
Fourier Theory

and

Filt i  i  Filtering in 
spectral and spatial domainsspectral and spatial domains



Image processing methods may be broadly divided into two categories:

Real space methodsReal space methods
-- which work by directly processing the input pixel array.

Fourier space methodsFourier space methods
-- which work by firstly deriving a new representation of the input 

data by performing a Fourier transform, which is then processed, and y p g , p ,
finally, an inverse Fourier transform is performed on the resulting data to 
give the final output image.

What do frequencies mean in an image?

If an image has large values at high frequency components then 
the data is changing rapidly on a short distance scale. (e.g., a page of 

)text). 

If the image has large low frequency components then the large-
scale features of the picture are more important (e.g. a single fairly simple 
object which occupies most of the image). 



Fourier Theory

The tool, which converts a spatial (real space) description of an 
image into one in terms of its frequency components, is called the 
Fourier transform The new version is usually referred to as the FourierFourier transform. The new version is usually referred to as the Fourier 
space description of the image.

Th di i t f ti hi h t F iThe corresponding inverse transformation which turns a Fourier 
space description back into a real space one is called the inverse 
Fourier transform.

1D Case:

Considering a continuous function f(x) of a single variable xg ( ) g
representing distance.  The Fourier transform of that function is 
denoted F(u), where u represents spatial frequency is defined by:
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Note: In general F(u) will be a complex quantity even though the 
original data is purely real. 



The meaning of this is that, not only is the magnitude of each frequency 
present important, but that its phase relationship is too. 

The inverse Fourier transform for regenerating f(x) from F(u) is given by:
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which is rather similar, except that the exponential term has the opposite 
sign. 

Let's see how we compute a Fourier Transform: consider aLet s see how we compute a Fourier Transform: consider a 
particular function f(x) defined as :
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In this case F(u) is purely real, which is a consequence of the 
original data being symmetric in x and -x. This function is often 

f d t th Si f tireferred to as the Sinc function



A
f(x)

xuj dxexfuF 


  )()( 2 A

X

dxexfuF


  )()(

xX0
uxj dxAe  

0

2

Xuxje
uj

A 




 |][
2 0

2

|)sin(|)( uXAXuF 


uXje
uj

A
j







 )1(

2
2

||)(
uX

AXuF


uXjeuXA
uj





 )sin(

2 |F(u)|AX

euX
u




)sin(

u
0 1/X-1/X 2/X-2/X



)()()( ujIuRuF  22

;)(
)()()(

)(ujeuF
ujIuRuF





])(t [)(

;)()()( 22

uI
uIuRuF 

;)( euF ])(
)(arctan[)( uR

uIu 

|F(u)| is called the magnitude spectrum and |F(u)| is called the magnitude spectrum and 
(u) is called the phase angle (phase spectrum).
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is called Power spectrum or spectral density.
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Same hold
for display purpose only. for 2-D



Partial list of spectral density estimation 
techniques:

• Periodogram, a classic non-parametric technique 
• Autoregressive moving average estimation, based on g g g ,
fitting to an ARMA model 
• Least-squares spectral analysis, based on least-squares 
fitting to known frequencies.

Read about Periodogram, obtained using various windows:
Triangular, Cosine, Hann, etc.

fitting to known frequencies.

Blackman

Hamming

Blackman
/Kaiser/
GaussianGaussian



2D Case - continuous

If f(x,y) is a function, for example the brightness in an image, its 
Fourier transform is given by:
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and the inverse transform is:
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Discrete Case - 1-D

Images are digitized - discrete sequence of numbers Thus weImages are digitized discrete sequence of numbers. Thus, we 
need a discrete formulation of the Fourier transform, which takes such 
regularly spaced data values, and returns the value of the Fourier 
transform for a set of values in frequency space which are equallytransform for a set of values in frequency space which are equally 
spaced. 

Replacing the integral by a summation, does this quite naturally, 
i th di t F i t f DFT f h tgives the discrete Fourier transform or DFT for short.

In 1-D it is convenient now to assume that x goes up in steps of 1, 
and that there are N samples, at values of x from 0 to N-1. So the DFT 
takes the form:
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NOTE: Minor changes from the continuous case are a factor of 1/N in the 
exponential terms and also the factor 1/N in front of the forwardexponential terms, and also the factor 1/N in front of the forward 
transform which does not appear in the inverse transform.

The 2D DFT works in a similar way So for an NxM grid in x andThe 2D DFT works in a similar way. So for an NxM grid in x and 
y we have:
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Often N=M, and it is then it is more convenient to redefine F(u,v) 
by multiplying it by a factor of N, so that the forward and inverse 
transforms are more symmetrical: 
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Some useful properties of Fourier Transform:
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Periodicity and Conjugate Symmetry
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If f(x, y) is real, the F.T. exhibits conjugate If f(x, y) is real, the F.T. exhibits conjugate 
symmetry:
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ROTATION

Consider Polar coordinate form:
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Digital images
and their
2-D DFT’s



1 1N M

2-D DFT using 1-D DFT
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2-D DFT using FFT

Row 
Transform

y v v

f(x, y) F(x, v) F(u, v)
Transform

Mutliply 
by N

Column 
Transformby N Transform

xx x u

A   i i d l i h  f  1 D DFTAssume an optimized algorithm for 1-D DFT,
termed FFT, available for use.



FILTERING

LOW PASS FILTERLOW PASS FILTER

A 2-D ideal lowpass filter (LPF) is one whose transfer 
function satisfies the relationfunction satisfies the relation

1 if D (u, v)  Do
H (u, v)   =

0 if D ( ) D0 if D (u, v)   Do

where, Do is a specified non-negative quantity, and D(u, v) is the 
distance from point (u,v) to the origin of the frequency plane, that is,

D(u, v) = (u2 + v2) ½ ( , ) ( )

Low frequency components are responsible for the slowly 
varying characteristics of an image, such as overall contrast andvarying characteristics of an image, such as overall contrast and 
average intensity.

It blurs the image since it de enhances edges and otherIt blurs the image, since it de-enhances edges and other 
sharp details in an image which contribute to the high frequency 
components.



H(u,v)

u v

Input Image(Lena) Low Pass Filtered Image



HIGH PASS FILTER

A 2-D ideal highpass filter (HPF) is one whose transfer 
function satisfies the relation

0              if  D(u, v)  Do
H(u, v) =

1 if D(u, v)  Do1              if D(u, v)  Do

Where Do is the cutoff distance measured from the origin of the 
frequency plane and D(u v) is given byfrequency plane and D(u, v) is given by

D(u, v) = (u2 + v2) ½ 

High-frequency components characterize edges and other 
sharp details. 

Highpass filtering causes a loss in the low frequency 
components in the image, the smaller gray level variations in the image 
are removed in the output. The output image will have sharpened edges 
and other sharp details.



H(u,v)
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Input Image(Lena) High Pass Filtered Image
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Input Image(Lena) Band-Pass Filtered Image



Comparison of the effects of filtering

Low Pass Band Pass High Pass



Low Pass Butterworth Filter

Another filter sometimes used is the Butterworth lowpass filter (BLPF)Another filter sometimes used is the Butterworth lowpass filter (BLPF). 
In this case, H(u,v) takes the form:

nvuH
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where, n is called the order of the filter. This keeps some of the high 
f i f ti ill t t d b th d dfrequency information, as illustrated by the second order one-
dimensional Butterworth filter shown in the figure below:

This is one way of reducing the blurring effect of an ILPF.



Wiener Filter: Adaptive Inverse Filter
Purpose: To Remove noise and/or bluriness in the imagePurpose: To Remove noise and/or bluriness in the image.

Estimate the local mean and variance in the neighborhood g
around each pixel
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Typical response
For Wiener filter
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For Wiener filter





Convolution

Several important optical effects can be described in 
terms of convolutions. Let us examine the concepts using 
1D continuous functions. 

The convolution of two functions f(x) and g(x), 
written f(x)*g(x), is defined by the integralwritten f(x) g(x), is defined by the integral 
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


  dxgfxgxf )()()(*)(



For example, let us take two top hat functions. Let 
f(x) and g(x) be two top hat functions defined as:f(x) and g(x) be two top hat functions defined as:
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Steps:

 Form g(-),
 Form g (x - ) by shifting/sliding,
 For any given x, get the product of f(). g(x-), by  

finding the overlap of these two functions,
 Keep repeating the above step for all values of x Keep repeating the above step for all values of x

Example below illustrates theExample below illustrates the 
situation, when x = -1:



Thus the convolution of f(x) and g(x), f(x)*g(x), in this case 
has the form :

Mathematically the output
of this convolution 
can be expressed by: p y
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Convolution in 2-D
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If we take two functions f and g, as 2-D equivalent of 
1-D top-hat functions, (call them as roof-top functions):

Then the 2D convolution of the functions will result in:
R lt di l d

I

Surface Plot
Results displayed as:

Image



This computation is very time consuming and expensive 
for large size images. 

If the image resolution is 32*32 or less than 64*64, it is 
recommended to use the above code (i e convolve in the spatialrecommended to use the above code (i.e. convolve in the spatial 
domain). 

Generally most digital images are larger in size. Then for 
computational efficiency use the convolution theorem:



CONVOLUTION THEOREM

In 1-D :
f(x) * g(x)  F(u) . G(u)

and
f(x) . g(x)  F(u) * G(u)

in 2-D :

f(x y) * g(x y)  F(u v) G (u v)f(x, y)  g(x, y)  F(u, v) . G (u, v)
and

f(x, y) .  g(x, y)  F(u, v) * G (u, v)

FFT algorithm exists which computes the Fourier transform of a 
digitized signal efficiently. Hence it is recommended to first transform 
the signals to the frequency domain, multiply and then compute the 
inverse transform to obtain the convolution.  Since FFT is 
computationally efficient, this method works faster for large 
images/signals.



Periodicity of Convolutiony

• Consider two sequences
Discrete 1-D case

q
 
 

)1(),...2(),1(),0()(  Affffxf
 )1(),...2(),1(),0()(  Bggggxg

What is the 
period of the 
resulting resulting 
convolution ?



Periodicity of Convolutiony
Discrete 1-D case

• Consider two sequences
 )1(),...2(),1(),0()(  Affffxf  
 )1(),...2(),1(),0()(

)(),...(),(),0()(
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
Bggggxg
ffffxf

• Assume f(x) and g(x) are periodic with period M

What is the period of the resulting convolution ?

• Assume f(x) and g(x) are periodic with period M

1 BAM 1 BAM
• Else wrap around error occurs, as individual 

periods of the convolution will overlap



• Hence we obtain the extended functions by 
ddipadding zeros
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• e(x) is a discrete, periodic array of length M 



2-D convolution 
• Corresponding to the 1-D continuous 

convolution formulaconvolution  formula
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• Correspondence between the convolution of 
two functions and their Fourier transform
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2-D Discrete Convolution
• f(x,y) is of size A x B 1 CAM
• g(x,y) is of size C x D 
• c (x y) is of size M x N
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• ce(x,y) is of size M x N
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• The 2-D convolution formula
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• Perform 2D DFT of the f (x y) and g (x y)• Perform 2D-DFT of the fe(x,y) and ge(x,y) 
• Multiply the two 
• Take the 2D-IDFT
• We obtain the same convolution function• We obtain the same convolution function



CorrelationCorrelation
• The 1-D correlation formula is given by
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• The Discrete case 1 D correlation formula is• The Discrete case 1-D correlation formula is 
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2-D Discrete Correlation
• The 2-D correlation formula is given by
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• If  f = g then we get an Autocorrelation function
• Relationship between correlation of two 

functions and their Fourier Transform is givenfunctions and their Fourier Transform is given 
by
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• Application of correlation
T l t P t t t hi• Template or Prototype matching

• Energy Computation (Parseval’s Theorem)gy p ( )



Equation for filtering: Use convolution theorem

Input Image to be filtered: f(x y)Input Image to be filtered: f(x,y)
Output filtered Image: g(x,y)

Obtain g(x y) using: G(u v) = H(u v) F(u v)Obtain g(x,y) using: G(u,v) = H(u,v).F(u,v), 

where, H(u,v) is the filter transfer function, F(u,v) is the DFT of the image, 
d G( ) i th DFT f th t t filt d i Obt i ( ) band G(u,v) is the DFT of the output filtered image. Obtain g(x,y), by 

IDFT of G(u,v).

For bandpass filtering, the transfer function is:

1 if D1  D(u, v)  D2( , ) 2
H(u, v) =

0 otherwise

For bandstop filtering, the transfer function is:

0 if D1  D(u, v)  D2( , ) 2
H(u, v) =

1 otherwise



Discrete Sampling as convolution

Assume f(x,y) to be continuous and the function has the property:Assume f(x,y) to be continuous and the function has the property:
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Then the discretized signal fd(x y) is:
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Then the discretized signal fd(x,y) is:
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Multiply the signal by a set of  functions, one at each 
sample point. 

This is called a Comb function in 1D and Bed of nails in 2D. 



Sampling and Aliasing:
Magnitude

Signal (f(x))
F.T.

Spectrum
(F(u))

F.T.
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Sampling Filtering
F T
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 
The Fourier transform of a sampled signal:
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Sampling and Aliasing Magnitude
Spectrum
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F.T.
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Shannon's version of the theorem states:
If a function x(t) contains no frequencies higher 
h h i i l l d i d b i ithan B hertz, it is completely determined by giving 

its ordinates at a series of points spaced 1/(2B) 
seconds apart

Thus, the sampling theorem
of Shannon-Nyquist:

seconds apart.

of Shannon Nyquist:

BX 2/1



Shannon's interpolation formula and 
Whittaker's interpolation formula, states that:

d i li i i di i f i ( )under certain limiting conditions, a function x(t) 
can be recovered exactly from its samples; 

x[n] = x(nT), by the Whittaker–Shannon interpolation 
formula:

Interpolation as convolution sum:Interpolation as convolution sum:
The interpolation formula is derived in the Nyquist–Shannon 
sampling theorem article, which points out that it can also be 

l ti  f  i fi it  i l  expressed as the convolution of an infinite impulse 
train with a sinc function:

This is equivalent to filtering the impulse train 
with an ideal (brick-wall) low-pass filter.



The sufficient condition for exact reconstructability 
from samples at a uniform sampling rate fs (in 

l i i ) isamples per unit time) is:

The quantity 2B is called the Nyquist rate and is a The quantity 2B is called the Nyquist rate and is a 
property of the bandlimited signal, while fs/2 is 
called the Nyquist frequency and is a property of the yq q y p p y
sampling system.

Th  ti  i t l b t  The time interval between 
successive samples is referred 
to as the sampling interval:to as the sampling interval:



Thus, the sampling theorem
of Shannon-Nyquist:

WX 2/1
Magnitude
SpectrumS*F

WX 2/1

W X/1W-W X/1W



Also read about:
Thus  the sampling theorem

• Walsh Transform
Thus, the sampling theorem
of Shannon:

• Hadamard TransformWx 2/1
• DCT

H  T fM it d • Haar Transform

• Slant Transform

Magnitude
Spectrum

S*F

• Slant Transform

• Hilbert Transform
-W x/1W

• Z- and Laplace Transform

• Chirplet Transform
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