T3(le Py)

1 0 —P| |cos@) -sinl@) 0| |1 0 P«
=0 1 —P|*sin(@) cos@ 0(*I10 1 P
0 0 1 0 0 1| (0 0 1

cos(@) -—sin(@) Px*(cos(@)—1)— P, *(sin(0)
=|sin(@) cos(@) Py*(cos(@)—1)+ P:*sin(0)
0 0 1

Using Homogeneous system




Homogeneous representation of a
point in 3D space:

P=|xyzw]|"

(w=1,fora3Dpoint)

Transformations will thus be
represented by 4x4 matrices:

P’ = A.P




Homogenous Coordinate systems

« In order to Apply a sequence of transformations to
produce composite transformations we introduce the
fourth coordinate

« Homogeneous representation of 3D point:
Ixy z h|T (h=1 for a 3D point, dummy coordinate)
 Transformations will be represented by 4x4 matrices.

1 0 0 Ax| S 0 0 0

e e 0 § 0 0O
T: y S: Y

0 0 1 Az 0—0 S 0

=6 0 "I 0o 0 0 1
Homogenous Translation Homogenous Scaling

matrix matrix




= 0 e - cosf 0 sinf O
0 cosa —sina 0O 0 1 0 0
Ra = . R —
0 sina cosa O 7 1—sinf 0 cosf 0
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Rotation about X axis by angle o Rotation about vy axis by angle 3
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Rotation about z axis by angle vy

How can one do a Rotation about an arbitrary Axis in Space?




3D Transformation equations (3)
Rotation About an Arbitrary Axis in Space
Assume we want to perform a rotation about an

axis in space, passing through the point (x,, ¥, Z,)
with direction cosines (c,, c,, c,), by 6 degrees.

1)  First of all, translate by: - (x,, y,, Z

2) Next, we rotate the aX|s into one 01? the prlnmple
axes. Let's pick, Z (IR,

3) We rotate next by 6 degrees |n y4 (IR,(0))).

4) Then we undo the rotations to align the axis.

9) We undo the translation: translate by (x,, y, z,)

The tricky part is (2) above.

11119 19 SUIIIH VYV LAdNT 4 IUI.GI.IU 19,
i) about x (to place the axis in the x-z plane)
and

ii)_al)oout y (to place the result coincident with the z
axis).
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Pc, 0,d)/ P-»

Rotation about x by a:
How do we determine o?

Project the unit vector, along
OP, into the y-z plane. The y
and z components are ¢, and
C,, the directions cosines of
the unit vector along the
arbitrary axis. It can be seen
from the diagram above, that :

d =sqrt(c,?+c,%), cos(a)=c,/d

N
Y

sin(a) =c,/d

Rotation by 8 about y:
How do we determine 3?
Similar to above:



Determine the angle 3 to rotate the result into the Z axis:
The x component is ¢, and the z component is d.
cos(f) = d = d /(length of the unit vector)
sin(f) =c, = c,/(length of the unit vector).

Final Transformation:
M=|T"|RJI"IRI"IR,I IR IR, IT]

If you are given 2 points instead, you can calculate
the direction cosines as follows:

V = | (x;-X0)) (V1-Yo) (Z1-29) |7
.= (6% 1V
Cy, = (V1Yo V]

cz (Z1 -ZO)/I‘/ll
where |V| is the length of the vector V.




Inverse transtormations
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Concatenation of transformations

* The 4 X 4 representation 1s used to perform a
sequence of transformations.

» Thus application of several transformations
in a particular sequence can be presented by
a single transformation matrix

v =R, (S(Tv))=Av, A=R,.S.T

» The order of application 1s important... the
multiplication may not be commutable.




Commutivity of Transformations

If we scale, then translate to the origin,
and then translate back, is that equivalent to
translate to origin, scale, translate back?

When is the order of matrix
multiplication unimportant?

Whendoes T, *T, =T, * T,?

Cases where T, *T, =T, * T;:

Scale (uniform) | rotation




COMPOSITE TRANSFORMATIONS

If we want to apply a series of
transformations T,, T,, T; to a set of points,
We can do it in two ways:

1) We can calculate p'=T;*p, p''= T,*p/,
plll=T3*pll
2) Calculate T= T,*T,*T;, then p'''= T*p.

Method 2, saves large number of additions
and multiplications (computational time) -
needs approximately 1/3 of as many operations.
Therefore, we concatenate or compose the
matrices into one final transformation matrix,
and then apply that to the points.




Spaces

Object Space
definition of objects. Also called Modeling space.

World Space
where the scene and viewing specification is made

Eye space (Normalized Viewing Space)
where eye point (COP) is at the origin looking down the Z
axis.

3D Image Space
A 3D Perspected space.
Dimensions: -1:1in x &y, 0:1 in Z.
Where Image space hidden surface algorithms work.

Screen Space (2D)
Coordinates 0:width, 0:height




Projections

We will look at several planar geometric 3D to 2D
projection:

-Parallel Projections
Orthographic
Oblique

-Perspective

Projection of a 3D object is defined by straight
projection rays (projectors) emanating from the

center of projectioan(EC‘)P) passing through each
point of the object and intersecting the projection

plane.

v'v'—-v-- = Nwm




Perspective Projections

Distance from COP to
projection plane is finite.
The projectors are not
parallel & we specify a
center of projection.

Center of
projection /$&&

4
4

Center of Projection is

also called the Perspective Projection

Projection plane
- normal

AI.AI‘AA l"A AI.AI‘AA

rmapeuuve I‘EIEIEIIUE
Point
COP = PRP




Z-axis vanishing point

Z-axis vanishing point

« Perspective foreshortening: the size of the perspective
projection of the object varies inversely with the
distance of the object from the center of projection.

« Vanishing Point: The perspective projections of any set
of parallel lines that are not parallel to the projection
plane converge to a vanishing point.






Projection
Plane
(top view) Projectors

for
Projectors for =52 -~ side view

top view N

Projection
Plane
~ (side view

Projectors for
front view

(front view)

Example of Orthographic Projection




Example of Isometric Projection:

Projection

Projecto

MI
|

:i}l -
e
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a

;
M
w

Projection-
plane normal




Example Oblique Projection

~ Projection

Projection-plane normal




END OF BASICS
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THE CAMERA MODEL.:

perspective projection
YY1

p(X,y,z)
a Camera lens |

x,X
/
/ O/
v

(X,y,z)- 3D world
f # (X,Y) - 2D Image plane




Perspective Geometry and Camera Models

XorY | =7 P(X,Y,2)

(I//’/)! - Z
¥ P(X,Y,2)

P XorY;
/ X, OF Y,

(coL) O




AT I'x
= p(X,y,2|

CASE - 1 /'
O .

By similarity of triangles P(-X,-Y)

X —x = -
=

f f * Image plane before the

X
S — 2 i camera lens
= fz  Origin of coordinate

X y systems at the image

v —— = e plane

——a
£ : A * Image plane at origin of

coordinate system




PP

X,y X’Y P(X,y,z)

CASE - 1.1 /‘
O >

By similarity of triangles (COL) 4
P(-X,-Y)
=y == = >
e — : —f =z
- Image plane before the
= i Y = 1 camera lens

b

Z A

« Origin of coordinate
systems at the camera lens

X — 3 4
7 ’ 7 - Image plane at origin of
f f coordinate system

. —




X,y
PP
CASE - 2 P(X,y,2)
X, Y
By similarity of triangles (X,Y)
(COL) st
s —— — s
=z f = — =
X Y * Image plane after the
A=——" =" camera lens
Z %
= y * Origin of coordinate

systems at the camera lens

e R
/f /f » Focal length f




PP

X,Y
CASE - 2.1 X,y

p(x,y,z)

By similarity of triangles (COL) z
A——it s, e =
f—ftrz—f—F+z
 Image plane after the
= xf = 74 camera lens
- .
ftz Stz * Origin of coordinate system

not at COP

X
X = —
1+ % 1+ %p « Image plane origin coincides

with 3D world origin




Consider the first case ....

X,Y [ xy
 Note that the equations P(x.y,z)
are non-linear

* We can develop a matrix
formulation of the
equations given below

X=—"_  y=—2
1—% 1—% e
"

(Z is not important and is
eliminated)

-
=1l | P IS
TR g




Inverse perspective projection

1 0 0 O] P(XgsYoZo)
— 01 0 0
—~0—Q 10
0 0 I/f 1 =
= P(X,,Y))

Tothl 00—, U7t | b |
W=y0=OIOOkYO=kYO=YO
=g 90 0 0

BB B 11 A e O e o

Hence no 3D information can be retrieved with the inverse
transformation




So we introduce the dummy variable i.e. the depth Z
Let the image point be represented as: [kX . kYO A k]T

X, 1 0 0 O0kX,
|l _|0 1 0 0}k
e s e e e

00 e = —

JZ fz f z, [f-—z
= 7 = 0 == 0
A f—zO:Df+Z =

YO —=;
= %= =2 % == ~2)



CASE -1 PP
Forward: 3D to 2D

A——2X )4

o

——
f—z

T S
=27 1- 2/,

: % v, =
— :: o =z5)—7; f(f 0)




CASE -2 4
X,y
Forward: 3D to 2D PP
p(X,y,2)
e X, Y
=z F >
(X,Y)
Xzi, Yzl (COL) =
Z Z O ;
X
ey ———
e
- 1
Inverse: 2D to 3D % y
_ 4p-4Yy _ 494y
Xo = y g




Observations about Perspective
projection
* 3D scene to 1mage plane 1s a one to one

transformation (unique correspondence)

* For every image point no unique world
coordinate can be found

* So depth information cannot be retrieved using a
single image ? What to do?
* Would two (2) images of the same object (from

different viewine anoles) heln?

e Termed - Stereo Vision
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Stereo Vision

X5 Y1)

Lens center

Optical axis

S~
~
-~

P(x,,z)
World point




Stereo Vision (2)

Stereo imaging involves obtaining two separate image
views of an object (in this discussion the world point)

The distance between the centers of the two lenses is
called the baseline width.

The projection of the world point on the two image
planes is (X, Y,) and (X,, Y,)

The assumption is that the cameras are identical
The coordinate system of both cameras are perfectly

aligned differing only in the x-coordinate location of the
origin.

cht into the
oht into the
coincidence with one of the image X, Y planes (say

image plane 1) . So y, z coordinates are same for both

the camera coordinate systems.

1S 2also bou
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Top view of the stereo imaging system with origin
at center of first imaging plane.

X
(X Yy)
O
: f
Image 1
Image 2
f
O,

(X2,Y))




First bringing the first camera into coincidence with
the world coordinate system and then using the second
camera coordinate system and directly applying the
formula we get:

X =§(f—zl), Xy = );2 & —2z,)

Because the separation between the two cameras is B

X, =x;+B, z =2z,=2z(?7) /*Solveit now */

xe%f—z), x1+8:%<f—z>
/B

p= 22X r_;) o=y

f ===




» The equation above gives the depth directly from
the coordinate of the two points

» The quantity given below 1s called the disparity

/B
D=(X,-X)=——
* The most difficult task 1s to find out the two
corresponding points 1n different images of the
same scene — the correspondence problem.

* Once the correspondence problem is solved —

(hon qnqlxr al e ot D Then
ivii—aliaiy uvdl j, W gCL 1J. 111011 U

using: o fB )=f[1—%]

S
o+




Alternate Model X x r—

- Case I1I f z 4 f .

D, €4 Yz

A

f f

x2:x1+B’ y1:y2:y9 2122222(?)

X X
f /




Top view of the stereo imaging system with origin
at center of first camera lens.
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Compare the two solutions

= b — B
= (XZ_XI) f[I /D]

D=(X,-X))= L
==

i
(X, - X)) L) D:(Xz_)(l):ﬁ

Z

What do you think of D ?




The Correspondence Problem

B.]7 B =
z= DXl — Y =¥
D ( 1 2) = 1 2)
If D>0; then X, <X,
o e e e =
A (X1,Y1 A (qu Yz)
Y, Y,
> v’
) & LAY,
Image Plane - | Image Plane - I

EPIPOLAR Line




Error in Depth Estimation

Z:B.% 5(2)51): _B.%z

Expressing in terms of depth (z), we have:

5(2) :_B.f:_i_ -2
oD D?2

P—RF

What is the maximum value of depth (z), you can
measure using a stereo setup ?

Zmax - B'f




Even if correspondence is solved correctly, the
computation of D may have an error, with an upper
bound of 0.5; i.e. (6D), ., = 0.5.

=
Z

2B.f

Larger baseline width and Focal length (of the
camera) reduces the error and increases the maximum
value of depth that may be estimated.

That may cause an error of: 5(2) ——

What about the minimum value of depth (object
closest to the cameras) ?
=B.f/D.__
NhatisD_ 2

Wil i max 5 VA — N
Dmax — Xmax
X

zmin

max depends on f and image resolution

(in other words, angle of field-of-view or FOV).
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General Stereo Views







We can also have arbitrary pair of views from two
cameras.

« The baseline may not lie on any of the principle axis
 The viewing axes of the cameras may not be parallel
 Unequal focal lengths of the cameras

« The coordinate systems of the image planes may not be
aligned

Take home exercises/problems:

What about Epipolar line in cases above ?

?

~Aw da riva tha am ua 'I- 'F aninA Nna %
T1Ovw U0 Hve uic cgual N Oof an cpipl e

U Aa Aalarlhin
UT iain i

\V/a)
2

In general we may have multiple views ( 2 or more) of
a scene. Typically used for 3D surveillance tasks.




The Epipolar line in case of Arbitrary Views

Image Plane - | Image Plane - I
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Classical Depth Estimation

Depth estimation of image points — need at least two
views of the same object

General Stereo

Arbitrary multiple
view geometry




Camera Image formulation

* Action of eye is simulated by an abstract camera model
(pinhole camera model)

* 3D real world is captured on the image plane. Image is
projection of 3D object on a 2D plane.

F:(X,,Y . ,Z)=>(x,y)

1 0 0 0 f 0 0 0
v o c=[0100]~[0Ffo00
00 % 0 0010
X /){w‘orld !
x.'/
C mass Xwgrld — (Xw?Y ?Z)

X, .Y
f / 1mage_(fZ_W fZW)




Pinhole Camera schematic diagram




Camera (eometrv

T - - . - . - - - ~—_— ~~——_— - - g - .

« Camera can be considered as a projection ma{nx, x=P,.,X
— A pinhole camera has the projection matrix as

P=diag(f,f,DlI | 0]

— Principal point offset

X, v,z - (X /Z+p, /Y iZ+p,)
f 0 p, O]

k=0 f p, o x=K[ | o}x
0 0 1 0

K[R|t]X




Camera Geometr

I1

% P

C image
p
yimg /
ximg
Camera internal - .
o s p
parameters * )
K= ay p,
L 1 -
Cameramatrix, | P = K[R | t]

7

p:(pxﬁpy)

. Scale factor in x- coordinate direction

@, Scale factor in y- coordinate direction
s Camera skew

o

—= Aspect ratio

(04

y

R Rotation
t Translation vector




Camera skew factor/parameter, s:

The parameter “s” accounts for a possible non-
orthogonality of the axes in the image plane.

This might be the case if the rows and columns of
pixels on the sensor are not perpendicular to each other.

HHHHHHT J
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il -il—ll
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Plncushlon
non-linear dlstrortlon




The Reconstruction Problem

Given a set of images of a particular 3D scene, can we
reconstruct the scene back?

3D representation of an object is difficult because of the
problem of depth estimation.

Image is projection of 3D object on a 2D plane.
F:(X,.,Y,Z)—=>(x,y)

(X, Y,, Z,) are real world coordinates and Y

(x, y) are Image coordinates X\
Reverse : t one to on \ /

se mapping is not one to one. -
i

xi
C&

68




3D Reconstruction

* Given a set of images of a particular 3D scene, can we
reconstruct the scene back?

Classical inverse problem of the computer vision

[a]. Oxford Keble College .




Reconstruction from turntable
sequence

The images acquired from i

varlous POSES USIHg an \:‘o;gel’eavgr ?i'%m Pover

mm




3D

Right view




Epipolar lines and Fundamental
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An epipolar plane is a plane containing the camera centers

(baseline) and the object point.
An epipolar line is the intersection of an epipolar plane with the

Image plane.
Fundamental Matrix (F) gives the constraint between
corresponding image points of same 3D object point @

[a] A. Zisserman, Multiple View Geometry ‘02
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Some Notations (different; WATCH very carefully)

Point : _;:(x,y)T; x"L=L"x=
A point x in line L is:

—> —> —-> —>

LT T.
Line: L=(a,b,c) ; X.LZL.XZO;

—> —>

A line through two pointsis: [ =xXxX]

) ] ] _ > > >
Point as intersection of 2 lines: y _ ; xL"
Ax B =(a,b; —asb,, a;b, —a\b;, a\b, — a2b1)T

0 -—a, a,
Define: 4], =] a, 0 —a |
—a, q 0

—> —>

Thus, |4 B=AxB = (AT[BL)T




P

T

A /
translation

ElﬂJilﬂﬂW projective

New:
Projective

Or
Homography

[.x=0;

.——-____-__-
Q j .
Euclidean
o
y

2 D Planar Transformations

x'= H x;
_ NooX +ho y + g and y'= MoX +hyy+ hy,
hyyx +hyy + hy, hyX +hy y+hy,

['X'=

Thus, ['=




A projectivity (or homography) isan;— .« ©»~
invertible mapping H from 2 to . Takd
itself such that three points x1, x2 | | .\ ¥
and x3 lie on the same line, iff B e T N ¢

I

H(x1), H(x2) and H(x3) do.

The camera centre is the essence, (a) Image formation: the image
points x; are the intersection of a plane with rays from the space points X;
through the camera centre C. (b) If the space points are coplanar then there is
a projective transformation between the world and image planes: X; = H3yx3X,.
(c) All images with the same camera centre are related by a projective
transformation, x’; = H’;,;X%;. Compare (b) and (c) - in both cases planes are
mapped to one another by rays through a centre. In (b) the mapping is
between a scene and image plane, in (c) between two image planes.




B S

X, \ '?ﬂ - e :"i .
s | | 1] %
| ixl ' - Xy X 1 . X}
|~ X, %) | ."
oy ) | %[ P
| 'i'x'-.i
o il-- b .X.
c
(d) If the camera centre moves, then the image
rnamaral mAatr valatad laww meaTactiva FrmnnmefAarmeam
gCIICI dl 11IVL 1T GildlGu vy a |Jl UJC\—LIVC | ¥ | auauuu 111
unless - (e) all the space points are coplanar.

H is non-singular, with 8 dof. It has applications in
image/video mosaic, stereo reconstruction, camera
calibration, scene modeling and understanding etc.
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Homography

of points
x'= H x;
I"=e'x x'
=[e], X
=[e’], H x
= F X

e e, e]
0 —e
e, 0
—-e, ¢




F & Hin terms of camera

X =PX
X=P"x
e =PC
I"=e'xx
='e']XX'
_ I, s DDt )\
=1 Cl (L X)

matrix.
x'=P'X
=P’ P"x

I'=Fx
and ,
F =[] H

This is, corresponding
Epipolar Line for a point

~ F=[P'C]PP
=le'l P'P*




H 1n terms of K

P=KL110] P’ = KR[I|0]
x =PX )
— K[I|0]1X X'=PX

S :
"= Hx




Scene Homography (points)

A homography is an invertible mapping of points and lines
on a projective plane. Its an invertible mapping to itself, such that
collinearity is preserved. It is represented as:

7 M — th
where:

— pl, ¢" are homogeneous 3D vectors

— H € R3%3 is called a homography matrix and has 8 degrees
of freedom, because it 1s defined up to a scaling factor (H =

cA 1 B where ¢ is any arbitrary scalar)

e The mapping defined by (1) 1s called a 2D homography

e Since the homography matrix 4 has 8 degrees of freedom, 4 cor-

responding (p, ¢) pairs are enough to constrain the problem




Scene Homography (Lines)

Tph =0 _ ??;TQTE =0

From above, derive, / = f(H, m) ??
lTph =O:>lTth :O:mth;
I"H=m"

—!"=m"H™

Thus, [ = (H_1 )Tm
What about H, from above ??
H — (IT)—lmT

Possible to compute H, now ??




Solving Homography using point correspondences

Ao )n ; ., (2.1)
1 1

: T AT
where ¢ is any non-zero constant, ( u v 1) represents x’, ( r y 1 )

hi ho ha
represents x, and H = hy hs he |.

ht hs hg

—hixz — hoy — hg + (hrx 4+ hgy + hg)u =0 (2.2)

—hyx — hsy — he + (hrz 4+ hgy + ho)u =0 (2.3)
Ah=0 (2.4)

where A; =
andh=(hy ho hs hy hs hg hy hg hg ).

Solution to a homogeneous system ?
The solution set to a homogeneous system is the
same as the null space of the corresponding matrix A.




Sinqular Value Decomposition (SVD)

Singular value decomposition takes a matrix (defined
as A, where A is a n x p matrix). The SVD theorem states:

— T
where, Uiy =1& VIV =] ‘qﬂ?ﬁ:ﬂ - U nXn SﬂHp 4 PXp

Calculating the SVD consists of :

- Finding the eigenvalues and eigenvectors of AAT and ATA.

- The columns of V are orthonormal eigenvectors of ATA

- The columns of U are orthonormal eigenvectors of AAT

- Also, the singular values in S are square roots of eigenvalues
from AAT or ATA in descending order.

Some important observations: M=UZxzV*

- The singular values are the diagonal entries of the S matrix
and are arranged in descending order.

- The singular values are always real numbers.

- If the matrix M is a real matrix, then U and V are also real.

The right-singular vectors corresponding to vanishing
singular values of M span the null space of M. The left-singular

vectors corresponding to the non-zero singular values of M span the
range (space) of M.




Ah=0

Since each point correspondence provides 2 equations, 4 correspondences
are sufficient to solve for the 8 degrees of freedom of H. The restriction is
that no 3 points can be collinear (i.e., they must all be in “general position”).
Four 2x9 A; matrices (one per point correspondence) can be stacked on top
of one another to get a single 8 x9 matrix A. The 1D null space of A is the
solution space for h.

If the homography is exactly determined, then O9 = O, and
there exists a homography that fits the points exactly.

This is the basic DLT algorithm, which only requires
normalization (pixel coordinates) and de-normalization steps,
prior and after the solution of the homogeneous system.

Also a cost minimization approach (use RANSAC) is used
for a over-determined set of systems, for a robust solution.

For Homography using line correspondences:

A — —u 0 ur —w 0 vr —1 0 =
i — 0 —u wy 0 —v vy 0 -1 y

( u v 1 )T represents 1 and ( x y 1 )T represents 1




Estimate H (DLT, but with an alternate notation)

Given n>=4 2-D point pairs;

Algo:  X<HX =0 X,=(x,y,w);
o7 —wx! yxI (A
= wx, 0" -xx, | A’ |=0=>4h=0
- Y. X, XX, 0" _\h3
Use: "l
- UT —wixd  yixt ] Rz | —o
wix; ot zix L3 ]

- Assemble n such 2*¥9 matrices A, into a single 2n*9 matrix A, by
stacking horizontally row-wise;

-SVD of A, gives: 4 =(UDJ)";

- h9*1 is the last column of V (unit singular eigen-vector
corresponding to smallest singular value)

- Form H;.3, by arranging elements of h

- May need normalization of coordinates
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Epipolar line homography:

(a) There is a pencil of epipolar lines in each image centred on the

epipole. The correspondence between epipolar lines, [/, - l’i is
defined by the pencil of planes with axis the baseline.

(b) The corresponding lines are related by a perspectivity, with
centre at any point p on the baseline. It follows that the
correspondence between epipolar lines in the pencils is a

1D homography.

If the stereo is calibrated; i.e P and P’ known, use:

A compact algorithm for rectification of stereo pairs; Andrea Fusiello, Emanuele Trucco, Alessandro Verri ;
Machine Vision and Applications (2000) 12: 16-22 Machine Vision and Applications; Springer-Verlag 2000;




P view

A Priori Knowledge 3-D Reconstruction from Two Views
Intrinsic and extrinsic parameters  Unambiguous (absolute coordinates)
Intrinsic parameéters only Up to an unknown scaling factor
No information on parameters Up to an unknown projective transformation of

T ElnwiTaaiaanw=1ii

W is orthogonal to both r & I; - formula ??




Process of Rectification

Im:nn re rificeatiaon ic Fha Brocess nf annlvina A n
us\— | G IWWGCA GEIWVEEL I Gl N \V A VL WTe J& v g | ul.ll.ll,lllg A F

dimensional prOJectlve transforms, or homographies, to a pair of
images whose epipolar geometry is known so that epipolar lines in
the original images map to horizontally aligned lines in the
transformed images.




Right image
Rectified right image

Left image
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Assumptions and Problem
Statement of Rectification:

Given a stereo pair of
images, the intrinsic parameters
(K) of each camera, and the
extrinsic parameters
of the system, Rand T;

compute the image 0 "
transformation that makes |
conjugated epipolar
lines collinear and parallel to the
horizontal image axis.

The algorithm (Trucco, Verri)
consists of four steps:

e Rotate the left camera so that the epipole goes to infinity
along the horizontal axis.

e Apply the same rotation to the right camera to recover the
original geometry.

e Rotate the right camera by R.

e Adjust the scale in both camera reference frames.




RECTIFICATION Illustrated

f ......... f .... / / Formula - for projection
3 H Of a vector on a plane ?




Rectification algo. (four steps), by Trucco, Verri:

e Rotate the left camera so that the epipole goes to infinity along
the horizontal axis.

e Apply the same rotation to the right camera to recover the
original geometry.

First rotate the left camera so that it looks perpendicular to the line joining
the camera centers c0 and c1. Since there is a degree of freedom in the {tilt, the
smallest rotations that achieve this should be used. smallest rotation can be
computed from the cross product between the original and desired optical axes.

To determine the desired twist around the optical axes, make the up
vector (the camera y axis) perpendicular to the baseline. This ensures that
corresponding epipolar lines are horizontal and that the disparity for points at
infinity is 0. The cross product between the current x-axis after the first rotation
and the line joining the cameras gives the rotation.

e Rotate the right camera by R (or R1),

e Adjust the scale in both camera reference frames.

If necessary, to account for different focal lengths, magnifying the
smaller image to avoid aliasing. Now, both have the same resolution (and hence
line-to-line correspondence).




Algorithm RECTIFICATION

The input is formed by the intrinsic and extrinsic
parameters of a stereo system and a set of points in each
camera to be rectified (which could be the whole images).
Also, in both cameras:

i). the origin of the image reference frame is the principal point;

if). the focal length is equal to f.

Steps:

: : T T T\
1. Build the matrix R, as: R = (el e, e )
I - - . e T
=T, e,=2ZxT=(-T,,T,,0) ; e; =¢Xe,
2.SetR, =R, .sand R. = R1LR ..,

[x', 3", 2' =R, [x,, f1';
3, 4: For Left and Right camera points, .
do: LJ/ J ', 2]

This algorithm fails when the optical axis is parallel to the
baseline, i.e., when there is a pure forward motion.




Left image Right image

But, what if the external parameters
are not known







Rectification (Zhang’'s), using Fundamental matrix

Work on entirely 2-D space; . 7
Points and lines: 1 = [m m mw] ; | = [la lb lc]

u \%

m'’ Fm - (), (1)
F is a 3x3 rank-2 matrix,
== is known (?).
S e T
Fm=1[';, m" ['=0;

Fe=0=F"¢€';

Properties of rectified image pair:

- All epipolar lines are parallel to horizontal (x- or u-axis)
- Corresponding points have identical y- or v-coordinates.

: 0 0 0
Fundamental matrix _ . | |
for a rectified image pair: F = [ilx = 0 0 -1
What is 1 ?? L 01 0 .

where, i = [1 0 07T, is X-VP (at Inf.)




Rectification (Zhang’s) - maps epipolar lines to image scan lines;

Let H and H' be the homographies to be applied to images 7 'md T respectiv El}’ and letm € 7

o T ,.
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Then, the corresponding lines v and v’, w and w’ must be epipolar

lines (as, I'e=0), for minimal distortion due to rectification;
H = H,,.H.H,

- S, Sp  Se y — UL Vellly, — Uy [} H - é ? g
H, = 0 1 0 H, = | vg=vew, vp—vwp v, L 1
0 0O 1 0 0] 1 Uy Wp




3 S-ﬂ. w b 'Sf: ’ ?'Jb - I”IL'.E'Lrb ?‘"E U‘r-l'.l - IE"IIII:I- [} i 1 l.-.] [} ]
H.=| 0 1 0 H = | vo-vow, vp-vowp v, H,= o 1 0].
0 0 1 () i) | Uty W 1 1

Proposition 1. If]l ~ 1" and x € T is a direction (point at ~) such that] = (e , x then

<- used earlier;

I T
1 | = -
i Er B =
. = R Proof in Loop & Zhang '99
—_— === - o - - - - - _ L
[ Ty e N JSE BN —— et B H ¥ e e T TS ey S — e B B e E
il | TRdRiC TR NdaEn ~ P 1 FFaS R 1 SEE Ll &8 TEPT —FPAed Ta% WFFS #8 PoE P
A EWFRSANFoSEL BRSNS dre A8 KL SIS K& EE L SULOREEE CELONT SR Al +FiELa S SFTias

F = H"[i.H Minimization criteria used to
then v ~ v' andw ~ w'. Compute Hp.

H. (shearing) only effects the u-coordinate; hence
rectification in unaffected. H, is similarity; H, is perspective.

Fap —~unF33  woFas — Fiy 0 Foa—wiFay wiFus—-Fig 0
H, = | Fs ~wyFaa Fag —wpF33 Faz + v H =] Fla—w,Fsy Fpy —wFaz v
0 0 1 0 0 1
L h2zx2 + w?y? ard b h2zy Ty + W yuly
huw(Tyty — Tyly) hwl{zyyy — Tuly)
Figure The multi-stage stereo rectification algorithm of Loop and Zhang (1999) ©
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Latest/Modern methods of
Correspondence/Rectification/reconstruction include:
- Monassee et. al’s Rectification - BMVC 2010;

- Plane Sweep;

- Sparse feature set matching

- Profile curves or contours (even occluding)

- Dense correspondences using : similarity measures (NCC,
SAD, SSD, MSE, MAD), local methods;

Global optimization — Dynamic Prog., Segmentation
sed; etc.




Slices through a typical disparity space image (DSI)
(Scharstein and Szeliski 2002) c 2002, Springer:

(a) original color image; (b) ground truth disparities;
(b) (c-e) three (x, y) slices ford = 10, 16, 21;

Segmentatlon based stereo matchlng (thnlck Kang, Uyttendaele et
al. 2004) c 2004 ACM:( a) input color image; (b) color-based
segmentation; (c) initial disparity estimates; (d) final piecewise-
smoothed disparities;
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A Priori Knowledge 3-D Reconstruction from Two Views

Intrinsic and extrinsic parameters  Unambiguous (absolute coordinates)
Intrinsic parameters only Up to an unknown scaling factor
Mo information on parameters Up to an unknown projective transformation of

the environment




P ti fF: T
roperties o )C' F)C — O

(i) Transpose: If F is the fundamental matrix of the pair of
cameras (P, P'), then FT is the fundamental matrix of the
pair in the opposite order: (P’, P).

(i1) Epipolar lines: For any point x in the first image, the
corresponding epipolar line is I' = Fx. Similarly, / = F'x’
represents the epipolar line corresponding to x' in the
second image;

(iii)The epipole: for any point x (other than e) the epipolar

line I' = Fx contains the epipole e'. Thus e' satisfies e'T(Fx)
= (e'"F)x = 0 for all x. It follows that e''TF = 0, i.e. €' is the
left null-vector of F. Similarly Fe = 0, i.e. e is the right

null-vector of F. F— [P'C: p’p

(iv) F is rank-2 homogenous matrix with 7 dof. _ [e." ppt
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Fin terms of K

* Let K be the internal parameter matrix of the camera.

 Camera matrix of the second camera (P’) is a rotation and translation
of the first camera(P):

: K 0
p=kK[I|0] T =KIR[t] PEEJ sz

F =[P C].PP*
=[Kt,KRK" =K "[t],RK'=K'"R[R"t], K =K "RK"[KR"1],
Prove it.

* The epipoles, defined as the image of other camera centers are:

- o
e=P R IJ:KRTt e'=P'LJ=K't
1

F=[],KRK =K "[t],RK"=K"R[R"t] K=K "RK"[e],




For any vector t and non-singular matrix M:
(LM =M M|
[K't]|,K'RK ' =K T[K''K't]|,RK ! = K" T[t].RK !
K™ T[t].RK =K TR TR Ut]. K=K 'R[R"t] K1
K" TR[RTt].K* = K" TRKT[KR"t],

Result 9.12. A non-zero matrix F ix the fundamental matrix corresponding to a pair of
camera matrices P and P’ if and only if P'VFP is skew-symmetric.

- - s ;

he conditi I skew-symmetric is equivalent to X"P'TFPX = ()
=

_ _B - = - _. = = - - .

£ o = -r EW_ mRT e e e B - all = 2 o R SR e 1 . e W E W = |

TLEL A Y - RFEIIINNILY W =S & & HILfYl ® — F X THING B% FINNNRICAEFTNR] B X P E = 10§ AJ1AEREC"EN 1% BNEEF™

- o L | T I.I.IE o E = TRl e F I N R LT e "l“"l'l_i'-ﬂ ® Il b g ! | I B | = R & = R 8 L o




Homography: x’ = Hx;

Relationship with <=x"Fx=0
Fundamental matrix, F:

Hx’ lies on the
corresponding epipolar line: F'x’

Thus, e’ = He; Hle' = e¢€;

F

[P’C] PP
(Kt ,KRK'=K""[t], RK'=K"R[R"t] K'=K""RK'[KR"],

F=[e] K'RK' =K "[t].RK"=K"R[R"t] K" =K' "RK'[e].

rr v pprTropnT [ ] -1 1T pp T [ 1] nvn+_rv1 rr
I — I\ JAVAN LAI\ th—lCJXA JAVAN — I\ JAVAN |_€JX—|_€JX[' l JXH
where, H_ is the homography imposed by epipolar plane.
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Result 9.5. Suppose [ and I’ are corresponding epipolar lines, and k is any
line not passing through the epipole @, then I and I’ are related by:

Symmetrically, ] — FT [k'Ll"

I'=Flk]| 1;

[kLl = kX[ = x (a point, as intersection of two lines); F [kLl =Fx=/,

Let,

Hence,

line k£ be a line "e"

(0

line " e" does
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Typical methods used to estimate F:

- 8-pt DLT algo. m'' Fm — 0,
- RANSAC ==
Af =0;

- Normalize data, using Transformation matrix T
- DLT; F is the “smallest singular” vector of A
- replace F by F~, using SVD, where det (F*) =0
- Denormalize, as: y
F=T"FT
Also, look at Gold Standard method based on MLE




E, the essential matrix

Maps a point from one image plane to a line in the corresponding
image domain; Has 5 dof.

Two images of a single scene/object are related by the epipolar
geometry, which can be described by a 3x3 singular matrix called the
essential matrix if images’ internal parameters are known, or the
fundamental matrix otherwise. Mostly used in case of SFM problems.

P=K[R|t] x = PX =K[R | t]X

let, k=K 'x = [R\t]X
XN is in normalized coordns.

And normalized camera matrix is: g-'p— [R|¢]
(where the effect of known camera
calibration matrix has been

removed.) MEX=0
The fundamental matrix corresponding to the pair of
normalized cameras is customarily called the essential matrix.




Thus for a pair of normalized cameras:

P=[I|0]
Using: P’ =[R|?]
F=K"[t,RK'=K"R[R"t] K

So actually:

AT A
X" Ex=0

= F =

A 3 x 3 matrix is an essential matrix, E if and only if two
of its singular values are equal, and the third is zero .




. Reconstruction Framework
i s e 400
R iraer Sy 3D world object
5J/// : ‘ ‘i‘*» 0
4////3 T‘\-T*‘i““ 500~ ‘
... 2DView (Cam1) 2D View (Cam2) ol L
| 1 i 200} - - -
/,,’7',4:«/5::7:;—,\3 l l 100} - - % R N - - -
//\;\;7\4::,:/::;,’ 5 . . 0 e, \
AL Feature Extraction Feature Extraction q00f - ]
200F--——F---—f - - RS-
" \/ 0 %00 4(:JO 6(1)0 8(:)0 10

Find Correspondence

x" Fx=0 or x" Ex=0
Fundamental; P=l710] and P'=[[e'], F|e']

Essential Matrix E=K" FK:
>
7 l x = PX
- Projective Reconstruction < PX =0

(Triangulation process ) 12 AX =0
[a] R.Hartley, CVIU ‘94 113




Ambiguity in Reconstruction

From Image correspondences, the scene and the
camera can be reconstructed to a projective
equivalent of the original scene and camera

Projective Reconstruction theorem:

x, =PX, =(PH" H X,)

Additional information (scene { a
parallel lines, camera internal #i i
narameters) required for metric

VUI UIII\II.\II\J 1 \-1 INJI 111NV U W

reconstruction
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GENERIC STEREO RECONSTRUCTION (sec. 10.6, pp 277; H&2)

Input: Two Uncalibrated images;

Output: Reconstruction (metric) of the scene structure
and camera

Algo. Steps:

 Projective reconstruction
« Compute Fundamental matrix, F
« Compute P and P’ (camera matrices) using F
- Use triangulation (with rectification) to get X, from x; and x,’

 Rectify from projective to Metric (M), using either

(a) Direct:
Estimate homography H, from grnd. Control pts.,;
Py=P.H1; P'y,=P'.H1; X, = HX..

OR

(b) Stratified (use, VP, VL, VPI, Homography, DIAC etc.):
Affine;
Metric

115
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Vanishing points

Points on a line in 3 space through point A and direction
D=(d" ,0)T are X(A\)=A+AD.As A goes from zero to

infinity, then X(A) varies from finite point A to point D at co.
Assume P = K[| 0], then image of X(A) is given by

x(A)=PX(A)=PA +APD =a+AKd
v=limx(A)=lim (a+AKd)=Kd 2 Zmuesemeendie,

image plane with a ray through the camera center with

note that v depends only on the direction d of the line, not directiond, namelyv = Kd

on its position specified by A

dx
\ A d X(1)
= D e e

X(L)

X4 X3 Xq X, —» X
Fig. 8.14. Vanishing point formation. (a) Plane 1o line camera. The poinis X;, 1 = 1,...,4 are
equally spaced on the world line, but their spacing on the image line monotonically decreases. In the

limir X oo rhc- uun"d numl' is mmm'd af X = V o ﬂh: wrm u! Amum- h.ur umi arx = v on rhe
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In case of a set of arbitrary views (multi-view
geometry) used for 3-D reconstruction (object structure,
surface geometry, modeling etc.), methods used involve:

- KLT (Kanade-Lucas-Tomasi)- tracker
- Bundle adjustment and RANSAC

- 8-point DLT algorithm

Epipelar Plans I1

- Zhang’s scene homography
- Tri-focal tensors

- Cheriality and DIAC

- Auto-calibration
- Affine to Metric reconstruction
- Stratification

- Kruppa’s eqn. for infinite homography
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Robust Recovery of Shapes with Unknown

Topology from the Dual Space;

Chen Liang and Kwan-Yee K. Wong,
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE.
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