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Introduction

Conventional deep learning models have achieved remarkable success in image classification tasks, pri-

marily due to the availability of large-scale labeled datasets. However, collecting and annotating such

datasets is labor-intensive and often impractical, especially for rare or specialized categories. This limita-

tion motivates the field of few-shot learning (FSL), which aims to recognize new classes using only a small

number of labeled examples. Inspired by human learning, few-shot learning focuses on rapidly adapt-

ing to new tasks with minimal supervision. Recent advances in meta-learning or “learning to learn”

have shown promise in addressing this challenge by training models on a distribution of tasks rather

than a single task. This project explores few-shot image classification using meta-learning methods (e.g.

prototype-based), aiming to evaluate and benchmark their performance on standard few-shot datasets.

Problem Statement

Deep learning models typically require large amounts of labeled data to generalize well. However, in

many real-world scenarios, acquiring abundant labeled examples per class is infeasible. This project

aims to explore few-shot learning approaches for image classification, where the goal is to correctly

classify query images given only a few labeled examples (support set) per class. We will implement and

evaluate prototype-based methods using popular few-shot learning datasets.

Inputs

• A few labeled examples per class (support set), e.g., 5-way 1-shot: 5 classes, 1 image per class.

• Unlabeled query images from the same set of classes.

Figure 1 provides a sample for a single training episode for 3-way 3-shot setting.
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Figure 1: Example of a Single Episode

Expected Output

The expected outputs are

• The predicted class label for each query image.

• Accuracy of the model across test episodes.

Dataset

The datasets are :

• Mini-ImageNet

– https://www.kaggle.com/datasets/arjunashok33/miniimagenet

• Tiered-ImageNet

– https://github.com/yaoyao-liu/tiered-imagenet-tools

– https://www.kaggle.com/datasets/arjun2000ashok/tieredimagenet

• CIFAR-100

– https://www.cs.toronto.edu/ kriz/cifar.html
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• CIFAR-FS

– https://www.kaggle.com/datasets/keywhere/cifarfs
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