
Pattern Recognition

Pattern Recognition is a branch of science that concerns the 
description or classification (or identification) of measurements. It is an 
important component of intelligent systems and are used for both data 
processing and decision making.
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Statistical Features

The features used in pattern recognition and segmentation are 
generally geometric or intensity gradient based.

One approach is to work directly with regions of pixels in the 
image, and to describe them by various statistical measures. Such 
measures are usually represented by a single value. These can be
calculated as a simple by-product of the segmentation procedures 
previously described. 

Such statistical descriptions may be divided into two distinct 
classes. Examples of each class are given below:

• Geometric descriptions: area, length, perimeter, elongation, 
average radius, compactness and moment of inertia. 

• Topological descriptions: connectivity and Euler number. 



Elongation
- sometimes called eccentricity. This is the ratio of the maximum 

length of line or chord that spans the region to the minimum length chord. 
We can also define this in terms of moments, as we will see shortly. 

Compactness
- this is the ratio of the square of the perimeter to the area of the 

region

Connectivity -
- the number of neighboring features adjoining the region. 

Euler Number
- for a single region, one minus the number of holes in that region. 

The Euler number for a set of connected regions can be calculated as the 
number of regions minus the number of holes. 



Elongatedness: 
A ratio between the length and width of the region bounding 

rectangle = a/b = Area/sqr(thickness).



Compactness 
Compactness is independent of linear transformations 
= sqr(perimeter)/Area



Moments of Inertia
The ij-th discrete central moment mij, of a region is defined by:

where the sums are taken over all points (x, y) contained within the 
region and (x~, y~) are the center of gravity of the region:

Note that, n, the total number of points contained in the region, is 
a measure of its area.
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We can form seven new moments from the central moments that 
are invariant to changes of position, scale and orientation ( RTS ) of the 
object represented by the region, although these new moments are not
invariant under perspective projection. For moments of order up to seven, 
these are: 



We can also define eccentricity, using moments as 

We can also find principal axes of inertia that define a natural 
coordinate system for a region. It is given by:



Geometric properties in terms of moments:
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Some Terminologies:

• Pattern
• Feature
• Feature vector
• Feature space
• Classification
• Decision Boundary
• Decision Region
• Discriminant function
• Hyperplanes and Hypersurfaces
• Learning
• Supervised and unsupervised
• Error
• Noise
• PDF
• Baye’s Rule
• Parametric and Non-parametric approaches



An Example

• “Sorting incoming Fish on a conveyor 
according to species using optical sensing

Species
Sea bass

Salmon



– Some properties that could be possibly used to 
distinguish between the two types of fishes is

• Length
• Lightness
• Width
• Number and shape of fins
• Position of the mouth, etc…

– This is the set of all suggested features to explore for use 
in our classifier!

Features

Feature is a property of an object 
(quantifiable or non quantifiable) which is used to 
distinguish between or classify two objects.



Feature vector
• A Single feature may not be useful always for 

classification

• A set of features used for classification form a feature 
vector

Fish xT = [x1, x2]

Lightness Width



Feature space
• The samples of input (when represented by their features) are 

represented as points in the feature space

• If a single feature is used, then work on a one- dimensional feature 
space.

Point representing samples

• If number of features is 2, then we get points in 2D 
space as shown in next page.

• We can also have an n-dimensional feature space



F1

F2

Sample points in a two-dimensional feature space

Class 1

Class 2

Class 3



Decision region and Decision Boundary

• Our goal of pattern recognition is to reach an optimal 
decision rule to categorize the incoming data into their 
respective categories

• The decision boundary separates points belonging to one 
class from points of other

• The decision boundary partitions the feature space into 
decision regions.

• The nature of the decision boundary is decided by the 
discriminant function which is used for decision. It is a 
function of the feature vector.



Decision boundary in one-dimensional case with two 
classes.

Decision boundary in two 
dimensional case with three 

classes



Hyper planes and Hyper surfaces

• For two category case, a positive value of discriminant 
function decides class 1 and a negative value decides the 
other.

• If the number of dimensions is three. Then the decision 
boundary will be a plane or a 3-D surface. The decision 
regions become semi-infinite volumes

• If the number of dimensions increases to more than three, 
then the decision boundary becomes a hyper-plane or a 
hyper-surface. The decision regions become semi-infinite 
hyperspaces.



Learning
• The classifier to be designed is built using input samples 

which is a mixture of all the classes.

• The classifier learns how to discriminate between samples 
of different classes. 

• If the Learning is offline i.e. Supervised method then, the 
classifier is first given a set of training samples and the 
optimal decision boundary found, and then the 
classification is done.

• If the learning is online then there is no teacher and  no 
training samples (Unsupervised). The input samples are 
the test samples itself. The classifier learns and classifies at
the same time.



Error

• The accuracy of classification depends on two 
things

– The optimality of decision rule used: The central task is 
to find an optimal decision rules which can generalize to 
unseen samples as well as categorize the training samples 
as correctly as possible. This decision theory leads to a 
minimum error-rate classification.

– The accuracy in measurements of feature vectors: This 
inaccuracy is because of presence of noise. Hence our 
classifier should deal with noisy and missing features too.



Some necessary elements of 

Probability theory and Statistics
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Visualize ρ as equivalent to the orientation of the 2-D Gabor filter.

For x as a discrete random variable, 
the expected value of x: ∑
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P(xi) is the probability of x = xi. 



Second, third,… moments of the distribution p(x) ae the expected values of: 
x2, x3,…
The kth central moment is defined as:
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Thus, the second central moment (also called Variance) of a random variable x is 
defined as:
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S.D. of x is σx.

If z is a new variable: z= ax + by; Then E(z) = E(ax + by)=aE(x) + bE(y).
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Covariance of x and y, is defined as: )])([( yxxy yxE µµσ −−=
Covariance indicates how much x and y vary together. The value 

depends on how much each variable tends to deviate from its mean, and also 
depends on the degree of association between x and y.
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Multi-variate Case:   X = [x1 x2 …… xd]T

Mean vector:
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d-dimensional normal density is:
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where sij is the ijth component of Σ−1 (the inverse of covariance matrix Σ).

Special case, d = 2; where X = (x y)T; Then:
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Can you now obtain this, 
as given earlier: 
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Sample mean is defined as: ∑∑
==

==
n

i
i

n

i
ii x

n
xPx

n
x

11

~ 1)(1 where, 
P(xi) = 1/n.

Sample Variance is: ∑
=

−=
n

i
ix xx

n 1

2
~

2 )(1σ

Higher order moments may also be computed:
4

~
3

~
)(  ;)( xxExxE ii −−

Covariance of a bivariate distribution:

∑
=

−−=−−=
n

i
yxxy yyxx

n
yxE

1

~~
))((1)])([( µµσ



MAXIMUM LIKELIHOOD ESTIMATE

The ML estimate of a parameter is that value which, when substituted into 
the probability distribution (or density), produces that distribution for which the 
probability of obtaining the entire observed set of samples is maximized.

Problem:     Find the maximum likelihood estimate for µ in a normal distribution.
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Taking derivative (w.r.t. µ ) 
of the LOG of the above:
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Parametric Decision making (Statistical) - Supervised

Goal of most classification procedures is to estimate the probabilities 
that a pattern to be classified belongs to various possible classes, based on the 
values of some feature or set of features. 

In most cases, we decide which is the most likely class. We need a 
mathematical decision making algorithm, to obtain classification.

Bayesian decision making or Bayes Theorem

This method refers to choosing the most likely class, given 
the value of the feature/s. Bayes theorem calculates the probability 
of class membership. 

Define:

P(wi) - Prior Prob. for class wi ;   P(X) - Prob. for  feature vector X

P(wi |X) - Measured-conditioned or posteriori probability

P(X | wi) - Prob. Of feature vector X in class wi
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P(X) is the probability distribution for feature X in the entire
population. Also called unconditional density function.

P(wi) is the prior probability that a random sample is a 
member of the class Ci. 

P(X | wi)  is the class conditional probability of obtaining  
feature value X given that the sample is from class wi. It is equal to 
the number of times (occurrences) of X, if it belongs to class wi. 

The goal is to measure:  P(wi |X) –
Measured-conditioned or posteriori probability, 

from the above three values. 

This is the Prob. of any vector X 
being assigned to class wi. 

BAYES RULEP(w) P(w|X)

X, P(X)

P(X|w)



Take an example:

Two class problem:  Cold (C) and not-cold (C’).  Feature is fever (f).

Prior probability of a person having a cold, P(C) = 0.01.

Prob. of having a fever, given that a person has a cold is, 
P(f|C) = 0.4.     Overall prob. of fever P(f) = 0.02.

Then using Bayes Th., the Prob. that a person has a cold, 
given that she (or he) has a fever is:
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let us take an example with values to verify:

Total Population =1000. Thus, people having cold = 10. People having
both fever and cold = 4. Thus, people having only cold = 10 – 4 = 6. 
People having fever (with and without cold)  = 0.02 * 1000 = 20. 
People having fever without cold  = 20 – 4 = 16 (may use this later).

So, probability (percentage) of people having cold along with fever, 
out of all those having fever, is: 4/20 = 0.2 (20%).

IT WORKS, GREAT

Not convinced that it works?



C f

P(C) = 0.01
P(f) = 0.02

P(C and f) = P(C).P(f|C) = 0.004

Probability of a joint event - a sample comes from class C and 
has the feature value X:

P(C and X) = P(C).P(X|C) =   P(X).P(C|X)
=  0.01*0.4      =   0.02*0.2

A Venn diagram,
illustrating the
two class,
one feature problem.



Also verify, for a K class problem:

P(X) = P(w1)P(X|w1) + P(w2)P(X|w2) + ……. + P(wk)P(X|wk) 

Thus:

)|()(....)|()()|()(
)()|()|(

2211 kk

ii
i wXPwPwXPwPwXPwP

wPwXPXwP
+++

=

With our last example:

P(f)  = P(C)P(f|C) + P(C’)P(f|C’) 

= 0.01 *0.4 +  0.99 *0.01616    =   0.02

Decision or Classification algorithm according to Baye’s Theorem:
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Errors in decision making:

Let d = 1, C = 2,
P(C1) = P(C2) =
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Bayes decision rule:

Choose C1 , if P(x|C1) > P(x|C2)

α x 

P(x|C1) P(x|C2)

This gives α, and hence the 
two decision regions.

Classification error (the shaded region):

P(E) = P(Chosen C1, when x belongs to C2) + 
P(Chosen C2, when x belongs to C1) 
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A minimum distance classifier

Rule: Assign X to Ri, where X is closest to µi.



K-means Clustering
• Given a fixed number of k clusters, assign observations to 

those clusters so that the means across clusters for all 
variables are as different from each other as possible.

• Input
– Number of Clusters, k 
– Collection of n, d dimensional vectors xj , j=1, 2, …, n

• Goal: find the k mean vectors µ1, µ2, …, µk
• Output

– k x n binary membership matrix U where
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& Gj, j=1, 2, …, k represent the k clusters



If n is the number of known patterns and k the 
desired number of clusters, the k-means algorithm is:

Begin
initialize n, c, µ1,µ2,…,µc(randomly 
selected)

do
1.classify n samples according

to nearest µi

2.recompute µi

until no change in µi

return µ1, µ2, …, µc

End



Classification Stage
• The samples have to be assigned to clusters in order to 

minimize the cost function which is:
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• This is the Euclidian Distance of the samples from 
its cluster center for all clusters should be 
minimum

• The classification of a point xk is done by:
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Re-computing the Means
• The means are recomputed according to:
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• Disadvantages
• What happens when there is overlap between classes…

that is a point is equally close to two cluster centers……
Algorithm will not terminate

• The Terminating condition is modified to “Change in 
cost function (computed at the end of the Classification) 
is below some threshold rather than 0”.



An Example

• The no of clusters is 
two in this case.

• But still there is 
some overlap



Decision Regions and Boundaries

A classifier partitions a feature space into class-labeled 
decision regions (DRs). 

If  decision regions are used for a possible and unique class 
assignment, the regions must cover Rd and be disjoint (non-
overlapping. In Fuzzy theory, decision regions may be overlapping.

The border of each decision region is a Decision Boundary (DBs).

Typical classification approach is as follows:

Determine the decision region (in Rd) into which X falls, and 
assign X to this class.

This strategy is simple. But determining the DRs is a 
challenge.

It may not be possible to visualize, DRs and DBs, in a general 
classification task with a large number of classes and higher feature 
space (dimension).



Classifiers are based on Discriminant functions. 

In a C-class case,  Discriminant functions are denoted by:
gi(X), i = 1,2,…,C.

This partitions the Rd into C distinct (disjoint) regions, and the 
process of classification is implemented using the Decision Rule:

Assign X to class Cm (or region m), where: .,),()( miiXgXg im ≠∀>
Decision Boundary is defined by the locus of points, where:  

lkXgXg lk ≠= ),()(
Minimum distance classifier:

Discriminant function is based on the distance to the class mean:
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Remember, multivariate Gaussian density?

Define:
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Thus the classification is now influenced by the square 

distance (hyper-dimensional) of X from µi, weighted by the Σ-1. 
Let us examine:

This quadratic term (scalar) is known as the 

Mahalanobis distance (the distance from X to µi in feature space). 
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For a given X, some Gm(X) is largest and also (dm)2 is the 
smallest, for a class i = m. 

Simplest case:  Σ = I, the criteria becomes the Euclidean 
distance norm.

This is equivalent to obtaining the mean µm, for which X is 

the nearest, for all µi. The distance function is then:
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Neglecting the class-invariant term.

This gives the simplest 
linear discriminant function 
or correlation detector.
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The perceptron (ANN) built to form the linear discriminant function
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Generalized results (Gaussian case) of a discriminant function:
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The mahalanobis distance (quadratic term) spawns a number 
of different surfaces, depending on Σ-1. It is basically a vector 
distance using a Σ-1 norm. It is denoted as:

The decision region boundaries are determined by solving :
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This is an expression of a hyperplane separating the decision 
regions in Rd. The hyperplane will pass through the origin, if:
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Make the case of Baye’s rule more general for class assignment. 
Earlier we has assumed that:

 .;,),(  )( assuming   ),|()( jijiCPCPXCPXg jiii ≠∀==

Now, )]log[P()]|(log[ )]().|(log[)( iiii CCXPXPXCPXG +==

)](log[)log(
2
1)()(

2
1

)](log[)log(
2
1)2log()

2
()()(

2
1

)](log[
2

)()(
]

)2)(det(
1log[)(

1

1

1

iii
T

iii
T

i

i
T

d
i

i

CPiµXiµX

CPd
iµXiµX

CPiµXiµX
XG

+∑−−Σ−−=

+∑−−−Σ−−=

+
−Σ−

−
Σ

=

−

−

−

π

π

Neglecting the
constant term

Simpler case:  Σi = σ2I, and eliminating the class-independent bias, 
we have:
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These are loci of constant hyper-spheres, centered at class mean.



If Σ is a diagonal matrix, with equal/unequal σii
2:
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Considering the discriminant function:
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This now will yield a weighted distance classifier. Depending 
on the covariance term (more spread/scatter or not), we tend to put 
more emphasis on some feature vector components than the other.

Check out the following:
This will give hyper-elliptical surfaces in Rd, for each class.

It is also possible to linearise it.
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More general decision boundaries

Take P(Ci) = K for all i, and eliminating the class independent 
terms yield:

)()()( 1

iµXiµXXG T
i −Σ−= −

as Σ is symmetric.
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Thus the decision surfaces are hyperplanes and decision 
boundaries will also be linear (use Gi(X) = Gj(X), as done earlier)



The discriminant function for linearly separable classes is:
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T
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where, ωi is a dx1 vector of weights used for class i.

This function leads to DBs that are hyperplanes. It’s a point in 
1D, line in 2-D, planar surfaces in 3-D, and …….  .

3-D case:
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represents a plane H passing through any point (position vector) Xd. 

This plane partitions the space into two mutually exclusive regions, 
say Rp and Rn. The assignment of the vector X 
to either the +ve side, or 
–ve side or along H, 
can be implemented by:
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ω

Xd

H
+ve side, Rp

-ve side, Rn

Linear Discriminant Function g(X):
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Orientation of H is determined by ω.

Location of H is determined by d.

H is a hyperplane for d > 3. The figure shows a 2D representation.
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Quadratic Decision Boundaries

In Rd with X = (x1, x2, …,xd)T, consider the equation:
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The above equation is defined by a quadric discriminant
function, which yields a quadric surface.

If d=2, X = (x1, x2)T equation (1) becomes:
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Special cases of equation:

Case 1:
w11 = w22 = w12 = 0; Eqn. (2) defines a line.

Case 2:
w11 = w22 = K; w12 = 0; defines a circle.

Case 3:
w11 = w22 = 1; w12 = w1 = w2 = 0; defines a circle whose center is at the origin.

Case 4:
w11 = w22 = 0; defines a bilinear constraint.

Case 5:
w11 = w12 = w2 = 0; defines a parabola with a specific orientation.

Case 6:

defines a simple ellipse.

Selecting suitable values of wi’s, gives other conic sections. 
For d > 3, we define a family of hyper-surfaces in Rd.
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In the above equation, the number of parameters:

2d + 1 + d(d-1)/2 = (d+1)(d+2)/2.
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Organize these parameters, and manipulate the equation to obtain:
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ω(d2-d) non-diagonal terms of the matrix W, 

is obtained by duplicating (split into two parts):
d(d-1)/2   wijs.

In equation 3, the symmetric part of matrix W, contributes to 
the Quadratic terms. Equation 3 generally defines a 
hyperhyperboloidal surface. If W = I, we get a hyperplane.



Example of linearization:
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To Linearize, let x3 = x1
2. Then:
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LMS learning Law in BPNN or FFNN modelsx1

x2

xd

w1

w2

wd wi0

O(X)

Read about perceptron
vs. multi-layer feedforward network
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In case of FFNN, the objective is to minimize the error term:
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MSE error surface:
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Some of the latest advancements in Pattern recognition technology deal with:

• Neuro-fuzzy (soft computing) concepts

• Reinforcement learning

• Learning from small data sets

• Generalization capabilities

• Evolutionary Computations

• Genetic algorithms

• Pervasive computing

• Neural dynamics

• Support Vector machines


