
Wavelet Transform



Wavelet Transform
The wavelet transform corresponds to the 

decomposition of a quadratic integrable function s(x) ε L2(R) 
in a family of scaled and translated functions Ψk,l(t),

The function Ψ(x) is called wavelet function and shows 
band-pass behavior. The wavelet coefficients da,b are derived 
as follows:

where k ε R+,  l  ε R
and  * denotes the complex  conjugate function
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The discrete wavelet transform (DWT) represents a 1-D 
signal s(t) in terms of shifted versions of a lowpass scaling function 
φ(t) and shifted and dilated versions of a prototype bandpass wavelet 
function  ψ(t). 



For special choices of φ(t) and  ψ (t), the functions:

for j and k ε Z, form an orthonormal basis, and we have the 
representation:
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Relook at F.T. expressions:
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Thus f(x) is represented here as a linear combination of the basis 
functions:  exp(jωx)

Wavelet transform on the other hand, represents f(x) (or f(t)) as a 
linear combination of:
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where ψ(t) is called the mother wavelet. 

Parameters k and l are integers – which generates the basis 
functions as the dilated and shifted variations of the mother wavelet.



The parameter k plays the role of frequency and l plays the 
role of time. Hence by  varying k and l, we have different frequency 
and different time or space – hence the term multi-channel multi-
resolution approach.
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Compare in discrete case:
The F.T.:
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DWT – Discrete Wavelet Transform:
Forward:

and Inverse:

Take, T = 1 and time is continuous.

Synthesis filters:Analysis filters:
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Functions h(t) and f(t) are derived by dilation of a single filter. Thus 
the basis functions are dilated (t -> a-kt) and shifted (t -> t - la-kt) 
versions of: )()()( 2/ lTtaattf kk
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)()( * thtf kk −=Synthesis filters for perfect reconstruction:



Visualize pseudo-frequency corresponding 
to a scale.  Assume a center frequency Fc of the 
wavelet and use the following relationship:

where a is the scale.  ∆ is the sampling period and 
Fc is the center frequency of a wavelet in Hz. Fa
is the pseudo-frequency corresponding to the 
scale a, in Hz.
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The highpass and lowpass filters are not 
independent of each other, and they are related by 
the following expression:
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QMF bank and typical magnitude responses
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M-channel (M-band) QMF bank
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•The DWT analyzes the signal at different frequency bands 
with different resolutions by decomposing the signal into 
coarse approximation and detail information. 
•DWT employs two sets of functions, called scaling functions 
and wavelet functions, which are associated with low pass 
and highpass filters, respectively. 
•The decomposition of the signal into different frequency 
bands is simply obtained by successive highpass and lowpass
filtering of the time domain signal. 
•The original signal x[n] is first passed through a half-band 
highpass filter g[n] and a lowpass filter h[n].
•After the filtering, half of the samples can be eliminated
(according to the Nyquist’s rule) since the signal now has a 
highest frequency of fmax/2 radians instead of fmax. 
•The signal can therefore be sub-sampled by 2, simply by 
discarding every other sample. This constitutes one level of 
decomposition and can mathematically be expressed as 
follows:
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Block diagram of the methodology of 1-D DWT. 



Frequency responses (bandwidths) of the different 
output channels of the wavelet filter bank, for a = 2

and three or more levels of decomposition
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Frequency 
Response
of 2-channel 
Daubeschies
8-tap
orthogonal 
wavelet filters.

Low-Pass

High-Pass



Frequency Response
of a 3-channel 
orthogonal wavelet 
filters.

Channel - I

Channel - II

Channel - III



Frequency Response
of a 4-channel 
orthogonal wavelet 
filters.

Channel - I

Channel - IV

Channel - II

Channel - III



Two-level maximally decimated filter bank
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Illustrations  to demonstrate the 
difference between:

FT, STFT and WT
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Note that  the FT gives what frequency components (spectral 
components) exist in the signal. Nothing more, nothing less.

When the time localization of the spectral components are 
needed, a transform giving the TIME-FREQUENCY REPRESENTATION of the 
signal is needed.

What is Wavelet Transform and how does it solve the problem?

View WT as a plot on a 3-D graph, where time is one axis, frequency the 
second and amplitude is the third axis. 

This will show us what frequencies, f, exist at which time, T.

There is an issue, called "uncertainty principle", which states that, we 
cannot exactly know what frequency exists at what time instance , but we can 
only know what frequency bands exist at what time intervals.



The uncertainty principle, originally found and formulated by 
Heisenberg, states that, the momentum and the position of a moving particle 
cannot be known simultaneously. This applies to our subject as follows:

The frequency and time information of a signal at some certain point in 
the time-frequency plane cannot be known. 

In other words: We cannot know what spectral component exists at any 
given time instant. The best we can do is to investigate what spectral components 
exist at any given interval of time. 

This is a problem of resolution, and it is the main reason why 
researchers have switched from STFT to WT. 

STFT gives a fixed resolution at all times, whereas WT gives a variable (or 
suitable) resolution as follows:
Higher frequencies are better resolved in time, and lower frequencies are better 
resolved in frequency. 

This means that, a certain high frequency component can be located 
better in time (with less relative error) than a low frequency component. On the 
contrary, a low frequency component can be located better in frequency 
compared to high frequency component
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Broader Window, w

Narrow Window, w



Still larger window, w













Time and Frequency Resolutions
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Two-dimensional Wavelet Transform
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Level I wavelet decomposition of an image



Level II wavelet decomposition of an image
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Wavelet based analysis 

of texture Images



Problem of 

Shape from

3-D Textures



2-D Textures

3-D Textures



Real world 3-D Texture image
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