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BASICS

Representation of Points in the 3D world: a vector of length 3
Y

Xz[xyz]T
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Basics 3D Transformation equations
e Translation: P =P + AP

« Scaling: P=SP
\)
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0 S,
0 0
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e Rotation : about an axis,
P’=RP




ROTATION - 2D

x'=xcos (@) ysin (6)
y'=xsin (6)+ ycos (6)

In matrix form, this is:

P cos(f) -sin(6)
- sin(@) cos(6)

Positive Rotations: counter clockwise about
the origin

For rotations, |R| = 1 and [R]T = [R]1.
Rotation matrices are orthogonal.




Rotation about an arbitrary
point P in space

As we mentioned before, rotations are
applied about the origin. So to rotate about
any arbitrary point P Iin space, translate so
that P coincides with the origin, then rotate,
then translate back. Steps are:

e Translate by (-P,, -P,)

e Rotate

¢ Translate by (P,, P,)




Rotation about an arbitrary
point P in space

= =
House at P, Rotation by 6

P,

Translation of Translation |
P, to Origin back to P,




2D Transformation equations (revisited)

e Translation: P =P + AP

- 1 0 Ax
= [ ==
JANY; 0 1 Ay

— b

e Rotation : about an axis,

P’ — RP R=[cos@ -sin(H)}
sin@ cos@)

cosd@ —smnd | x

sné cosd@




Rotation about an arbitrary
point P in space

R

en — Tl(-PxI -Py) 5 RZ(O) : T3(le Py)

9

1 0 —P«| [cos(@) —-sin@) 0| |1 0 P«
=0 1 —P|*|sin(@) cos@ O0|*|0 1 P
0 0 1 0 0 1110 0 1

cos(f) —sin(@) P:*(cos(@)—1)— P *(sin(0)
=|sin(@) cos(@) Pr*(cos(@)—1)+ P:*sin(H)
0 0 1

Using Homogeneous system




Homogeneous representation of a
point in 3D space:

P=|xyzw]|"

(w=1,for a 3D point)

Transformations will thus be
represented by 4x4 matrices:

P’ = A.P




Homogenous Coordinate systems

* In order to Apply a sequence of transformations to
produce composite transformations we introduce the
fourth coordinate

« Homogeneous representation of 3D point:
Xy z h|T (h=1 for a 3D point, dummy coordinate)

 Transformations will be represented by 4x4 matrices.

1 0 0 Ax] S O ()

01 0 Ay 0 S, 0 0
0 0 1 Az 0 S 0

00 0 | 0 0 0 1

Homogenous Translation Homogenous Scaling
matrix matrix
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Rotation about x axis by angle o

Rotation about y axis by angle 3
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sign?

Rotation about z axis by angle vy

How can one do a Rotation about an arbitrary Axis in Space?




3D Transformation equations (3)
Rotation About an Arbitrary Axis in Space

Assume we want to perform a rotation about an
axis in space, passing through the point (x,, ¥, Z,)
with direction cosines (c,, c,, c,), by 6 degrees.

First of all, translate by: - (xy, ¥y, Zp) =|T].

Next, we rotate the axis into one of the principle
axes. Let's pick, Z (|R,],

We rotate next by 6 degrees |n y4 ( IR,(O)]).

Then we undo the rotations to align the axis.

We undo the translation: translate by (x,, y, z,)

The tricky part is (2) above.

This is going to take 2 rotations,
i) about x (to place the axis in the x-z plane)

and
i) about y (to place the result coincident with the z

axis).




Rotation about x by a:
How do we determine o.?

Project the unit vector, along
OP, into the y-z plane. The y
and z components are ¢, and
C,, the directions cosines of
the unit vector along the
arbitrary axis. It can be seen
from the diagram above, that :

d=sqrt(c?+c?), cos(a)=c,/d
1 4 r4 4

sin(a) =c, /d

Rotation by 8 about y:
How do we determine B?
Similar to above:




Determine the angle 3 to rotate the result into the Z axis:
The x component is ¢, and the z component is d.
cos(f) =d = d /(length of the unit vector)
sin(f) =c, = c,/(length of the unit vector).

Final Transformation:
M=|T"|RITIRI"IR, IR IR, IT]

If you are given 2 points instead, you can calculate
the direction cosines as follows:

| (X1 -%o) (V1-Yo) (21-29) |"

" ——
C, = (X1 'XO)/IVI

C
C,

(v:-yo/ V|
(Z1 -ZO)/ I VIJ

where |V] is the length of the vector V.




Inverse transtormations

0
7 0 —Ay
1 —Az
0 1

Inverse Translation Inverse scaling

Inverse Rotation

1 0 0 O| [cosB 0 —sinf O]| cosy siny O
=0/l — qimer—t 0 1 0 O||—siny cosy O
|
0

0 —smna cosa O smf 0 cosff O 0 0
| 0 0 1 0 0

R, Ry R,




Concatenation of transformations

* The 4 X 4 representation 1s used to perform a
sequence of transformations.

» Thus application of several transformations
in a particular sequence can be presented by
a single transformation matrix

v =R, (S(Tv))=Av, A=R,.S.T

» The order of application is important... the
multiplication may not be commutable.




Commutivity of Transformations

If we scale, then translate to the origin,
and then translate back, is that equivalent to
translate to origin, scale, translate back?

When is the order of matrix
multiplication unimportant?

Whendoes T, *T, =T, * T,?

Cases where T, * T, =T, * T;:

Scale (uniform) | rotation




COMPOSITE TRANSFORMATIONS

If we want to apply a series of
transformations T,, T,, T; to a set of points,
We can do it in two ways:

1) We can calculate p'=T,*p, p''= T,*p/,
plll=T3*pll
2) Calculate T= T,*T,*T;, then p'''= T*p.

Method 2, saves large number of additions
and multiplications (computational time) -
needs approximately 1/3 of as many operations.
Therefore, we concatenate or compose the
matrices into one final transformation matrix,
and then apply that to the points.




Spaces

Object Space
definition of objects. Also called Modeling space.

World Space
where the scene and viewing specification is made

Eye space (Normalized Viewing Space)
where eye point (COP) is at the origin looking down the Z
axis.

3D Image Space
A 3D Perspected space.
Dimensions: -1:1 inx &y, 0:1 in Z
Where Image space hidden surface algorithms work.

Screen Space (2D)
Coordinates 0:width, O0:height




Projections

We will look at several planar geometric 3D to 2D

projection:

-Para
Ort
Ob

lel Projections
nographic

ique

-Perspective

Projection of a 3D object is defined by straight

projection

rays (projectors) emanating from the

center of projection (COP) passing through each
point of the object and intersecting the projection

plane.




Perspective Projections

Distance from COP to
projection plane is finite.
The projectors are not
parallel & we specify a
center of projection.
Center of Projection is z.
also called the Perspective Projection
Perspective Reference Projection hormal
Point
COP =PRP




Z-axis vanishing point

Z-axis vanishing point

* Perspective foreshortening: the size of the perspective
projection of the object varies inversely with the
distance of the object from the center of projection.

« Vanishing Point: The perspective projections of any set
of parallel lines that are not parallel to the projection
plane converge to a vanishing point.







Projection
Plane
(top view)  Projectors

s for
Projectors for e for

Projection
Plane
(side view

Projectors for
front view

(front view)

Example of Orthographic Projection




Example of Isometric Projection:

Projection
plane

Projection-
plane normal




Example Oblique Projection

Projection

Projection-plane normal




END OF BASICS







In optics and photography, hyperfocal
distance is a distance beyond which all objects
can be brought into an "acceptable" focus.

There are two commonly used definitions of
hyperfocal distance:

Definition 1: The hyperfocal distance is the
closest distance at which a lens can be focused
while keeping objects at infinity acceptably sharp.
When the lens is focused at this distance, all
objects at distances from half of the hyperfocal
distance out to infinity will be acceptably sharp.

Definition 2: The hyperfocal distance is the
distance beyond which all objects are acceptably
sharp, for a lens focused at infinity.



An object at distance H ]‘x

forms a sharp image at
distance x (blue line).

Here, objects at infinity
have images with a circle of H
confusion indicated by the
brown ellipse where the 2. |
upper red ray through the ]\ 1 D /2
focal point intersects the A —3 :
blue line.

H
Objects at infinity form sharp images at the focal

length f (blue line).

Here, an object at H forms an image with a circle of
confusion indicated by the brown ellipse where the lower
red ray converging to its sharp image intersects the blue line



.....

Deep focus is a photographic and cinematographic technique
using a large depth of field. Depth of field is the front-to-
back range of focus in an image — that is, how much of it
appears sharp and clear. Consequently, in deep focus the
foreground, middle-ground and background are all in focus.
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In optics, a circle of confusion is an
optical spot caused by a cone of light
rays from a lens not coming to a
perfect focus when imaging a point
source. It is also known as disk of
confusion, circle of indistinctness,
blur circle, or blur spot.

In photography, the circle of
confusion (CoC) is used to determine
the depth of field, the part of an
image that is acceptably sharp.




A symmetrical lens is illustrated. The subject, at distance S, is in focus at image distance 7.

Point objects at distances Dt and Dx would be in focus at image distances Urand U\,
respectively; at image distance 7, they are imaged as blur spots. The depth of field is
controlled by the aperture stop diameter ; when the blur spot diameter is equal to the

acceptable circle of confusion , the near and far limits of DOF are at D N and D F.




Reducing the aperture diameter increases the DOF because the circle of confusion is shrunk
directly and indirectly by reducing the light hitting the outside of the lens which is focused to
a different point than light hitting the inside of the lens due to spherical aberration caused by

the construction of the lens. N\
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Spherical Aberration



An optical system with astigmatism is one where
rays that propagate in two perpendicular planes have
different focus.

If an optical system with astigmatism is used to form
an image of a cross, the vertical and horizontal lines will be in
sharp focus at two different distances



Field
Curvature

Chromatic
Aberration



Hartmann-Shack
sensor: single
lenslet L =

lenslet, CCD =

CCD sensor, d =
lenslet diameter, 4
f = focal length, ~]
Ay = local tilt of
wavefront

In optics, tilt is a deviation in the direction a beam of light
propagates. Tilt quantifies the average slope in both the X
and Y directions of a wavefront or phase profile across the
pupil of an optical system.



THE CAMERA MODEL:
perspective projection

Camera lens

X, X :

-

/ coL

»
»

(X,y,2)- 3D world
(X,Y) - 2D Image plane




Perspective Geometry and Camera Models

P(X,Y,Z)

/

=

PP

—




By similarity of triangles
A———X ———

« Image plane before the

= F———r
X=

= yf camera lens

)

— =  Origin of coordinate
systems at the image
plane

X — < . Y — y
= == =
/f /f  Image plane at origin of

coordinate system




p(X,y,2)
CASE -1.1

By similarity of triangles

—X_X i_y

P(-X,-Y)

* Image plane before the
camera lens

» Origin of coordinate
systems at the camera lens

* Image plane at origin of
coordinate system




CASE — 2 p(x,y,z)

By similarity of triangles
(COL)

- Image plane after the
camera lens

« Origin of coordinate
systems at the camera lens

* Focal length f




CASE - 2.1

By similarity of triangles (COL)

S Sy =

fofrz f f+z
XY= xf ’ Ve yf camera lens
f+z f+z

 Image plane after the

* Origin of coordinate system
not at COP

X
X = . —
1+ % 1+ %p « Image plane origin coincides

with 3D world origin




Consider the first case ....

 Note that the equations P(x.yz)
are non-linear

* We can develop a matrix
formulation of the
equations given below

X= ~—y ==
1—% 1—%

=

(Z is not important and is
eliminated)




Inverse perspective projection

0O O
1 O
Q 1
0 1/f

e
0 1
0 0
0 0 1/f

0
0
]

=
0
0
1_

p(x09YO9Z0)

Hence no 3D information can be retrieved with the inverse

transformation




So we introduce the dummy variable i.e. the depth Z
Let the image point be represented as: [kXO kYO A k]T

kX,

=5 —] —%;
j>f+Z_Z_ /

=55 —z =1 —z
Aog— f(f o) Yo f(f 0)




CASE -1
Forward: 3D to 2D

==

i

=T
f-z

— 7= =
=
A /

Inverse: 2D to 3D

xo=%<f—zo>, y0=?(f—zo>

E=
/
X =




CASE -2

Forward: 3D to 2D
X

F—— _Z
x=

" 1 (COL)
4 2

v
L

Inverse: 2D to 3D




Observations about Perspective
projection

3D scene to 1mage plane 1s a one to one
transformation (unique correspondence)

For every image point no unique world
coordinate can be found

So depth information cannot be retrieved using a
single 1mage ? What to do?

Would two (2) images of the same object ({from
different viewing angles) help?

Termed - Stereo Vision




Stereo Vision

: ,Y )
1 1

Optical axis

P(X,y,2)
World point




Stereo Vision (2)

Stereo imaging involves obtaining two separate image
views of an object (in this discussion the world point)

The distance between the centers of the two lenses is
called the baseline width.

The projection of the world point on the two image
planes is (X, Y,) and (X,, Y),)

The assumption is that the cameras are identical

The coordinate system of both cameras are perfectly
aligned differing only in the x-coordinate location of the
origin.

The world coordinate system is also bought into the
coincidence with one of the image X, Y planes (say
image plane 1) . So y, z coordinates are same for both
the camera coordinate systems.




Top view of the stereo imaging system with origin
at center of first imaging plane.

X1

(X Yy)

O\

f \




First bringing the first camera into coincidence with
the world coordinate system and then using the second
camera coordinate system and directly applying the
formula we get:
= 23

(f=2) x,= (f —2z,)

Because the separation between the two cameras is B

X, =x,+B, z =z,=2z(?) /*Solveit now *

Xy =

- /




» The equation above gives the depth directly from
the coordinate of the two points

» The quantity given below 1s called the disparity

D=(X,-X)=—L
(f -2

 The most difficult task 1s to find out the two

corresponding points 1n different 1mages of the
same scene — the correspondence problem.

* Once the correspondence problem 1s solved —
(non-analytical), we get D. Then obtain depth

using: z:f_(Xf_BX):f[l_%]




Alternate Model
- Case 2




Top view of the stereo imaging system with origin
at center of first camera lens.

IP1




Compare the two solutions

= I - J
=Sy T

D=(X,-X))= L
E==

1D _——PT
Gt

DZ(Xz_Xl):ﬁ

Z

What do you think of D ?




The Correspondence Problem

D:(jfl_)(z):ﬁ

=

If D>0; then X, <X,

Image Plane -l

Image Plane - |
EPIPOLAR Line




Error in Depth Estimation

Z:B.% 5(2)51): _B.%2

Expressing in terms of depth (z), we have:

5(2) _B.f: — z”

e s e e

What is the maximum value of depth (z), you can
measure using a stereo setup ?

Z i3 |




Even if correspondence is solved correctly, the
computation of D may have an error, with an upper
bound of 0.5; i.e. (oD),,.,=0.5.

2
That may cause an error of: o0(z)=— £

2B.f

Larger baseline width and Focal length (of the
camera) reduces the error and increases the maximum
value of depth that may be estimated.

What about the minimum value of depth (object
closest to the cameras) ?
zmin = B'f/Dmax

Whatis D, ? =
s Dmax — Xmax

X, .. depends on f and image resolution
(in other words, angle of field-of-view or FOV).
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General Stereo Views




Perfect Stereo Views




Perfect Stereo Views




Perfect Stereo Views







We can also have arbitrary pair of views from two
cameras.

The baseline may not lie on any of the principle axis
The viewing axes of the cameras may not be parallel
Unequal focal lengths of the cameras

The coordinate systems of the image planes may not be
aligned

Take home exercises/problems:
What about Epipolar line in cases above ?

How do you derive the equation of an epipolar line ?

In general we may have multiple views ( 2 or more) of
a scene. Typically used for 3D surveillance tasks.




The Epipolar line in case of Arbitrary Views

Image Plane - |l

Image Plane - |
EPIPOLAR Line




A

i
- (X Y))

-
X2




Classical Depth Estimation

Depth estimation of image points — need at least two
views of the same object

General Stereo

Arbitrary multiple
view geometry




Camera Image formulation

* Action of eye is simulated by an abstract camera model
(pinhole camera model)

* 3D real world is captured on the image plane. Image is
projection of 3D object on a 2D plane.

F:(XW’YW’ZW) _>('xi9yi)

% /}(w.orld
x’/
>Z Xworld — (Xwﬂyw’Zw)

X Y
X. — w , w
— e = 5555 )




Pinhole Camera schematic diagram



Camera Geometry

* Camera can be considered as a projection matrix, x=P,,X

— A pinhole camera has the projection matrix as

P=diag(f,f,DlI | 0]

— Principal point offset




Camera Geometry

' / X yorid

»
>

Z

p=(,p,)

Camera internal @, Scale factor in x- coordinate direction

parameters @, Scale factor in y- coordinate direction
K = s Camera skew

o
—- Aspect ratio
ay

Camera matrix, R Rotation
t Translation vector




Camera skew factor/parameter, s:

The parameter “s” accounts for a possible non-
orthogonality of the axes in the image plane.

This might be the case if the rows and columns of
pixels on the sensor are not perpendicular to each other.
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Plncushl n,
non-linear distrortion



The Reconstruction Problem

Given a set of images of a particular 3D scene, can we
reconstruct the scene back?

3D representation of an object is difficult because of the
problem of depth estimation.

Image is projection of 3D object on a 2D plane.
Fo(X,,Y,,Z,)—=(x,y)

(X, Y, Z,) are real world coordinates and
(x, y) are Image coordinates

Reverse mapping is not one to one




3D Reconstruction

* Given a set of images of a particular 3D scene, can we
reconstruct the scene back?

Classical inverse problem of the computer vision

[a]. Oxford Keble College




Reconstruction from turntable
sequence

The images acquired from
various poses usmg an
ordinarpes

to gendl




3D
Reconstruction

Right view




Epipolar lines and Fundamental
matrix

An epipolar plane is a plane containing the camera centers
(baseline) and the object point.

An epipolar line is the intersection of an epipolar plane with the
image plane.

Fundamental Matrix (F) gives the constraint between
corresponding image points of same 3D object point [

[a] A. Zisserman, Multiple View Geometry ‘02




Some Notations (different; WATCH very carefully)

Point: x=(x,)"; X' L=L x=
. ~ ApointxinlineLis: =~ =
Line: L:(aabac) 5 X.L:L-X:O;
—> -

A line through two pointsis: [ =XxXxX]

- - - - -—> —> —->
Point as intersection of 2 lines: | _ xL"
Ax B =(a,b,—ab,,a,b,—ab,,ab,— a,b)’

0 —a, a,
Define: 4] =| a, 0 —a
—a, q 0 |

Thus, |A4] B = AXB = (AT[BL)T



P

EII]JJIHIIW
translation

Eur: 11[1E‘E!11

pmjecm =

Affine:

Parallel lines
remain parallel
under Affine
Tranasformation

'-'['

2 D Planar Transformations




¥y ‘ / Emzulanw lJfEr_]EEtl‘l. B
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2 D Planar Transformations
New: '
Projective X=Hx;
Or _ hyx+hyy+hy, . Mox+h y+hy,
Homography B and y'=
My X+ hy Y+ hy, My X+ hy Y+ Iy,
[x=0, ['X'= =0;

Thus, ['=




Transformation Matrix #DoF Preserves Icon

translation [Tt 2  orientation

]213

rigid (Euclidean) [ R |t ], ., 3  lengths <>

ity [R[e], 4 me O
affine [A],, & paitdem [/ o 30;D
projective [ H ]m 8  straight lines |:‘ z' = l:: :;: :: :z z.
2-D Transformation  Matrix  #DoF Preserves  lIcon
translation [T ]t g 3 onentation
igid Gucidean) [ R|t],, 6 lenghs >
similarity [sR|t],, 7  angls <>
— [ A o 12 parallelism U

projective H ]M IS straight lines |:‘




A projectivity (or homography) isan/— & %

[ |

invertible mapping H from P2 to [ \\ |
itself such that three points x1, x2 |3 |~ \|&
and x3 lie on the same line, iff - i ‘\\ \’;'*1"
H(x1), H(x2) and H(x3) do. AN

>~

> 2
-
-~

-

. i image plane . ;
7 \ N ~
'v X \ ! X h
X \ o4 L .
\‘ \ “ ;‘ X,
I /)\ﬁ 2
’ N\ c
x/ N
RN
l o
3 W )
l \ ~
‘ [ x‘ \‘
l . X,
| Xz

The camera centre is the essence, (a) Image formation: the image
points x; are the intersection of a plane with rays from the space points X;
through the camera centre C. (b) If the space points are coplanar then there is
a projective transformation between the world and image planes: X; = H3y3X,.
(c) All images with the same camera centre are related by a projective
transformation, x’; = H’;,;Xx,. Compare (b) and (c) - in both cases planes are
mapped to one another by rays through a centre. In (b) the mapping is
between a scene and image plane, in (c¢) between two image planes.
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€
(d) If the camera centre moves, then the images are in

general not related by a projective transformation,
unless - (e) all the space points are coplanar.

H is non-singular, with 8 dof. It has applications in
image/video mosaic, stereo reconstruction, camera
calibration, scene modeling and understanding etc.
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Homography

of points
x'= H x;
["=¢e'x X'
=[e’], X’
=[e'], H x
= F X

e e, e]
0 —e
e, 0
—-e, ¢




F & Hin terms of camera

madtrix.
X = PX x'=PX
X=P"x =P'P*x -*HZ
¢=PC ,
['=FXx
I"=e'xx' and,
— [e,]x X' I = [e,]xH
=[P'C](P'P"x) L E=PCLEP

- { { +
This is, corresponding = [e LP P

Epipolar Line for a point



The basic tool in the reconstruction of point sets from
two views is the fundamental matrix, which represents the
constraint obeyed by image points x and x' if they are to be
images of the same 3D point.

This constraint arises from the coplanarity of the
camera centres of the two views, the images points and the
space point.

H 1n terms of K

P=KJ[I|0] P'=KR[I|0]
x =PX ’/ __
X = Hx '=P'X = f(x)??
= K[I]0]1X : /()

K'x=[I]0]X




Fundamental matrix, F:

The fundamental matrix F may be written as F = [e"],H,;, where H; is the
transfer mapping from one image to another via any plane I1.
Furthermore, since [e'], has rank 2 and H;; rank 3, F is a matrix of rank 2.

F is a 3 x 3 matrix of rank 2. Equations (X,'FX. = 0) are
linear in the entries of the matrix F, which means that if F is
unknown, then it can be computed from a set of point
correspondences.

A pair of camera matrices P and P’ uniquely determine
a fundamental matrix F, and conversely, the fundamental
matrix determines the pair of camera matrices, up to a 3D
projective ambiguity.

Thus, the fundamental matrix encapsulates the
complete projective geometry of the pair of cameras, and is
unchanged by projective transformation of 3D.



The fundamental-matrix method for reconstructing the
scene from two views, consisting of the following steps:

(i) Given several point correspondences x; <-> X; across two
views, form linear equations in the entries of F based on
the coplanarity equations x;"Fx;, = 0.

(ii) Find F as the solution to a set of linear equations;

(iii) Compute a pair of camera matrices from F according to
the simple formula given as:

The camera matrices corresponding to a fundamental matrix
F may be chosenas P =[I | 0] and P' = [[e'],F | e'].

(iv) Given the two cameras (P, P') and the corresponding
image point pairs x;' <-> x; , find the 3D point X; that projects
to the given image points. Solving for X in this way is known

as triangulation.
Issues:

How to get correct correspondences ?
How to estimate F ?
What is triangulation process ?



Scene Homography (points)

A homography is an invertible mapping of points and lines
on a projective plane. Its an invertible mapping to itself, such that
collinearity is preserved. It is represented as:

] )h — th
where:

— ph, ¢ are homogeneous 3D vectors

— H € R3%3 is called a homography matrix and has 8 degrees
of freedom, because 1t 1s defined up to a scaling factor (H =

cA~1 B where ¢ is any arbitrary scalar)

e The mapping defined by (1) 1s called a 2D homography

e Since the homography matrix / has 8 degrees of freedom, 4 cor-

responding (p. ¢) pairs are enough to constrain the problem



Scene Homography (Lines)

Tph =0 4 T =0

From above, derive, / = f(H, m) ??
I"p"=0=1"Hq" =0=m"q";
I"H=m"

=!"=m"H™

Thus, [ = (H_1 )Tm
What about H, from above ??
H — (IT)—lmT

Possible to compute H, now ??



Solving Homography using point correspondences

o)=n ; , (2.1)
1 1

: T T
where ¢ is any non-zero constant, ( w v 1) represents X/, ( r y 1 )

hi1 ho ha
represents x, and H = hy hs he |.

h7 hs hg

—hiz — hoy — hg + (hyx + hgy + hg)u =0 (2.2)

—haz — hsy — hg + (hrx + hgy + hg)u =0 (2.3)
Ah=0 (2.4)

where A; =

andh=(hy hy hs hy hs he h; hs ho ).

Solution to a homogeneous system ?
The solution set to a homogeneous system is the
same as the null space of the corresponding matrix A.



Sinqular Value Decomposition (SVD)

Singular value decomposition takes a matrix (defined
as A, where A is a n x p matrix). The SVD theorem states:

— F
where, UTU =1 & VTV =1 Anxp = Unxn Snxp V" px

Calculating the SVD consists of :

p

- Finding the eigenvalues and eigenvectors of AAT and ATA.

- The columns of V are orthonormal eigenvectors of ATA

- The columns of U are orthonormal eigenvectors of AAT

- Also, the singular values in S are square roots of eigenvalues
from AAT or ATA in descending order.

Some important observations: M=UZXZV*

- The singular values are the diagonal entries of the S matrix

and are arranged in descending order.

- The singular values are always real numbers.

- If the matrix M is a real matrix, then U and V are also real.
The right-singular vectors corresponding to vanishing

singular values of M span the null space of M. The left-singular

vectors corresponding to the non-zero singular values of M span the
range (space) of M.



Ah =20
Since each point correspondence provides 2 equations, 4 correspondences
are sufficient to solve for the 8 degrees of freedom of H. The restriction is
that no 3 points can be collinear (i.e., they must all be in “general position™).
Four 2x9 A; matrices (one per point correspondence) can be stacked on top
of one another to get a single 8 x9 matrix A. The 1D null space of A is the
solution space for h.

If the homography is exactly determined, then Og = 0, and
there exists a homography that fits the points exactly.

This is the basic DLT algorithm, which only requires
normalization (pixel coordinates) and de-normalization steps,
prior and after the solution of the homogeneous system.

Also a cost minimization approach (use RANSAC) is used
for a over-determined set of systems, for a robust solution.

For Homography using line correspondences:

Y 0 wr —v 0 v —1 0 =z
e 0 —uw uwy 0 —v vy 0 =1 y

( u v 1 }T represents 1" and ( r y 1 )T represents |



Estimate H (DLT, but with an alternate notation)

Given n>=4 2-D point pairs;

Algo: N
X' xHx,=0; x',=(x,,y,,w,) ;
1 1 2 i i? i? i bl
B T 'T
0 - W, X;
! T T
=| W, X, 0
! T ' T
__ yi Xz‘ XJ'XI‘
Use:
- 0']_‘
'u.';xT

1T

—'u,'t-xi

UT

Hx; =
hl
h* =0= 4h=0
h’ x: % e =
h!

u'xT .
Gonl e

1™ h3

h!Tx,
h?Tx,

h*'x;

_t/_:llHTX,
wih'!Tx,
9
rth?'x;

wih®Tx;

2/h3'x
yth!' x;

i

- Assemble n such 2*9 matrices A, into a single 2n*9 matrix A, by
stacking horizontally row-wise;

- SVD of A, gives :

A=UDV";

- h9*1 is the last column of V (unit singular eigen-vector

corresponding to smallest singular value)

- Form H;.;, by arranging elements of h

- May need normalization of coordinates



Epipolar line homography:

(a) There is a pencil of epipolar lines in each image centred on the

epipole. The correspondence between epipolar lines, [, - I’ is
defined by the pencil of planes with axis the baseline.

(b) The corresponding lines are related by a perspectivity, with
centre at any point p on the baseline. It follows that the
correspondence between epipolar lines in the pencils is a

1D homography.

If the stereo is calibrated; i.e P and P’ known, use:

A compact algorithm for rectification of stereo pairs; Andrea Fusiello, Emanuele Trucco, Alessandro Verri ;
Machine Vision and Applications (2000) 12: 16-22 Machine Vision and Applications; Springer-Verlag 2000;



Qe view

A Priori Knowledge 3-D Reconstruction from Two Views
Intrinsic and extrinsic parameters  Unambiguous (absolute coordinates)
Intrinsic parameters only Up to an unknown scaling factor
No information on parameters Up to an unknown projective transformation of
the environment

W is orthogonal to both ¥ & I; - formula ??



Process of Rectification

Image rectification is the process of applying a pair of 2
dimensional projective transforms, or homographies, to a pair of
images whose epipolar geometry is known so that epipolar lines in
the original images map to horizontally aligned lines in the
transformed images.



I'=Fx









Left image Right image
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Assumptions and Problem
Statement of Rectification:

Given a stereo pair of
images, the intrinsic parameters
(K) of each camera, and the
extrinsic parameters
of the system, R and T;

compute the image 0 ™
transformation that makes
conjugated epipolar
lines collinear and parallel to the
horizontal image axis.

The algorithm (Trucco, Verri)
consists of four steps:

e Rotate the left camera so that the epipole goes to infinity
along the horizontal axis.

e Apply the same rotation to the right camera to recover the
original geometry.

e Rotate the right camera by R.

e Adjust the scale in both camera reference frames.



RECTIFICATION Illustrated

Formula - for projection
: of a vector on a plane ?




Rectification algo. (four steps), by Trucco, Verri:

e Rotate the left camera so that the epipole goes to infinity along
the horizontal axis.

e Apply the same rotation to the right camera to recover the
original geometry.

First rotate the left camera so that it looks perpendicular to the line joining
the camera centers c0 and c1. Since there is a degree of freedom in the tilt, the
smallest rotations that achieve this should be used. Smallest rotation can be
computed from the cross product between the original and desired optical axes.

To determine the desired twist around the optical axes, make the up
vector (the camera y axis) perpendicular to the baseline. This ensures that
corresponding epipolar lines are horizontal and that the disparity for points at
infinity is 0. The cross product between the current x-axis after the first rotation
and the line joining the cameras gives the rotation.

e Rotate the right camera by R (or R™1).

e Adjust the scale in both camera reference frames.

If necessary, to account for different focal lengths, magnifying the
smaller image to avoid aliasing. Now, both have the same resolution (and hence
line-to-line correspondence).



Algorithm RECTIFICATION

The input is formed by the intrinsic and extrinsic
parameters of a stereo system and a set of points in each

camera to be rectified (which could be the whole images).
Also, in both cameras:

i). the origin of the image reference frame is the principal point;
ii). the focal length is equal to f.
Steps:

_ i T T TY
1. Build the matrix R, as: R = (el e, e )

e e T - S >

=T; e, =7ZxT =(-T,,T,,0)"; e, =¢Xe,

2.SetR,=R,.,and R, = RLR, .. ; e.g. for Left Camera :

3, 4: For Left and Right camera points, |X:V2' 1= R [x,y ST

do: (]7) N

This algorithm fails when the optical axis is parallel to the
baseline, i.e., when there is a pure forward motion.



Left image Rightimage

But, what if the external parameters
are not known

Zhang’'s (CVPR'99) method assumes that F is known.
If the intrinsic parameters of a camera are known, we say
the images are calibrated, and the fundamental matrix
becomes the essential matrix.

This method of rectification is suitable for calibrated
or uncalibrated images pairs, provided that F is known
between them.



Rectification (Zhang’'s), using Fundamental matrix

Work on entirely 2-D space; ; .
Points and lines: m = [mu m mw] ;1= [la lb lc]

m’ Fm - ), (1)

i P F is a 3x3 rank-2 matrix,

:"fffff'f;\-c. is known (?).
Fm=1["; m" |'= 0;

rit T .
Fe=0=F"¢";
Properties of rectified image pair:

- All epipolar lines are parallel to horizontal (x- or u-axis)
- Corresponding points have identical y- or v-coordinates.

i 0 0 0
Fundamental matrix = .
for a rectified image pair: F = [i]x = | 0 0 ~1
What is i ?? 01 0

where, i = [1 0 0]T, is X-VP (at Inf.)



Rectification (Zha ng’s) — _maps epipolar lines to image scan lines;

Let H and H' be the homographies to be applied to images 7 and 7' respectively. and letm € 7
and m’ € 7' be a pair of points that satisfy Eq. (1). Consider rectified image pointsrm and m’ defined

m-— Hm and m’ — Hm'.

m' ' Fm - 0,

It follows from Eq. (1) that
m'/Fm 0, | ] N == I
m” H" FHm 0. v
F C IS ¢ 1
T I
resulting in the factorization | \ V
F=HT"[i]H. ~ -l .
) T ; ’ ’
He =i, He' =iand H'[i|,H=F Let v o Up  Ue
. - 14 H p— v p— Ugq Up Ve
- - - T T T
and consider He — [ wWe vie wle 1 _ [ 1 0 0 1 w! Wy Wy  We

Then, the corresponding lines v and v’, w and w’ must be epipolar
lines (as, I'e=0), for minimal distortion due to rectification;
H=H,.H.H,

5 T i Dy — Vel Upllly — Uy 0O ] 1 0 0
Y = | v, — v — i H, = 0 1 0

Hg — D 1 {] H]" - t—'g Lﬂwﬂ "”1', chh 't_]f... ]
0 0 1 (0 () | Ulg Wy 1




Sa St Se Up — Uelp  Velly — Vg 0 1 0 0
H,—| 0 1 0| H=]|va-vow, vp—vewp v, |[Hy=| 0 1 0
0 0 1 ( 0] 1 ] Wy Wy 1

Proposition 1. Ifl ~ 1" and x € I is a direction (point at ~) such that1 = e , x then

<- used earlier;

" = Fx. Proof in Loop & Zhang '99.

Proposition 2. IfH and H' are homgraphies such that
F - H'[i.H.Mjnimization criteria used to
thenv ~ v andw ~ w'. Compute Hp'

H, (shearing) only effects the u-coordinate; hence
rectification in unaffected. H, is similarity; H, is perspective.

Fap —wpFi3 wyFas — Fay 0 Fa3 — w$F33 w;F33 - FIS 0
H, = | F3 ~waF3a Fa —wpF33 F33 + v H = | Fla—w,Fs3 Fp3—wFyz vl
0 0 1 0 0 1

. h2z2 + w?y? and b= h2z,z, + Wiy
hw(zyyy — TuYy) hw(ZTyyy — ZvYu)
Figure The multi-stage stereo rectification algorithm of Loop and Zhang (1999) (©

1999 IEEE. (a) Original image pair overlaid with several epipolar lines; (b) images trans-
formed so that epipolar lines are parallel; (c) images rectified so that epipolar lines are hori-
zontal and in vertial correspondence; (d) final rectification that minimizes horizontal distor-
tions.









Latest/Modern methods of
Correspondence/Rectification/reconstruction include:

- Monassee et. al’s Rectification - BMVC 2010;
- Plane Sweep;

- Sparse feature set matching

- Profile curves or contours (even occluding)

- Dense correspondences using : similarity measures (NCC,
SAD, SSD, MSE, MAD), local methods;

- Global optimization (RANSAC, L-M) - Dynamic Prog.,
Segmentation based; etc.



Monasse 3-step Rectification

* INPUT : Fundamental Matrix, F by DLT.
e= (ex,ey,I)T Applying, Fe =0, find e.

e = (e, e; )N Applying, ¢’ F =0, find €’.

* Orientation of a camera can be adjusted by,
H=KRK™

* Since the image is not calibrated,

f o0 W
K=0 f / where, w = width of the image,
0 O

h = height of the image.



Monasse 3-step Rectification

* Step 1:

He=(e,e,0) =e where, H,=KR K™

Hie' =(e,,€,.,0)=¢, where, H,=KR K™
According to Rodrigues’ formulae,
He=(e,e,0) R,(8,1) = I +sin @[t], +(I—cos O)[]
_ T where,
KR K e=(e,,e,,0) b
N _ . cos @ = —b and
R K 'e=K"(e,, ey,O) a[b)
R a= b rotation axis, f = axb

bl



Monasse 3-step Rectification

* Step 2:
H,e = (],O,O)T =e, where, H, = KRZK_]
H'e, =(1,0,0)" =¢, where, H,=KR,K™'

~H, H, H, H’ areall parameterized by 1.
* Step 3:
The remaining relationship between the two

cameras of the rectified image is characterized by a
rotation, R around the baseline.




Finding the Essential Matrix

* According to Zisserman and Hartley,

F of a rectified 1mage 1s given by
F=KT[il.RK'=KTEK™

- E=[i].R

E is also parameterized by f.
Now, E is decomposed into £ =UDV’

Following the definition of Essential Matrix,
1 0 0]

/\‘J_ T » s
E=Ul0 I ol LR prFp
0 0 0

>
>




The optimization step

e;ﬁez =0
(H,H') F(H,H,e)=0
¢THH, FH,H e =0 and, ¢’ Fe =0
W F=H"HTFH.H,
Now an optimization function, S 1s defined as :
S(f)= ﬁ: d(x,Fx)+d(x,,F'x}) where, N is the no. of pixelsin the image.
=1

d(p,q)1s the Euclidean distance between p and g.
A minimization of S( /') is done to estimate K in terms of f.

From K, P and P’ is estimated.

2 X=Px or X=P'%



SICATION| BMVC 2010 doi:10.5244/C.24.89

A

The 1dea is to transform both 1 |magcs 50 lhat lhe fundamenIalatnx gets the form i) ...

Unlike the

other methods which directly parameterize the homographies from the constraints

He =i, H'¢’ =i and H7 [i] ,H = F and find an optimal pair by minimizing a measure of

distortion,

we shall compute the homography by explicitly rotating each camera around its

optical center. The algorithm is decomposed into three steps (Fig. 1):

1. Com
left ¢

(€xs¢

2. Rota
(1,0

3. Rota
tion

denc -

N . ___,-'-'le: i ':f X ‘!\_:HJ
- —— - W . —_— - 4 H'-\.,\_ g o ——
e . ,.-'. =
15t stap - — .
o = mn B - — 4 s e Fa £
I 2 c YRR L & (@)
Y T
‘-‘ v v F
¥
l 2rd step
X ¥ X
.' Y el J'step % - lII .E'
| ~. \"1 1 pRa—l . " |
C I::E};". ..."..I C'{e) Cie :I'-. I', II'I. C' (e
"IT 1y l"l_.j,. Ty*

Figure 1: Three-step rectification. First step: the image planes become parallel to CC'.
Second step: the images rotate in their own plane to have their epipolar lines also parallel
to CC'. Third step: a rotation of one of the image planes around CC” aligns corresponding
epipolar lines in both images. Note how the pairs of epipolar lines become aligned.



MONASSEet al.: THREE-STEP IMAGE RECTIFICATION| BMVC 2010 dor:10.5244/C.24.89
Input: F, computed using correspondences;

which gives epipoles e and e’; Let,
x, =K[I|0]X;= K'x, =[I|0]X
Steps: 1 & 2: x, = K.R[I|0JX
Hie = {E_l-‘F}-‘U]T and H’] = ff?_i.,E;.,D}T = X, :K.RK_lxl = HX,;
H; =KRK ' and H; = KR'K " where, Homography is:
H=K.RK™
1o — -1 T
RI{ ¢ = H [:F_q_'mt.a.r‘[]:l f D 1-‘-?
rotates the vector a =K 'e to b= K (e, e,,0)" K=[0 f 3
' 0 0 1

R{Hﬂ =I+sinB|t],. + (1 —cda-ﬂ}:t]i

x b

minimal angle 6 is acos( ‘*‘”';l} and the rotation axis t is | IC

H;, H), H, and H} are all parametrized by f

Step 3: Rotation R", of one camera about baseline: F = K 7[i] , RK '

H; is obtained after obtaining optimal K (or f)






| left

[




0,

w O
A Priori Knowledge 3-D) Reconstruction from Two Views
Intrinsic and extrinsic parameters  Unambiguous (absolute coordinates)
Intrinsic parameters only Up to an unknown scaling factor
Mo information on parameters Up to an unknown projective transformation of

the environment

H'/"W (t_l;iangulation): Find eqn. of theline ||, tow
which intersects r and /. Inputs: O0,, O,, p;, p,, R, T



P ti fF: T
roperties o X' F.X — O

(i) Transpose: If F is the fundamental matrix of the pair of
cameras (P, P'), then FT is the fundamental matrix of the
pair in the opposite order: (P’, P).

(ii) Epipolar lines: For any point x in the first image, the
corresponding epipolar line is I' = Fx. Similarly, / = FTx'
represents the epipolar line corresponding to x' in the
second image;

(iii) The epipole: for any point x (other than e) the epipolar

line I' = Fx contains the epipole e'. Thus e' satisfies e'T(Fx)
= (e'TF)x = 0 for all x. It follows that e''F = 0, i.e. e' is the
left null-vector of F. Similarly Fe = 0, i.e. e is the right

lI-vect fF.
nuiti-vector o F = [P/C]XP/P+
(iv) F is rank-2 homogenous matrix with 7 dof. _ [e'LP' pt

Canonical cameras,P = [I | O], P’ = [M | m],
[mLM —F = [e/|]xM=M"T[e]x, wherce’ = mand e = ¥~ 'm.



F in terms of K

* Let K be the internal parameter matrix of the camera.

* Camera matrix of the second camera (P’) is a rotation and translation
of the first camera(P):

, X 0
p=kK[I|0] P =KIR[t] P*z{[;l sz

F =[P Cl .PP*
=[Kt,KRK' =K "[t],RK"=K""R[R"t]. K=K "RK"[KR"t],
Prove it.

* The epipoles, defined as the image of other camera centers are:

- ,
e=P Rt}zKRTt e'=P'{ }zK't
1 1
F=[.KRK'=K"[t],RK"=K"R[R"t], K" =K "RK"[e],



For any vector t and non-singular matrix M:
(v =M\
[K't],K'RK ' = K" T[K'"'K't],RK ' = K" T[t]\RK ~*
K" T[t]«RK ™' = K" TRT[R't],K* = K" "R[R"t],K "
K" TR[R"t],K™* = K" TRK"[KR"t],

Result 9.12. A non-zero matrix F is the fundamental matrix corresponding to a pair of
camera matrices P and P’ if and only if P'VFP is skew-symmetric.

Proof. The condition that P'TFP is skew-symmetric is equivalent to X"PTFPX = ()
for all X. Setting X’ = P'X and x = PX, this is equivalent to x’"Fx = 0, which is the



Homography: x’ = Hx;

Relationship with <=x" Fx= 0
Fundamental matrix, F:

H-ix’ lies on the
corresponding epipolar line: FTx’

Thus, e’ = He; H1le' = e;

F=[PCl . PP*
=[Kt,KRK"' =K "[t],RK"=K"R[R"t|, K= K" "RK'"[KR't],

F=[e],KRK' =K "[t]RK'=K"R[R't] K=K "RK'[e],

F=K""RK'[KR"t],=|e'| K'RK ' =K"" RK"|e], =|e'| P P" =|e'|.H_

where, H_ is the homography imposed by epipolar plane.

L



- -
-
-
-
-
-
- ---
-
--

Result 9.5. Suppose [ and I’ are corresponding epipolar lines, and k is any
line not passing through the epipole @, then / and I’ are related by:

Symmetrically, J = FT[k'Ll" J' = F[kLl;
[kLl = kX[ = x (a point, as intersection of two lines); F [kLl =Fx=/
Let, line k be a line "e" :-( ; as k'e=¢' e # 0;

Hence, line "e" does not pass thru epipole e.

I'=[e'|H,x=Fx=Fle]l l; [=F"[e']l
Result 9.14. The camera matrices corresponding to a fundamental matrix F may be
chosenas P = [I | 0| and P' = [[e'|.F | €/].



Typical methods used to estimate F:

- 8-pt DLT algo. m'" Fm — (),
- RANSAC ==
Af =0;

- Normalize data, using Transformation matrix T;g
- DLT; F is the “smallest singular” vector of A
- replace F by F~, using SVD, where det (F*) =0
- Denormalize, as: 3
F=T"FT
Also, look at Gold Standard method based on MLE



The Eight-Point Algorithm (Longuet-Higgins, 1981)

[ F11 )
Fig
Fi3
Fy Fp P (o Fa
(u,v,1)| Fyuy Fyy Fog ||V [=0 w (we, w', u, v, v’ v, v 1) | Fay [ =0
Fy1 By Fp )\l F3
F5
Fs
\ £33
[uju] wivy up vy Uvy v u 1Y Minimize:
Uglin, Uy Uy Uglis Ul Uy U 1
Uugtth uavh Uz vguh vavh vy ul 1 R.,.T e 9
Mgl UAUy Ug UqUly UgUy Uy U |1 _1;; (p i/ P f)
UstE UsUL Uz vsut wsvh vy ul |1
Ughy Uglly Ug Ugliy Vglly Mg 1l 1 under the constraint
UL unvh Uy vpun vk ur o ub 1 5
\ Uglly UsUy Us Uslly Ugly Us Uy \ 1) |F ‘ =5
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RANSAC Method for computing F:

(i) Interest points: Compute interest points in each image.

(ii) Putative correspondences: Compute a set of interest point matches based
on proximity and similarity of their intensity neighbourhood;

(iii) RANSAC robust estimation: Repeat for N samples:
(a) Select a random sample of 7 (or 8) correspondences and compute

the fundamental matrix F (Algebraic Min. or DLT).

(b) the solution with most inliers is retained; i.e. Choose the F with
the largest nhumber of inliers;

Repeat the following two steps, until stability:

(iv) Non-linear estimation: re-estimate F from all correspondences classified
as inliers by minimizing a cost function, using the Levenberg-Marquardt (LM)
algorithm.

(v) Guided matching: Further interest point correspondences are now
determined using the estimated F to define a search strip about the epipolar
line.

Other methods - Gold-standard (MLE); Sampson Distance
(cost) function;



(c) (d) detected corners

superimposed ¢ the imsoas
There are appr«
corners on eacl s

The following r % s
superimposed ¢

by the line linki _
the clear mismu

(f) outliers - 89
matches,

(g) inliers - 99 correspondences :
consistent with the estimated F;

(h) final set of 157
correspondences after guided  Sill5 "l S &
matching and MLE. A e e

Both the fundamental anc
completely describe the geometric relationship between
corresponding points of a stereo pair of cameras.

The only difference between the two is that the
fundamental matrix deals with uncalibrated cameras, while
the essential matrix deals with calibrated cameras.



E. the essential matrix

Maps a point from one image plane to a line in the corresponding
image domain; Has 5 dof.

Two images of a single scene/object are related by the epipolar
geometry, which can be described by a 3x3 singular matrix called the
essential matrix if images’ internal parameters are known, or the
fundamental matrix otherwise. Mostly used in case of SFM problems.

P=K[R|{] x=PX =K|[R|t]X

let, x=K 'x = [R‘t]X
XN is in normalized coordns.

And normalized camera matrix is :  K~'p=[R | £]
(where the effect of known camera
calibration matrix has been

removed.) T EXx=0

The fundamental matrix corresponding to the pair of
normalized cameras is customarily called the essential matrix.



Epipolar Constraint: Calibrated Case

Ll

, .
. / s \\,f
5 & ~ 2
Op- [00 x O'p] =0 @ p = (u,v,1)T
_ N ny p =, )T
0 -1, 1] p-tx(Rp) =0 with M=(1d 0)
tl=]2z o -z M = (RY,—-R"t)

= t, 1 IZ]_ ,D,

Essential Matrix Te)_ 0 with € KR
(Longuet-Higgins, 1981) E pcp [K]
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essential matrix (Longuet-Higgins 1981) p

& Ed, =2 K;TEK;'zy = 2! Fz, =0

F=K;TEK;'=[e|].H

is called the fundamental matrix (Faugeras 1992; Hartley, Gupta, and Chang 1992; Hartley
and Zisserman 2004).



& E&y =0,
Thus for a pair of normalized cameras:

P=[I]0]
Using: =Rl p_p{).R
F=K""[t],RK'=K"R[R"t] K™ |
and ignoring K & K": E _

So actually:

A 3 x 3 matrix is an essential matrix, E if and only if
two of its singular values are equal, and the third is zero .

For a given essential matrix E = U.diag(1, 1,0).V7, and first camera
matrix P = [I | o], there are four possible choices for the second camera

matrix P', namely : pr _ [UWT | +uy] or [UWT | —uy] or [WTVT | +uy) or [WTVT | —uy|

0 -1 0
W=(1 0 0

;o t = u;, the last column of U.




Finding the Essential Matrix

* According to Zisserman and Hartley,

F of a rectified 1mage 1s given by
F=KT[il.RK'=KTEK™

- E=[i].R

E is also parameterized by f.
Now, E is decomposed into £ =UDV’

Following the definition of Essential Matrix,
1 0 0]

/\‘J_ T s A
E=Ul0 I ol LR _prfp
0 0 0

>
>




The Essential matrix, E

The observed location of
point p in the first image,

Po = dpx

is mapped into the second
image by the transformation:

dyz, =p, = Rp, +t = R(dyz,) +1

Taking the cross product of both
sides with t

d [t] « &1 = dolt]x Rio

doz, ([t]« R)Zo = d, ) [t] .2, = 0. ﬁos:;‘éedffr



E vs. F revisited

The Essential Matrix E:

* Encodes information on the
extrinsic parameters only

 Has rank 2 since R 1s full rank
and [T, ] 1s skew & rank 2

» Its two non-zero smgular
values are equal

* 5 degrees of freedom

C3348, Fall 2001

The Fundamental Matrix F':

* Encodes information on both
the mntrinsic and extrinsic

parameters

Also has rank 2 smce E 18
rank 2

* 7 degrees of freedom

© David Kriegman, 2001



Linear stereo matching; Leonardo De-Maeztu, Stefano Mattoccia,
Arantxa Villanueva, Rafael Cabeza; ICCV-2011. (Spain + Italy)



(a)

(e)

Courtesy: Szeliski

(d)



L,

“r i | J
ILH,'.‘L? .-

" : | L5
Slices through a typical lSQaI‘ItZ space image (DSI )
(Scharstein and Szeliski 2002) c 2002, Springer:

(a) original color image; (b) ground truth disparities;
(b) (c-e) three (x, y) slices ford = 10, 16, 21;

Segmentatlon -based stereo matchlng (thnlck Kang, Uyttendaele et
al. 2004) c 2004 ACM:( a) input color image; (b) color-based
segmentation; (c) initial disparity estimates; (d) final piecewise-
smoothed disparities;



Courtesy:
Szeliski



3D world object

Feature Extraction

Feature Extraction
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x" Fx=0 or x'

]

[[e'] F|€

[710] and P'=

P=

Fundamental /
Essential Matrix

E=K" FK;

=0

x=PX
X xPX =0

Projective Reconstruction
(Triangulation process ) [l

[a] R.Hartley, CVIU ‘97




Ambiguity in Reconstruction

From Image correspondences, the scene and the
camera can be reconstructed to a projective
equivalent of the original scene and camera

Projective Reconstruction theorem:

x, =PX, =(PH" |H X,) \ g /

Additional information (scene
parallel lines, camera internal ~ Q >.
parameters) required for metric

reconstruction




GENERIC STEREO RECONSTRUCTION (sec. 10.6, pp 277; H&2)

Input: Two Uncalibrated images;
Output: Reconstruction (metric) of the scene structure
and camera
Algo. Steps:

 Projective reconstruction
« Compute Fundamental matrix, F
« Compute P and P’ (camera matrices) using F
- Use triangulation (with rectification) to get X, from x; and x;’

. Rectify from projective to M@tFrIC (M), using either
(a) Direct:
Estimate homography H, from grnd. Control pts.,;
Puyw=P.H!; P',=P".H1; X; = HX..
OR
(b) Stratified (use, VP, VL, VPI, Homography, DIAC etc.):
Affine;
Metric
Also see: Algorithm 12.1. The optimal triangulation method

(sec. 12.5.2, Algo. 12.1; pp 318 (336); H&Z)




For self- or auto-calibration :
Use (this is research material) -
Affine to metric reconstruction,
Stratification,

Scene homography,

Cheirality and DIAC,

Bundle adjustment,

L-M Optimization, RANSAC etc.
Refer to the books by:

- Hartley & Zisserman,

- Ma, Shastry et. al;

- Forsyth and Ponce.



Fig. 10.3. Projective reconstruction. (a) Orig , 2
construction of the scene. The reconstruction re ‘ e
information about the scene geometry. The func I Iy l ' N
dences berween the images, camera matrices are ’
rriangulation from the correspondences. The line | l : - f_ |

o ¥ | ——

Fig. 10.6. Direct reconstructio
metric by specifving the positior
responding points on the projeci..

4 g1 PTOJECige 105, Metric reconstruction. The

: N OTAR : affine reconstruction of figure 10.4 is upgraded to metric by
points are mapp ed 10 their wo Id"‘j"fl’"""# Ihc image of the absolute conic. The information used is the orthogonality of the directions

b



Vanishing points

Points on a line in 3 space through point A and direction
D=(d" ,0)T are X(A)=A+ AD .As A goes from zero to
infinity, then X(A) varies from finite point A to point D at co.
AssumeP = K[| 0], then image of X(A) is given by

x(A)=PX(A)=PA +APD =a+AKd
v = lim X(?L) _ ?1le (a n de) ~Kd 2 Conclusion: the vanishing point of lines with

A directiond in 3 space is the intersectionv of the
—>®© image plane with a ray through the camera center with
note that v depends only on the direction d of the line, not direction d, namelyv = Kd

on its position specified by A
\ d X(1)
_——0—'—'—0"_"'—-———‘_*——

—— A
b \ X(A)
d [ I

X, X, X4 Xy, > X

Fig. 8.14. Vanishing point formation. (a) Plane 1o line camera. The poimis X;, 1 = 1,..., 4 are
equally spaced on the world line, but their spacing on the image line monotonically decreases. In the
limir X oo the world point is imaged at X = v on the vertical image line, and at X = v on the
inclined image line. Thus the vanishing point of the world line is obtained by intersecting the image
plane with a ray parallel to the world line through the camera centre C. (b) 3-space to plane camera.
The vanishing point, v, of a line with direction d is the intersection of the image plane with a ray parallel
to d through C. The world line may be parametrized as X( ) = A + D, where A is a point on the
line.,and D = (d7,0)7.



Vanishing lines

e
4=

n

IS\ )

Fig. 8.16. Vanishing line formation. (@) The two sets of parallel lines on the scene plane converge to
the vanishing points vy and vy in the image. The line | through v, and v is the vanishing line of the
plane. (b) The vanishing line | of a plane = is obtained by intersecting the image plane with a plane
through the camera centre C and parallel to =.



In case of a set of arbitrary views (multi-view
geometry) used for 3-D reconstruction (object structure,
surface geometry, modeling etc.), methods used involve:

KLT (Kanade-Lucas-Tomasi)- tracker
Bundle adjustment and RANSAC
8-point DLT algorithm
Zhang’s scene homography
Tri-focal tensors

- Cheriality and DIAC
- Auto-calibration

- Affine to Metric reconstruction

- Stratification

- Kruppa’s eqn. for infinite homography







Example of
3-D reconstruction

3D surface point and wireframe
reconstruction from multiview
photographic images; Simant
Prakoonwit, Ralph Benjamin;
IVC - 2008/9

Fig. 18. (a) Real matt plastic watering pot. (b) The reconstructed 3D
frontier points shown superimposed upon the pot (¢) - (f) Different views
of the reconstructed 3D contour generators.



r(S,, L,+AtL)

Robust Recovery of Shapes with Unknown

Topology from the Dual Space;

Chen Liang and Kwan-Yee K. Wong,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE.
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End of Lectures on -

Transformations,
Imaging Geometry,

Stereco Vision
and
3-D Reconstruction




