Motion Detection and Tracking

CS6350: Computer Vision

Indian Institute of Technology, Madras

Visualization and Perception Lab

Presentation Outline

- Introduction to Motion Detection
- Applications of Motion Detection and Tracking
- Background Subtraction (BGS)
- Basic BGS Algorithms
- Mixture of Gaussians (MoG)
- Conclusion

Introduction

• **AIM:** To detect and track objects moving independently to the background

- Two situations encountered are
 - Static Camera (fixed viewpoint)
 - Moving Camera (moving viewpoint) (research topic, out of scope, left for exploration)

Definition of Motion Detection

- Action of sensing physical movement in a given area
- Motion can be detected by measuring change in speed or vector of an object

Applications of Motion Detection and Tracking

- Surveillance/Monitoring Applications
 - Security Cameras
 - Traffic Monitoring
 - People Counting
- Control Applications
 - Object Avoidance
 - Automatic Guidance
 - Head Tracking for Video Conferencing

Many intelligent video analysis systems are based on motion detection and tracking

Detecting moving objects in a static scene

- Moving objects can be detected by applying Background Subtraction Algorithms
- Simplest method (frame differencing):
 - Subtract consecutive frames
 - Ideally this will leave only moving objects
 - Following conditions effect the background subtraction
 - Moving background (e.g. swaying of trees)
 - Temporarily stationary objects
 - Object shadows
 - Illumination variation

Presentation Outline

- Introduction
- Definition of Motion Detection
- Applications of Motion Detection and Tracking
- Background Subtraction (BGS)
- Basic BGS Algorithms
- Mixture of Gaussians (MoG)
- Conclusion

Background Subtraction

- Motivation: Simple difference (frame differencing) of two images shows moving objects
- Uses a reference background image for comparison purposes
- Current image (containing target object) is compared to reference image pixel by pixel
- Places where there are differences are detected and classified as moving objects

Overview of Various BGS Algorithms

BGS Algorithm	Reference Paper	Salient Features
Adaptive Median Filtering (AMF) (Running Average)	<i>N. McFarlane and C. Schofield, "Segmentation and Tracking of Piglets in Images", Machine Vision and Applications, Vol. 8, No. 3. (1 May 1995</i>), pp. 187- 193	 Background pixel is modeled as weighted average where recent frames have higher weight Parametric thus less memory intensive
Running Gaussian Average	"Pfinder: real-time tracking of the human body" by C. Wren et al Automatic Face and Gesture Recognition, 1996., Proceedings of the Second International Conference on , vol., no., pp.51- 56, 14-16 Oct 1996	 Pfinder adopts a Maximum A Posteriori Probability (MAP) approach. It first models the person, then the scene and then does analysis
Mixture of Gaussians (MoG) (Stauffer and Grimson method)	Stauffer, C.; Grimson, W.E.L., "Learning patterns of activity using real-time tracking", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, no.8, pp.747-757, Aug 2000	 Each pixel is a mixture of Gaussians. Gaussians modify and adapt with each new incoming frame

Overview of Various BGS Algorithms (contd..) **BGS** Algorithm Salient Features **Reference** Paper Zivkovic, Z.; "Improved adaptive Gaussian mixture model for Uses Gaussian mixture ٠ background subtraction", Pattern probability density Zivkovic AGMM The Gaussian mixture Recognition, 2004, Proceedings of ٠ (adaptive Gaussian the 17th International Conference parameters and components of mixture models) on ICPR 2004, vol.2, no., pp. 28each pixel is updated online 31 Vol.2, 23-26 Aug. 2004 Oliver, N.M.; Rosario, B.; Pentland, ٠ PCA by way of eigenvector A.P.; "A Bayesian computer vision decomposition is a way to reduce system for modeling human the dimensionality of a space Eigenbackgrounds interactions", IEEE Transactions on PCA can be applied to a ٠ Pattern Analysis and Machine sequence of n frames to compute the eigenbackgrounds Intelligence, vol.22, no.8, pp.831-843, Aug 2000 Faster than MoG approach ٠ Cucchiara, R.; Grana, C.; Piccardi, Pixels of moving objects, ٠ Prati Mediod (mediod M.; Prati, A.; "Detecting moving shadows etc., are processed filtering) objects, ghosts, and shadows in differently Uses Median function video streams," IEEE Transactions ٠ on Pattern Analysis and Machine Intelligence, vol.25, no.10, pp. 1337-1342, Oct. 2003

Presentation Outline

- Introduction
- Definition of Motion Detection
- Applications of Motion Detection and Tracking
- Background Subtraction (BGS)
- Basic BGS Algorithms
- Mixture of Gaussians (MoG)
- Conclusion

Basic BGS Algorithms

- Background as the average or the median (Velastin, 2000; Cucchiara, 2003) of the previous n frames:
 - rather fast, but very memory consuming: the memory requirement is n * size(frame)
- Background as the Approximate Median Filtering (AMF) (running average)

$$B_{i+1} = \alpha * I_i + (1 - \alpha) * B_i$$

- $-\alpha$, the learning rate, is typically 0.05
- no more memory requirements

Basic BGS Algorithms – rationale

- The background model at each pixel location is based on the pixel's recent history
- In many works, such history is:
 - just the previous *n* frames
 - a weighted average where recent frames have higher weight
- In essence, the background model is computed as a chronological average from the pixel's history
- No spatial correlation is used between different (neighbouring) pixel locations

Results -Simple frame differencing

6 21

INPUT Video

Foreground Mask

Results -Approximate Median Filtering

Background Model

> Foreground Mask

Presentation Outline

- Introduction
- Definition of Motion Detection
- Applications of Motion Detection and Tracking
- Background Subtraction (BGS)
- Basic BGS Algorithms
- Mixture of Gaussians (MoG)
- Conclusion

Mixture of Gaussians (MoG)

- Mixture of K Gaussians (μ_i, σ_i, ω_i)(Stauffer and Grimson, 2000)
- In this way, the model copes also with multimodal background distributions; however:
 - the number of modes is arbitrarily pre-defined (usually from 3 to 5)
 - how to initialize the Gaussians?
 - how to update them over time?

Gaussian Mixture Models

- Each pixel modeled with a mixture of Gaussians
- Flexible to handle variations in the background

Mixture of Gaussians (MoG) (contd.)

- All weights ω_i are updated (updated and/or normalized) at every new frame
- At every new frame, some of the Gaussians "match" the current value (those at a distance < 2.5 σ_i): for them, μ_i, σ_i are updated by the running average
- The mixture of Gaussians actually models both the foreground and the background: how to pick only the distributions modeling the background?:
 - all distributions are ranked according to their ω_i/σ_i and the first ones chosen as "background"

GMM Background Subtraction

- Two tasks performed real-time
 - Learning the background model
 - Classifying pixels as background or foreground
- Learning the background model
 - The parameters of Gaussians
 - Mean
 - Variance and
 - Weight
 - Number of Gaussians per pixel
- Enhanced GMM is 20% faster than the original GMM*

* Improved Adaptive Gaussian Mixture Model for Background Subtraction , Zoran Zivkovic, ICPR 2004

Classifying Pixels

- $\vec{x}^{(t)}$ = value of a pixel at time t in RGB color space.
- Bayesian decision R if pixel is background (BG) or foreground (FG):

$$R = \frac{p(BG|\vec{x}^{(t)})}{p(FG|\vec{x}^{(t)})} = \frac{p(\vec{x}^{(t)}|BG)p(BG)}{p(\vec{x}^{(t)}|FG)p(FG)}$$

• Initially set p(FG) = p(BG), therefore if $p(\vec{x}^{(t)}|BG) > c_{thr}$ decide background $p(\vec{x}^{(t)}|FG) = c_{FG}$

 $p(\vec{x}^{(t)}|BG)$ = Background Model $\hat{p}(\vec{x}|\mathcal{X}, BG)$ = Estimated model, based on the training set X

The GMM Model

- Choose a reasonable time period T and at time t we have $\mathcal{X}_T = \{x^{(t)},...,x^{(t-T)}\}$
- For each new sample update the training data set \mathcal{X}_T
- Re-estimate $\hat{p}(\vec{x}|\mathcal{X}_T, BG)$
- Full scene model (BG + FG)

$$\hat{p}(\vec{x}|\mathcal{X}_T, BG + FG) = \sum_{m=1}^M \hat{\pi}_m \mathcal{N}(\vec{x}; \widehat{\vec{\mu}}_m, \widehat{\sigma}_m^2 I)$$

GMM with M Gaussians where

- $\widehat{ec{\mu}}_1,...,\widehat{ec{\mu}}_M$ estimates of the means
- $\widehat{\sigma}_1,...,\widehat{\sigma}_M$ estimates of the variances
- $\hat{\pi}_m$ mixing weights non-negative and add up to one.

The Update Equations

• Given a new data sample $\vec{x}^{(t)}$ update equations

$$\hat{\pi}_m \leftarrow \hat{\pi}_m + \alpha (o_m^{(t)} - \hat{\pi}_m) \\
\hat{\vec{\mu}}_m \leftarrow \hat{\vec{\mu}}_m + o_m^{(t)} (\alpha/\hat{\pi}_m) \vec{\delta}_m \\
\hat{\sigma}_m^2 \leftarrow \hat{\sigma}_m^2 + o_m^{(t)} (\alpha/\hat{\pi}_m) (\vec{\delta}_m^T \vec{\delta}_m - \hat{\sigma}_m^2)$$

where, $\vec{\delta}_m = \vec{x}^{(t)} - \hat{\vec{\mu}}_m$ $O_m^{(t)}$ is set to 1 for the 'close' Gaussian and 0 for others and $\alpha = 1/T$ is used to limit the influence of old data (learning rate).

- An on-line clustering algorithm.
- Discarding the Gaussians with small weights approximate the background model :

$$p(\vec{x}|\mathcal{X}_T, BG) \sim \sum_{m=1}^B \hat{\pi}_m \mathcal{N}(\vec{x}; \widehat{\vec{\mu}}_m, \sigma_m^2 I)$$

• If the Gaussians are sorted to have descending weights $\hat{\pi}_m$

$$B = \arg\min_{b} \left(\sum_{m=1}^{b} \hat{\pi}_m > (1 - c_f) \right)$$

where c_f is a measure of the maximum portion of data that can belong to FG without influencing the BG model

From:- I. Pavlidis, V. Morellas, P. Tsiamyrtzis, and S. Harp, "Urban Surveillance Systems: From the Laboratory to the Commercial World". IEEE Proceedings, 89(10), pp. 1478-1497, Oct., 2001.

Results -Mixture of Gaussians (MoG)

Background Model

Foreground Mask

Conclusion

- Studied various motion detection and tracking algorithms
- Multiple BGS methods are needed for
 - Indoor (relative stable lighting)
 - Outdoor
 - Relative stable
 - High dynamic
 - Crowded environment
 - Camera Jitter/Shaking

Conclusion (contd.)

- Speed
 - Fast
 - Average, Median, Approximate median filtering
 - Intermediate
 - Eigenbackgrounds
 - Slow
 - MoG
- Memory requirements
 - High
 - Average, Median
 - Intermediate
 - MoG, Eigenbackgrounds
 - Low
 - Approximate median filtering

