Wavelet Transform




Wavelet Transform
The wavelet transform corresponds to the
decomposition of a quadratic integrable function s(x) ¢ L%(R)
in a family of scaled and translated functions ¥, ((t),

a®=K )

The function ¥(x) is called wavelet function and shows
band-pass behavior. The wavelet coefficients d, , are derived

as follows: y-|
S (——)dx

d =% T

k1~
vk 2,

where ke R*, | ¢R

and * denotes the complex conjugate function

The discrete wavelet transform (DWT) represents a 1-D
signal s(t) in terms of shifted versions of a lowpass scaling function
¢(t) and shifted and dilated versions of a prototype bandpass wavelet
function y(t).



For special choices of ¢(t) and v (t), the functions:
Vi« (t) = 2_j/2€”(2_jt - k),
¢j,k (t) . ¢(2_jt 0 k)

for j and k € Z, form an orthonormal basis, and we have the
representation:

Z(t) = ZUJOk¢JOk(t)+ ZZkaWJk(t)

1= 1o

where,

Uy = [, @ dt ana @, = [ sOy], (1) dt



Relook at F.T. expressions:

F(u) = T e 2 ldi s TOd = TF(u)ejz’”‘“du

Thus f(x) is represented here as a linear combination of the basis
functions: exp(joX)

Wavelet transform on the other hand, represents f(x) (or f(t)) as a
linear combination of:

—k /2 —k
va(t)=2""w (2 t-I)
where wy(t) Is called the mother wavelet.

Parameters k and | are integers — which generates the basis
functions as the dilated and shifted variations of the mother wavelet.



The parameter k plays the role of frequency and | plays the
role of time. Hence by varying k and |, we have different frequency
and different time or space — hence the term multi-channel multi-
resolution approach.

Compare In discrete case:
The F.T.: 1 N-d j 2 7ux
o= Z F(u)e /N; X= 00 N )
N u=0
The DWT:

f(t)=2, 2 Xowr (K, D27y (27 t-1)]

where, XCWT (k1 I) g % ]EX(t)l//(%)dt




DWT - Discrete Wavelet Transform:

mofyan: X (e el j x(t)h(a ™t - IT)dt
and Inverse:

X(t) = ZZXDWT(k D[a ™" f (a ™ t—IT)]

Take, T =1 and time IS continuous.

Analysis filters: Synthesis filters:
Lt 2o hla f=a""f@"1)

Functions h(t) and f(t) are derived by dilation of a single filter. Thus
the basis functions are dilated (t -> a*t) and shifted (t -> t - la’kt)

versions of: f (t) & WH (t) e a_k/zw(a_kt i |T)

Synthesis filters for perfect reconstruction: fk (t) H hk (_t)



Visualize pseudo-frequency corresponding
to a scale. Assume a center frequency F. of the
wavelet and use the following relationship:

I:C
F, =
a.A

where a iIs the scale. A is the sampling period and

F. is the center frequency of a wavelet in Hz. F
IS the pseudo-frequency corresponding to the
scale a, In Hz.

The highpass and lowpass filters are not
Independent of each other, and they are related by

the following expression:

g[L -1-N]=(-1)"h(n)



OMF bank and typical magnitude responses
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eThe DWT analyzes the signal at different frequency bands
with different resolutions by decomposing the signal into
coarse approximation and detail information.

DWT employs two sets of functions, called scaling functions
and wavelet functions, which are associated with low pass
and highpass filters, respectively.

The decomposition of the signal into different frequency
bands is simply obtained by successive highpass and lowpass
filtering of the time domain signal.

eThe original signal xX[n] is first passed through a half-band
highpass filter g[n] and a lowpass filter h[n].

eAfter the filtering, half of the samples can be eliminated
(according to the Nyquist’s rule) since the signal now has a
highest frequency of f__ /2 radians instead of f___ .

eThe signal can therefore be sub-sampled by 2, simply by
discarding every other sample. This constitutes one level of

decomposition and can mathematically be expressed as

e yylkl= ) x[nl.g[2k —n]
Yiolk1= D> x[n].h[2k —n]



X|n] =0 ~=

Level 1
DWT coefficients

f=n/4 ~ n/2 o f=0 ~ n/d

Level 2
DWT coefficients

f=7/8 ~ /4

Level 3
DWT coefficients ‘W

Block diagram of the methodology of 1-D DWT.



Frequency responses (bandwidths) of the different
output channels of the wavelet filter bank, for a = 2
and three or more levels of decomposition
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Freguency Response
of a 3-channel
orthogonal wavelet

filters.
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X(t)

Two-level maximally decimated filter bank
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Illustrations to demonstrate the
difference between:

FT, STFT and WT



(t) = cos(2710t) + cos(2725t) + cos(27250t) + cos(27100t
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Note that the FT gives what frequency components (spectral
components) exist in the signal. Nothing more, nothing less.

When the time localization of the spectral components are
needed, a transform giving the TIME-FREQUENCY REPRESENTATION of the
signal is needed.

What is Wavelet Transform and how does it solve the problem?

View WT as a plot on a 3-D graph, where time is one axis, frequency the
second and amplitude is the third axis.

This will show us what frequencies, f, exist at which time, T.
There is an issue, called "uncertainty principle”, which states that, we

cannot exactly know what frequency exists at what time instance , but we can
only know what frequency bands exist at what time intervals.




The uncertainty principle, originally found and formulated by
Heisenberg, states that, the momentum and the position of a moving particle
cannot be known simultaneously. This applies to our subject as follows:

The frequency and time information of a signal at some certain point in
the time-frequency plane cannot be known.

In other words: We cannot know what spectral component exists at any
given time instant. The best we can do is to investigate what spectral components
exist at any given interval of time.

This is a problem of resolution, and it is the main reason why
researchers have switched from STFT to WT.

STFT gives a fixed resolution at all times, whereas WT gives a variable (or
suitable) resolution as follows:
Higher frequencies are better resolved in time, and lower frequencies are better
resolved in frequency.

This means that, a certain high frequency component can be located
better in time (with less relative error) than a low frequency component. On the
contrary, a low frequency component can be located better in frequency
compared to high frequency component
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STFT(t, f) = [ [X(t).o(t —t')]exp(— j2ft)dlt
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original signal Flipped signal
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Time and Frequency Resolutions
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Two-dimensional Wavelet Transform

—> LPF —»iz — L

—» LPF —>i2—>

—> HPF —»i > —» LH
Image

— LPF —»iz — HL

e —»iZ —>

LL | HL approxmation vertical detalls
- homzontal detals | diagonal details



Q
O)
®
=
=
©
(VI
@)
&
ke
%)
@)
L)
=
@)
@)
Q
©
o
9
)
>
]
=
m :
>
Q
|




Level 11 wavelet decomposition of an image
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Wavelet based analysis

of texture Images



Problem of
Shape from

3-D Textures
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3-D Textures



Real world 3-D Texture image
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