SCALE-SPACE -

Theory and Applications




Scale is embedded in the task: do you want only coins or TREASURE?




SCALE-SPACE — Theory and Applications

Scale-space theory is a framework of multiscale
Image/signal representation;

- Need to handle multi-scale nature of real-world objects

- Representation of multiple scales simultaneously

- Design of flexible image operators, for tasks such as,
feature detection, feature classification, stereo matching,

motion descriptors, shape cues and representing
Image/video content.

- How make modules of visual processing scale invariant ?

- Motivation comes from the resemblance of close receptive
field profiles of the human visual system.




Scale Space in Human Vision

e The human visual system is a
multi-scale sampling device

e The retina contains receptive
fields; groups of receptors
assembled in such a way that
they form a set of apertures of
widely varying size.




SCALE-SPACE — Theory and Applications

- Most problems in CV & IP, are faced with the question:

- What operators to use ?
- Where to apply them ?
- How large (scale or range of scales) should they be ?

- How to relate (interpret) to the actual structure In the
scene”?

INn the absence of prior information — use empirical
methods; represent data at multiple scales.

Scale-space method attempts to represent data at all
scales simultaneously.




SCALE-SPACE — Theory and Applications

- Earliest stage of visual processing [Hubel and Wiesel]
suggests that, the response of cells In primary visual cortex
have multi-channel, multi-resolution property, orientation
selectivity and response to primitive geometrical shapes
structures.

- Scale-space theory specifies that convolution by the
Gaussian kernel and its derivatives provide a canonical class
of image operators with unique properties.

- In presence of noise and other artifacts, computing image
derivatives is an ill-posed problem.

- Gaussian derivatives provide a convenient way of defining
derivatives in scale-space in a welii-posed manner

- Thus convolve the image with Gaussian derivative kernels.




Practical Implementation

e Convolve the image with a Gaussian Kernel

X*+y°




Image at increasing scales, obtained by Gaussian Convolution

L(-58) = g(-r58) % £ ),

The scale-space family can be defined as the

solution of the diffusion equation (for 1
example, in terms of the heat equation): ﬂfL — —‘FEL
with initial condition, L(X, y; 0) = f(X, y). ’




Why multi-scale? Why should you blur?

 Computational efficiency

e Coarse-to-fine

e Extracting hierarchical structure

e First principles of physics of observations

* Visual system is multi-scale




Image Pyramids

m Gaussian and Laplacian




Image sub-sampling

Throw away every other row and
column to create a 1/2 size image
- called image sub-sampling




Image sub-sampling
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Why does this look so bad?




Allasing

Occurs when you shrink an image by
taking every nth (n>1) pixel.

If we do, characteristic errors appear

e Typically, small phenomena look bigger; fast
phenomena can look slower

e Common phenomenon
— Wagon wheels rolling the wrong way in movies
— Checkerboards misrepresented in ray tracing
— Striped shirts look funny on colour television
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Resample the
checkerboard by taking
one sample at each circle.
In the case of the top left
board, new representation
IS reasonable.

Top right also yields a
reasonable representation.
Bottom left is all black
(dubious) and bottom
right has checks that are
too big.
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Constructing a pyramid by
taking every second pixel
leads to layers that badly
misrepresent the top layer
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What does blurring take away?

Original




What does blurring take away?

smoothed (5x5 Gaussian)




High-Pass filter

smoothed MINUS original




Gaussian pre-filtering

Solution: filter the image, then subsample
* Filter size should double for each %2 size reduction. Why?




Subsampling with Gaussian pre-filtering

3 1/

1T

Solution: filter the image, then subsample

Filter size should double for each %2 size reduction. Why?
« How can we speed this up?

(




Compare with...
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The Gaussian Pyramid
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Gaussian pyramid construction

—0
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«— filter mask
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Repeat
. Filter [ 0.05, 0.25, 0.4, 0.25, 0.05]

e Subsample

Until minimum resolution reached
« can specify desired number of levels (e.g., 3-level pyramid)

The whole pyramid is only 4/3 the size of the original image!




GAUSSIAN PYRAMID
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GAUSSIAN PYRAMID




Image Pyramids

ldea: Represent NxN image as a "pyramid” of
1x1, 2x2, 4x4,..., 2"x2X images (assuming N=2)

level ki= 1 p.i.v.-:IQ\
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Known as a Gaussian Pyramid




DECIMATION AND INTERPOLATION

y(n) =x(n)*h(n) = > h(k)x(n-k):
K
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Band-pass filtering

Gaussian Pyramid (low-pass images)




Laplacian Pyramid

Original
Image

How can we reconstruct (collapse) this
pyramid into the original image®?




The Gaussian Pyramid

Low resolution 2 G =(G;*gaussian)
A — * : Own-sam
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The Laplacian Pyramid

L =G; —expand(G;,,)
Gaussian Pyramid Gi — |_i + expand(Gm) Laplacian Pyramid




Laplacian Pyramid

Gaussian Pyramid
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e Laplacian Pyramid decomposition

e Created from Gaussian pyramid by subtraction




Laplacian Pyramid

Gaussian Pyramid

L! =gj‘_E}{PAND '[;gj+1}

—E—&i+11

e Laplacian Pyramid decomposition

e Created from Gaussian pyramid by subtraction




Laplacian
Pyramid

(note top 1mage
1s from Gaussian)




Pyramid Creation

Q : Q@
[ e o 2 e o |
«— fllter mask
Q@ (@) lT (@) (0]

“*Gaussian” Pyramid
“Laplacian” Pyramid

— Created from Gaussian

nyvrarmiA lahw cirithdFrac+iAan
Pyramia oy sudtraction

L, = G,—expand(G,,,)




a
b

FIGURE 7.3 'Two
image pyramids
and their
statistics: (a) a
Gaussian
(approximation)
pyvramid and (b) a
Laplacian
(prediction
residual ) pyramid.
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Space Required for Pyramids
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lmage pyramids

At each level we have an approximation
Image and a residual image.

The original image (which is at the base of
pyramid) and its P approximation form the
approximation pyramid.

The residual outputs form the residual
pyramid.

Approximation and residual pyramids are
computed in an iterative fashion.

A (P+1) level pyramid is build by executing
the operations in the block diagram P times.
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Image pyramids

During the first iteration, the original 27x2’
Image Is applied as the input image.

This produces the level J-1 approximate
and level J prediction residual results

For iterations | =J-1, J-2, ..., J-p+
N
P

prn\nnuc Iteration’s level | 1 a

output Is used as the input.




Image pyramids

Each iteration is composed of three
seguential steps:

. Compute a reduced resolution
approximation of the input image. This is
done by filtering the input and
downsampling (subsampling) the filtered
result by a factor of 2.

— Filter: neighborhood averaging, Gaussian
filtering

— The quality of the generated
approximation is a function of the filter

selected




Image pyramids

2. Upsample output of the previous step by a
factor of 2 and filter the result. This creates

a prediction image with the same resolution
as the input.

— By Interpolating intensities between the
pixels of step 1, the interpolation filter
determines how accurately the prediction
approximates the input to step 1.

3. Compute the difference between the
prediction of step 2 and the input to step 1.
This difference can be later used to
reconstruct progressively the original
Image




Image resampling

So what to do If we don’t know f
« Answer: guess an approximatiof
« Can be donein aprincipled way: filtering

A

Flz]

1 d = 1in this

example

N

1 2 25 3 4 5> L

Image reconstruction

e Convert F to a continuous function
fr(x) = F(3) when 7 is an integer, 0 otherwise

 Reconstruct by cross-correlation:

J=hQ® [F




Resampling filters

What does the 2D version of this hat function

look like?
m) h(e. y) %\

performs (tent function) performs
linear interpolation bilinear interpolation

Better filters give better resampled images
e Bicubic is common choice

Why not use a Gaussian?




Bilinear interpolation

Sampling at f(x,y):

(3,7 + 1) (G+1,7+1)
j (z,y)
a Ib
(4,7) (i+1,7)
flz,y) = (1 —=a)(1=0) f[i,J]
+a(l—-06) fli+1,7]
+ab fli+1,7+1]




Decimation

1 4 6 4 1
4 16 24 16 4
* 6 24 36 24 6
4 16 24 16 4
1 4 6 4 1
Filter
Subsample

=




ExXpansion

Interpolation
Original




Interpolation Results

Original
Image

Nearest Bilinear
Neighbor Interpolation




Pyramids at Same Resolution

o ]
" Level 0

" Level 1




The Gaussian Pyramid

Smooth with Gaussians because
— a Gaussian*Gaussian=another Gaussian

Synthesis

— smooth and downsample
Gaussians are low pass filters, so repetition is redundant
Kernel width doubles with each level

.
|

A SN Y

Level 1

Level 2 Level 3




Smoothing as low-pass filtering

 High frequenciesleadto + Common solution: use a

trouble with sampling. Gaussian
e Suppress high — multiplying FT by
frequenCIeS before Gausslian IS eqL"VaIent {o
TR convolving image with
sampling ! _ _ Gaussian.
— truncate high frequencies
InFT

— or convolve with a low-
pass filter




Gaussian Pyramid
Frequency Composition




Laplacian Pyramid
Frequency Composition

A

Level 2

The Laplacian Pyramid is Level 3
a band pass representation
vice a low pass representation

for the Gaussian




SCALE-SPACE AND diffusion - Theory

The inner scale is the smallest detail seen by the smallest
aperture (e.g. the CCD element, a cone or rod);

The outer scale is the coarsest detail that can be discriminated,
I.e. it is the whole image (field of view).

Convolution with a Gaussian necessarily increases the inner
scale: the Gaussian is the operator that transforms the inner scale of
the image.

The cascade property states that it is the same if one reaches a
final certain scale in a single step from the input image by a given
Gaussian aperture, or apply a sequence of Gaussian kernels, to reach
the same scale.

The stack of images as a function of increasing inner scale is
coined a linear ’scale-space’.

The generating equation of a linear scale-space is the linear
diffusion equation.

The scale-space family can be defined
as the solution of the diffusion equation
(for example, in terms of the heat equation): d [ = _vEL
) L. . ) . £ 1
with initial condition, L(X, y; 0) = f(X, V). )




Linear diffusion equation: Z_L _ %’ﬁ_ =L, + |_yy
S

Derivative to scale equals the divergence of the gradient of
the luminance function, which is the Laplacian, the sum of the
second partial derivatives. Soln,. Given as:

L(!!ﬂ — g(!!ﬂ * f(' ').1

The Gaussian is the Green’s function of the diffusion equation.

When the diffusion is equal for all directions, i.e. the sigma’s
of the Gaussian are equal, we call the process isotropic.

When the diffusion is equal for every point of the image, we
call the process homogeneous.

Because of the diffusion equation, the process of generating a
multiscale representation is also known as image evolution.




Scale

Scale Space




Diffusion in two dimensions.




The retina measures on many
resolutions simultaneously

scale-space




Gaussian Derivatives:

It is well known that derivative operations performed on a
discrete grid are an ill-posed problem, meaning derivatives are
overly sensitive to noise.

To convert derivative operations into a well-posed problem,
the image is low-pass filtered or smoothed prior to computing the
derivative

Another useful result in linear scale-space theory is that:

the spatial derivatives of the Gaussian are solutions of the
diffusion equation too, and together with the zeroth order
Gaussian they form a complete family of differential operators.

From scale-space solution: LI:'_, '_; f} — g{'! '; f} ¥ f('! ')!

We, obtain scale-space derivatives, as:

anyﬁ (1) = axayﬂ L(.,.;t) = [axayﬂ{g("-;t)}]* f(..)




Gaussian Derivatives:

—>o"—

—(L*G) L*('?G 0"G 1 0G
X ox" OX

From scale-space solution: L(. ‘ f) = g(. . f) # f':- )-

We, obtain scale-space derivatives, as:

Lyeys (i) =0y s L) = [0, s {0 (i OH* F(0)

The smoothing to regularize the image is implemented as a
convolution over the image and therefore this filtering operation is
linear.

Since differentiation is also a linear operation, the order of

smoothing and differentiation can be switched, which means the
derivative of the convolution kernel can be r‘nmnufpd and convolved

- W= s B - -

with the image resulting in a well-posed measure of the image
derivative.




Gaussian — Image filter
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Laplacian — Difference of Gaussians

DOG = Difference Of Gaussians

Typically, O, = 1.6*0;




Difference of Gaussians (DoG)

Laplacian of Gaussian can be approximated by the
difference between two different Gaussians

Figure 2—16. The best engineering approximation to V?G (shown by the contin-
uous line), obtained by using the difference of two Gaussians (DOG), occurs when
the ratio of the inhibitory to excitatory space constraints is about 1:1.6. The DOG
is shown here dotted. The two profiles are very similar. (Reprinted by permission

from D. Marr and E. Hildreth, “Theory of edge detection, “ Proc. R. Soc. Lond. B
204, pp. 301-328.)




Gaussian Pyramid

e Synthesis: Smooth image with a Gaussian
and downsample. Repeat.

e Analysis: Take top image or search over
scale

— Face detection
e Gaussian iIs used because It Is reproducing

 Redundant (over-complete)
representation, in comparison to wavelet
decomposition.
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cost typically domlnated by lowest two
levels.




The Laplacian Pyramid

e Synthesis

— preserve difference between upsampled
Gaussian pyramid level and Gaussian pyramid
evel

— band pass filter - each level represents spatial
frequencies (largely) unrepresented at other

evels
Analysis
—reconstruct Gaussian pyramid, take top layer




What are they good for?

Improve Search

e Search over translations
— Like homework
— Classic coarse-to-fine strategy

« Search over scale
— Template matching
— E.g. find a face at different scales

Precomputation

 Need to access image at different blur levels

o Useful for texture mapping at different resolutions
(called mip-mapping)

Image Processing

« Editing frequency bands separately
« E.g.image blending...




Applications of scaled representations

Search for correspondence
 |look at coarse scales, then refine with finer scales

Edge tracking

e a“good” edge at afine scale has parents at a coarser
scale

Control of detail and computational cost in

matching
* e.g.finding stripes
 Important in texture representation

 Image Blending and Mosaicing

 Data compression (laplacian pyramid)




Edge Detection using Pyramids

Coarse-to-fine strategy:
Do edge detection at higher level.

» Consider edges of finer scales
only near the edges of higher scales.

,,,,,,,,,,,,,,,,,,,




Fast Template Matching

Template Search Region

-

I

il

« For an m x n image...

« Forapxqtemplate...

« The complexity of the 2D pattern recognition task is
O(mnpq) ®

« This gets even worse for a family of templates (e.g.,
to address scale and/or rotational effects)




Fast Template Matching

Template Search Region
: Original Image
,.«.
'
3

==




Multi-resolution correlation

Multi-resolution template matching

= reduce resolution of both template and image by creating an
image pyramid

« match small template against small image

« identify locations of strong matches

= expand the image and template, and match higher
resolution template selectively to higher resolution image

= iterate on higher and higher resolution images
Issue:
= how to choose detection thresholds at each level
= too low will lead to too much cost
« too high will miss match




Level 3 Search

« At the lowest pyramid level, we search the entire
image with the correlation template




Level 2 Search

Subsequent searches are constrained to a
neighborhood of only several pixels in the x and y

directions
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Level 1 Search

Subsequent searches are constrained to a
neighborhood of only several pixels in the x and y
directions
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Level O Search

In the end, the total time (in Matlab) was reduced
from = 31 seconds to = 0.5 seconds while obtaining
the same template match

a0
100

150

200

400
250

a0 100 150 200 240 3 350




We can Calculate Derivatives and Combinations
of them at all Scales

Original Image

Laplacian




The visual system measures changes in place and time: derivatives

1st order

2nd order

3 order

(—Laxy L3 + Ly (ZL%y — Lx (Lx — 2 L) + Lk Lyy) +

(L% +L2)P
Li [ELEF - Ly LM+LHLW)+LE Lf, (ELE,,, —ELE,, + Ly (Lo +Lsgy) — 4 Lix Lw+3|-]2y s
Lx La (6 Ly (Lygw — Lywy) + Ly (Lo — L)) + L:3-= Ly (8 Loy (—Law + Lyy) + Ly (2 Ly — Lyyy]))




Loy (i) = 0y [LC O * £ =100, {9 (o O > F(0)

Lx, Ly First Gradient

Lxx, Lxy, Lyy Second Zero Crossing;
Uniform Blobs;

Ridges, Valleys.

Lxxx, ,,, Third Corners,
Ridges etc.
2nd ZCs
2
ViL=L,+L,
Det_HL (DOH) — L L -2 Saddles,
XX —yy Xy .
Using extremas
N 2 5 B Corner, using
K ( L) =L Lyy T Ly L —2L, Ly LXy Rescaled level
curvature
Harris Det(u) — K.trace?(p) CORNER, using

2"-moment
structure tensor




Oriented pyramids

e Laplacian pyramid Is orientation
Independent

o Apply an oriented filter to determine
orientations at each layer

— by clever filter design, we can simplify
synthesis

— this represents image information at a
particular scale and orientation




Oriented pyramids

First component of
layer 1

1-'

Layer |
Layer 2

Layer 3

Laplacian Pyramid Oriented Pyramid




Filter Kernels

Coarsest scaleu

[
o

Image

Finest scale

Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE




P
L. ]
ao.aa. 1 LT
& ARLE Y of
. wh £
) ald P¥ a,
G LT E Id L ‘
o * [y
o.a..b e
&
&8 W, o=l
a¥ 4 | “
AR 4
& ¢ ¥ »
o g &
o %, L1 " &
v & & P et
T " - i
v
'y = F
- L]
B
= a aw 5
- % e
[ 3 o—n s
PSS L e
o & B
. 4 « -
- at . - ="
wp e B R
o 7
& ] - o
L _— M» (3 o
S
& o %, g
& b -, e, 8
1
4 B N F
e 5% ety
&b
ot WY e
o ¥ e
5 B L
T 3
'S Ben
i & Vo,
IR L Nt
] & v ]
s - & N
w if % LT
& ¢ 1% *
g F '
& [ o Iy e
o 14 L
g

e toppoints




Point cloud matching
(earth mover distance)

Image guided
database retrieval
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