Matrices

CS6015: Linear Algebra

Matrix: Definition

- A matrix is a rectangular array of numbers and each of the numbers in the matrix is called an entry.
- The **size** (**dimension**) of a matrix with n rows and m columns is denoted by $n \times m$. In denoting the size of a matrix we always list the number of rows first and the number of columns second.
- Example:

$$\begin{bmatrix} 4 & 3 & 0 & 6 & -1 & 0 \\ 0 & 2 & -4 & -7 & 1 & 3 \\ -6 & 1 & 15 & \frac{1}{2} & -1 & 0 \end{bmatrix}$$

Matrix of size (dimension) 3×4

Matrix: example

$$\begin{bmatrix} 12 \\ -4 \\ 2 \\ -17 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -1 & 12 & 0 & -9 \end{bmatrix}$$

Matrix of size (dimension) 4×1 (Column Vector)

Matrix of size (dimension) 1×5 (Row Vector)

- We will often need to refer to specific entries in a matrix and so we'll need a notation to take care of that. The entry in the $i^{\rm th}$ row and $j^{\rm th}$ column of the matrix A is denoted by, a_{ij} .
- The lower case letter we use to denote the entries of a matrix will always match with the upper case letter we use to denote the matrix. So the entries of the matrix \boldsymbol{B} will be denoted by $\boldsymbol{b_{ii}}$.

Terminologies

 Here are some important terminologies, with examples, related to matrices

a. Main diagonal

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}$$

b. Identity matrix

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

c. Zero matrix

$$0_{2\times 4} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{0}_{2\times 4} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{0} = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Matrix Arithmetic and Operation

- Equality: A = B provided dimensions of A and B are equal and $a_{ij} = b_{ij}$ for all i and j.

 Matrices of different sizes cannot be equal.
- Addition, Subtraction: $A_{n\times m}\pm B_{n\times m}=[a_{ij}\pm b_{ij}]$. Matrices of different sizes cannot be added or subtracted.
- Scalar Multiple: $cA = [ca_{ij}]$; c is any number.
- Multiplication: $A_{n \times p} * B_{p \times m} = A.B_{n \times m}$
- Transpose: $A = [a_{ij}]_{n \times m}$ then $A^T = [a_{ji}]_{m \times n} \forall i, j$
- Trace: $tr(A) = \sum_{i=1}^{n} a_{ii}$. If A is not square then trace is not defined.

Properties of Matrix Arithmetic and the Transpose

•
$$A + B = B + A$$

$$\bullet A + (B + C) = (A + B) + C$$

•
$$A(BC) = (AB)C$$

•
$$A(B \pm C) = AB \pm AC$$

•
$$(B \pm C)A = BA \pm CA$$

•
$$a(B \pm C) = aB \pm aC$$

•
$$(a \pm b)C = aC \pm bC$$

•
$$(ab)C = a(bC)$$

•
$$a(BC) = (aB)C = B(aC)$$

• A (B) $\neq B(A)$, in general.

Letters in caps define matrices, while that in small denote scalars.

Properties of Matrix Arithmetic and the Transpose

•
$$A + 0 = 0 + A = A$$

•
$$A - A = 0$$

•
$$0 - A = A$$

•
$$0A = 0$$
 and $A0 = 0$

•
$$A^n A^m = A^{n+m}$$

•
$$(A^n)^m = A^{nm}$$

$$\bullet (A^T)^T = A$$

$$\bullet (A \pm B)^T = A^T \pm B^T$$

•
$$(cA)^T = cA^T$$

•
$$(AB)^T = B^T A^T$$

Letters in caps define matrices, while that in small denote scalars.

Inverse of square matrix

• If A is a square matrix of size n and we can find another matrix of the same size, say B, such that

$$AB = BA = I_n$$

- Then we call A invertible and we say that B is an inverse of the matrix A.
- We will denote the inverse as A^{-1} .
- Not every matrix has an inverse.
 - A square matrix that has an inverse is said to be nonsingular.
 - A square matrix that does not have an inverse is said to be singular.

Important properties of the inverse matrix

Suppose that A and B are invertible matrices of the same size. Then,

- a) AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$
- b) A^{-1} is invertible and $(A^{-1})^{-1} = A$
- c) For $n = 0,1,2...A^n$ is invertible and $(A^n)^{-1} = A^{-n} = (A^{-1})^n$
- d) If c is any non zero scalar then cA is invertible and $(cA)^{-1} = \frac{1}{c}A^{-1}$.
- e) A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$

Inverse Calculation

• The matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

will be *invertible* if $ad - bc \neq 0$

and *singular* if ad - bc = 0.

If the matrix is invertible its inverse will be,

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Special Matrices : Diagonal Matrix

 Diagonal Matrix: A square matrix is called diagonal if it has the following form

$$D = \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & d_n \end{bmatrix}$$

- Suppose D is a diagonal matrix and d_i , $i=1,\ldots,n$ are the entries on the main diagonal.
- If one or more of the $d_i{}^\prime s$ are zero then the matrix is singular.

Diagonal Matrix (contd.)

• On the other hand if $d_i \neq 0$, $\forall i$ then the matrix is invertible and the inverse is,

$$D^{-1} = \begin{bmatrix} \frac{1}{d_1} & 0 & 0 & \dots & 0 \\ 0 & \frac{1}{d_2} & 0 & \dots & 0 \\ 0 & 0 & \frac{1}{d_3} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \frac{1}{d_n} \end{bmatrix}$$

Triangular matrix

$$U = \begin{bmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ 0 & 0 & u_{33} & \cdots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{nn} \end{bmatrix}_{n \times n} \qquad L = \begin{bmatrix} l_{11} & 0 & 0 & \cdots & 0 \\ l_{21} & l_{22} & 0 & \cdots & 0 \\ l_{31} & l_{32} & l_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \cdots & l_{nn} \end{bmatrix}_{n \times n}$$

Upper Triangular Matrix

Lower Triangular Matrix

- If A is a triangular matrix with main diagonal entries $a_{11}, a_{22}, \dots, a_{nn}$ then if one or more of the a_{ii} 's are zero the matrix will be **singular**.
- On the other hand if $a_{ii} \neq 0 \ \forall i$ then the matrix is invertible.

Symmetric and anti-symmetric matrices

Suppose that A is an $n \times m$ matrix, then A will be called **symmetric** if A = AT.

Some properties of symmetric matrices are:

- a) For any matrix A, both AA^T and A^TA are symmetric.
- b) If A is an invertible symmetric matrix then A^{-1} is also symmetric.
- c) If A is invertible then AA^{T} and $A^{T}A$ are both invertible.

Anti-Symmetric or Skew-Symmetric:

An anti-symmetric matrix is a square matrix that satisfies the identity $\mathbf{A} = -\mathbf{A}^{\mathsf{T}}$.

Other Special forms of matrices:

- Toeplitz matrix

- Compound Matrix

Block Circulant Matrix

- g-inv & Pseudo-inv
- Orthogonal (also, -skew -sym)
- GRAM matrix

- PD, PSD, ...

Kernel of matrix

- Tri-diagonal system

- Schur Complement

- Hessian

- **PERM (n)**

- Jacobian

- Skew-symmetric
- Adjoint and Adjugate matrices
- DFT Matrix
- (skew-) Hermitian (or self-adjoint) matrix
- Covariance matrix

Idempotent Matrices

- Periodic matrices

- Vandermonde Matrices