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Edge Detection
Edge is a boundary between two homogeneous regions. The 

gray level properties of the two regions on either side of an edge are 
distinct and exhibit some local uniformity or homogeneity among 
themselves.

An edge is typically extracted by computing the derivative of the 
image intensity function. This consists of two parts:

• Magnitude of the derivative: measure of the strength/contrast of
the edge

• Direction of the derivative vector: edge orientation

Ideal Step edge in 1-D Step edge in 2-D



Computing the derivative: Finite difference in 1-D
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Computing the derivative: Finite differences in 2-D
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Differentiation using convolution:

δf/δx = [-1 1]; δf/δy = [-1 1]T ;

δ2f/δx2 = [1 -2 1]; δ2f/δy2 = [1 -2 1]T ;

Need to use wider masks to add an element of smoothing and 
better response. The traditional derivative operators used were:
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Most of these partial derivative operators are sensitive to noise. 
Use of these masks resulted in thick edges or boundaries, in addition to 
spurious edge pixels due to noise. 

Laplacian mask is highly sensitive to spike noise. Use of noise 
smoothing became mandatory before edge detection, specifically for 
noisy images. But noise smoothing, typically by the use of a Gaussian
function, caused a blurring or smearing of the edge information or 
gradient values.

Two components of the edge values computed are:

Gradient values: Gx = δf/δx; Gy = δf/δy.

The magnitude of the edge is calculated as:

|G| = [Gx
2 + Gy

2]1/2

and orientation as:

θ = arctan(Gy/Gx)

Gx, Gy



Gaussian Function
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A Gaussian function is shown below. The width of the Gaussian 
depends on the variance σ. The value of σ dictates the amount of 
smoothing. The expression of the Gaussian function is given as:

Marr and Hildreth (1980) suggested the use of  the “Laplacian of 
the Gaussian” (LOG) operator to detect edges. This produced edges as 
Zero-Crossings (ZC’s) in the output function - why?? 

However, it did not give any idea of the gradient magnitude or 
orientation of the edges. But ZC’s were spread through-out an image. 
How do one detect true edges from ZC’s??



LOG operator in 1-D

LOG operator in 2-D



First Derivative
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Derivative



Edge Noisy
Edge

First Derivative Second Derivative
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Canny in 1986 suggested an optimal operator, which uses the 
Gaussian smoothing and the derivative function together. He proved that 
the first  derivative of the Gaussian function, as shown below, is a good 
approximation to his optimal operator. 

It combines both the derivative and smoothing properties in a nice 
way to obtain good edges. Canny also talks of a hysteresis based
thresholding strategy for marking the edges from the gradient values.

Smoothing and derivative when applied separately, were not 
producing good results under noisy conditions. This is because, one 
opposes the other. Whereas, when combined together produces the 
desired output. 

Expression of Canny (1-D operator is):



Canny’s algorithm for edge detection:

Detect an edge, where simultaneously the following conditions 
are satisfied:

∇2G*f = 0 and  
∇G*f reaches a maximum.

∇G is the first derivative of the Gausian defined (in 1-D) as:
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and

∇ 2G in two-dimension is given by (also known as the
“Laplacian of the Gaussian” or LOG operator):
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Noisy
Edge, Sn

G:
Gaussian 
Function

δG δG * Sn



δG

δ2G

δG * Sn

δ2G * Sn



Noisy
Edge, Sn
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Original Gray 
scale Image X-gradient Y-gradient Total Gradient 

Magnitude
Bi level 

Thresholding

Original Grey 
level Image After Laplace Operator After Zero-crossing
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BIRD SOBEL

LOG Canny



Multi-scale Edge detection



• Our goal is to simultaneously extract edges of all lengths

• Edges are well localized across the scale-space

Problem definition

Input image Edge map generated by scale space 
Combination

Edge map generated by single scale



5.0=σ

2=σ
1=σ

5.1=σ

2-D Canny 
edge maps



• Real-world objects are composed of different structures at 
different scales 

Motivation

• Connectivity of an object depends on the scale at which it is  
observed

• In real-world images the edges may not be ideal 

• Variation of the response over different scales is important

• A step edge is sensed at various points by cells of the 
retinal array



Optimal Edge Detection in Two-Dimensional Images



NES: Normalized Edge Strength

NESS: Normalized Edge Strength of 
sub-segment

LT: Low Threshold

HT: High threshold

MT: Medium Threshold

Compute the 
gradient map of 
Gaussian blurred 
image.

Assign the magnitude 
of the gradient as edge 
strength to all edge 
pixels.

Edge strength is 
equalized (HEQ) to 
full scale of intensity.

Compute the normalized edge 
strength  (NES) for all edge 
segments as  sum of strengths of 
all the edge points divided by 
length of the segment.

Compute the histogram 
for the edge segment 
strengths.

Fit a Gaussian to the low intensity part of the 
histogram  and compute  three threshold 
(Low, medium and high) based on mean and 
variance of Gaussian.

NES  >     
MT

Salient edge 
Map

yes

No yes

Compute edge 
subsegments and 
compute NESS for 
each subsegment.

NESS   
>LT

NESS  
> HT yes

SALIENCY 
TEST



Histogram of the normalised edge strengths and 
fitted Gaussian distribution

5.0=σ

5.1=σ



5.0=σ 2=σ1=σ

Salient Edge maps

5.1=σ

2-D Canny edge map



• The combination procedure checks if there are new salient edges
in the detection results from larger scales

Algorithm

1. Minmap, maxmap= edge map of smallest scale

2. Compare maxmap with second smallest scale edgemap

3. If an edge segment of minimum length from second smallest 
scale does not appear in maxmap, add that particular 
segment to minmap

4. Repeat step 2 and step 3 with various scales

5. Minmap is the final combined scale output

Combining different scales



Scale space combination
2-D Canny edge model

Scale space combination
of Qian & Huang 

edge model

Lena
256x256
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