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Minima, Maxima, and Saddle Points

* Up to now, we have hardly thought about the signs of the
eigenvalues

* Every symmetric matrix has real eigenvalues.

 Now we will find a test that can be applied directly to A, without
computing its eigenvalues, which will guarantee that all those
eigenvalues are positive.

* The signs of the eigenvalues are often crucial.

* The highly important problem is to recognize a minimum point. This
arises throughout science and engineering and every problem of
optimization.

* Examples:
N N2 TN N 92 2
F(x,y)=7+2(x+y)"—ysiny —: fl(x,y) =2x" +4xy +y°.

Does either F (x,y) or f(x,y) have a minimum at the point x =y = 0?



Minima, Maxima, and Saddle Points

Remark 3. The zero-order terms F(0,0) =7 and f(0,0) = 0 have no effect on the an-
swer. They simply raise or lower the graphs of F and f.

Remark 4. The linear terms give a necessary condition: To have any chance of a mini-
mum, the first derivatives must vanish at x = y = 0:
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_f — 4x+4y — () and —j = 4):—|—2y = 0. All zero.
dx dy

Thus (x,y) = (0,0) is a stationary point for both functions. The
surface z = F(x,y) is tangent to the horizontal planez = 7, and
the surface z = f(x,y) is tangent to the planez = 0.



Minima, Maxima, and Saddle Points

Remark 5. The second derivatives at (0,0) are decisive:

9°F I*f

32 =4 —-6x=4 2 =4

d°F  9°F . 0°f  d*f .
dxdy Jdydx dxdy dyox
0°F _ I*f
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 These second derivatives 4, 4, 2 contain the answer.

* Since they are the same for F and f, they must contain the same
answer.

* The two functions behave in exactly the same way near the origin.

* F has a minimum if and only if f has a minimum.



Minima, Maxima, and Saddle Points

Remark 6. The higher-degree terms in F have no effect on the question of a local min-
imum, but they can prevent it from being a global minimum. In our example the term

—x° must sooner or later pull F toward —eo. For f (x,y), with no higher terms, all the

action is at (0,0).

Every quadratic form f = ax? + 2bxy + cy? has a stationary point
at the origin, where df /ox = df /dy = O.

A local minimum would also be a global minimum, The surface
z = f(x,y) will then be shaped like a bowl, resting on the origin.

Figure 6.1: A bowl and a saddle: Definite A = [} ] and indefinite A = [9 [].



Minima, Maxima, and Saddle Points

Figure 6.1: A bowl and a saddle: Definite A = [} 9] and indefinite A = [9 }].

If the stationary pointof Fisatx = a,y = [3, the only change
would be to use the second derivatives at «, :

drati x? d°F d°F y* 9°F
e T =S5 @B) s @)+ 5 5 (@)

part of F



Minima, Maxima, and Saddle Points

Figure 6.1: A bowl and a saddle: Definite A = [} ] and indefinite A = [9 [].

* The third derivatives are drawn into the problem when the second
derivatives fail to give a definite decision. That happens when the
quadratic part is singular.

* For a true minimum, f is allowed to vanishonlyatx = y = 0.

 When f(x,y) is strictly positive at all other points (the bowl goes
up), it is called positive definite.



Definite versus Indefinite: Bowl versus Saddle

* For a function of two variables x and y, what is the correct

0%F
> 07

replacement for the condition ez

With only one variable, the sign of the second derivative decides
between a minimum or a maximum.

Now we have three second derivatives: Fyy, Fyy, = F,x, and E,,,.

What conditions on a, b, and c ensure that the quadratic f(x.y) = ax* + 2bxy + ¢y’
is positive definite’? One necessary condition is easy:

(i) If ax® +2bxy + cy? is positive definite, then necessarily a > 0.

We look at x = 1, y = 0, where ax® + 2bxy + ¢y? is equal to a. This must be positive.
Translating back to F, that means that 0%F / dx> > 0. The graph must go up in the x
direction. Similarly, fix x = 0 and look in the y direction where f(0,y) = cy*:



Definite versus Indefinite: Bowl versus Saddle

(i) If ax® 4 2bxy + cy? is positive definite, then necessarily a > 0.

We look at x = 1, y = 0, where ax”® + 2bxy + cy? is equal to a. This must be positive.
Translating back to F, that means that 0*F / dx?> > 0. The graph must go up in the x
direction. Similarly, fix x = 0 and look in the y direction where f(0,y) = cy*:

(i1) If f(x,y) is positive definite, then necessarily ¢ > 0.

Do these conditions a > 0 and ¢ > 0 guarantee that f(x,y) is always positive? The
answer 1s no. A large cross term 2bxy can pull the graph below zero.



Definite versus Indefinite: Bowl versus Saddle

Example 1. f(x,y) = x> — 10xy +y*. Here a = 1 and ¢ = 1 are both positive. But f is
not positive definite, because f(1,1) = —8. The conditions @ > 0 and ¢ > 0 ensure that
f(x,y) is positive on the x and y axes. But this function is negative on the line x =y,

because b = —10 overwhelms a and c.

6A ax?+ 2bxy+ cy? is positive definite if and only if @ > 0 and ac > b*. Any
f(x,y) has a minimum at a point where dF /dx = dF /dy = 0 with

JF? 8F2] [aﬁ] N JF2 r

o >0 and [ﬁ M |~ |oxay

(3)




Definite versus Indefinite: Bowl versus Saddle

Test for a maximum: Since f has a maximum whenever — f has a minimum, we just
reverse the signs of a, b, and c. This actually leaves ac > b* unchanged: The quadratic

form is negative definite if and only if @ < 0 and ac > b*. The same change applies for
a maximum of F(x,y).

Singular case ac = b*: The second term in equation (2) disappears to leave only
the first square—which is either posiftive semidefinite, when a > 0, or negative semidef-
inite, when a < 0. The prefix semi allows the possibility that f can equal zero, as it will

at the point x = b, y = —a. The surface z = f(x,y) degenerates from a bowl into a valley.
For f = (x+y)?, the valley runs along the line x+y = 0.

A stationary point that is neither a maximum nor a
minimum is called a saddle point.



Higher Dimensions: Linear Algebra

A quadratic f (x, y) comes directly from a symmetric 2 by 2 matrix!

b
x'Axin R? ax® +2bxy + cy? = [x y} [g ] [I]
cl |y

For any symmetric matrix 4, the product x” Ax is a pure quadratic
form f(xq, ..., x,):
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Higher Dimensions: Linear Algebra
2 2 2 2 :
Example 3. f =2x"+4xy+y and A = Y saddle point.

0 1
Example 4. f =2xyand A = | 0] — saddle point.

Example 5. A is 3 by 3 for Zx% — 2xX1X2 + 2x% — 2x2x3 + Zx%:

2 -1 0 X1
/= {Jq X2 .Ig‘i —1 2 —1!| x| — minimum at (0,0,0).
0 -1 2| |x

0%F
axiaxj .

A is the “second derivative matrix” with entries a;; =

F has a minimum when the pure quadratic x” Ax is positive definite.



Tests for Positive Definiteness

6B Each of the following tests is a necessary and sufficient condition for the
real symmetric matrix A to be positive definite:

() xTAx > 0 for all nonzero real vectors x.

(IT) All the eigenvalues of A satisfy A; > 0.
(III) All the upper left submatrices Ay have positive determinants.

(IV) All the pivots (without row exchanges) satisfy dy > 0.

6C The symmetric matrix A is positive definite if and only if

(V) There is a matrix R with independent columns such that A = R'R.



Tests for Positive Definiteness

Semi-definite matrices:

The tests for semi-definiteness will relax xTAx > 0,1 > 0,d > 0
and det > 0, to allow zeros to appear.

6D Each of the following tests is a necessary and sufficient condition for a
symmetric matrix A to be positive semidefinite:

(I") xTAx > 0 for all vectors x (this defines positive semidefinite).
(I') All the eigenvalues of A satisfy A; > 0.
(III') No principal submatrices have negative determinants.
(IV’) No pivots are negative.

(V") There is a matrix R, possibly with dependent columns, such that A = RTR.



Tests for Positive Definiteness: Example
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1s positive semidefinite, by all five tests:

1) xTAx = (x; —x2)* + (x1 —x3)% + (x2 — x3)? > 0 (zero if x; = x2 = x3).

(II") The eigenvalues are A; = 0, A, = A3 = 3 (a zero eigenvalue).

(III'y detA = 0 and smaller determinants are positive.

(IV') A =
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(V') A = R'R with dependent columns in R:
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(missing pivot).

(1,1,1) in the nullspace.



An Ellipsoid — For a positive definite matrix A and its x” Ax the curve
obtained is an ellipse in 2 dimensions and ellipsoid in n dimensions.

_[5 4 T Ao — 02 2 _
A—[4 5]andx Ax = 5u“+8uv+5v° =1

The ellipse is centered atu = v = 0, but the axes no longer line up
with the coordinate axes.

(H

_1(1 1
It can be shown that the axes of (\ ) Q=1 (% %)
the ellipse point toward the ! \ AR
eigenvector of A. ' (35— )
=\

Fig: The ellipse xTAx = 5u? + 8uv + 5v? =

—_ T :
As A = A" ,those eigenvectors 1 and its principal axes.

and axes are orthogonal.

The major axis of the ellipse corresponds to the smallest eigenvalue
of A.



Singular Value Decomposition

« A = UZVT is known as the “SVD” or the singular value
decomposition.

 The SVD is closely associated with the eigenvalue-eigenvector
factorization QAQT of a positive definite matrix.

* Any m X n matrix A can be factored into

A = UXV" = (orthogonal) (diagonal) (orthogonal)

e The columns of U (m X m) are eigenvectors of AAT , and the
columns of V (n X n) are eigenvectors of ATA.

* The r singular values on the diagonal of £ (m X n) are the square
roots of the nonzero eigenvalues of both AA” and AT A.

* While eigen-value decomposition can be applied only to square
matrices, SVD can be applied to any matrix (including rectangular
matrix).



Singular Value Decomposition

Remark 1.

e For positive definite matrices, ¥ is A and UXVT is identical to QAQT.

* For other symmetric matrices, any negative eigenvalues in A

become positive in .

* For complex matrices, X remains real but U and V become unitary
(the complex version of orthogonal). A = UEVH

Remark 2.

U and V give orthonormal bases for all four fundamental subspaces:

first r columns of U:
last m —r columns of U:
first r columns of V:

last n—r columnsof V:

column space of A
left nullspace of A
row space of A
nullspace of A



Singular Value Decomposition

Remark 3. The SVD chooses those bases in an extremely special way. They are more
than just orthonormal. When A multiplies a column v; of V, it produces o©; times a
column of U. That comes directly from AV = UL, looked at a column at a time.

Remark 4.

Eigenvectors of AAT and AT A must go into the columns of U and V:

AAT = (vzvh(vEluh) =uzE'Ul  and, similarly, A'A =vElTzvl

U must be the eigenvector matrix for AAT .

* The eigenvalue matrix in the middle is X7 — which is m X m with
o, ...,07 on the diagonal.

* Fromthe ATA = VETIVT , the V matrix must be the eigenvector
matrix for AT A.



Singular Value Decomposition

Example 1.

This A has only one column: rank 7 =1. Then X hasonlyg; = 3:

] [-r 2 273
3 3 3 T
SVD A — ) — % _% % 0 [l] :U3><323><1Vl><1
) 2 2 1o
<] L3 3 31 LV

ATAis 1 by 1, whereas AAT is 3 by 3. They both have eigenvalue 9 (whose square root
is the 3 in X). The two zero eigenvalues of AAT leave some freedom for the eigenvectors
in columns 2 and 3 of U. We kept that matrix orthogonal.



Singular Value Decomposition

Example 2.
Now A has rank 2, and AAT = [_21 _21] with 1 = 3 and 1:

1 -2 1] /V6
-1 1 0 1 [—1 1|3 00
R Rt o o | R

Notice V3 and v/1. The columns of U are left singular vectors (unit
eigenvectors of AAT ).

The columns of V are right singular vectors (unit eigenvectors of
AT A).



Applications of Singular Value Decomposition

Image Processing.
e Suppose a satellite takes a picture, and wants to send it to Earth.

* The picture may contain 1000 X 1000 “pixels”—a million little
squares, each with a definite color.

* We can code the colors, and send back 1,000,000 numbers.

* It is better to find the essential information inside the 1000 X
1000 matrix, and send only that.

In SVD some ¢’s are significant and others are extremely small.

If we keep 20 and throw away 980, then we send only the
corresponding 20 columns of U and V.

The other 980 columns are multiplied in UV by the small ¢’s that
are being ignored. If only 20 terms are kept, we send 20 times 2000
numbers instead of a million (25 to 1 compression).



Applications of Singular Value Decomposition

Polar decomposition.

e Every nonzero complex number z is a positive number r times a
number e'? on the unit circle: z = re'? .

* That expresses z in “polar coordinates.”

* If we think of z as a 1 X 1 matrix, r corresponds to a positive
definite matrix and e'® corresponds to an orthogonal matrix.

* More exactly, since e'? is complex and satisfies e "9el? = 1, it
forms a1 X 1 unitary matrix: U'U = .

* The SVD extends this “polar factorization” to matrices of any size:
Every real square matrix can be factored into A = QS, where Q is orthogonal

and S is symmetric positive semidefinite. If A is invertible then S is positive
definite.



* Pseudo-Inverse

Pseudo inverse is a generalization of the matrix inverse
when the matrix may not be invertible.

IfA=UZV"’ (the SVD), then its pseudoinverseis A" = VI U T



Minimum Principles

Our goal is to find the minimum principle equivalent to Ax = b, and
the minimization equivalent to Ax = Ax.

We want to find the “parabola” P(x) whose minimum occurs when
Ax = b.

~ 2
)= 1A% — ba

Minimum
5 at x = A7'b

Panin = —1b%/4

Figure 6.4: The graph of a positive quadratic P(x) is a parabolic bowl.



Minimum Principles

P(z) = $A2* — bz P(z) = 12T Az — 2™b
\ Minimum
Nl S atx = A"'b P 1
Prniu - _%bz/f] Ty JPmin = _%b’l‘A—lb

Figure 6.4: The graph of a positive quadratic P(x) is a parabolic bowl.

6H If A is symmetric positive definite, then P(x) = %xTAx — x'b reaches its

minimum at the point where Ax = b. At that point Py, = —%bTA_]b.

Proof. Suppose Ax = b. For any vector y, we show that P(y) > P(x):

| |
P(y) —P(x) = EyTAy —yib— EITAI +x'b
1 |
— EyTAy — yTAx + ExTAx (set b = Ax)
1
=5 (=1 Ay —x).

This can’t be negative since A is positive definite—and it is zero only if y—x = 0. At all
other points P(y) is larger than P(x), so the minimum occurs at x. [



Minimum Principles

Example. Minimize P(x) = x? — xyx, + x5 — byx; — byxs.

The usual approach, by calculus, is to set the partial derivatives to
zero. This gives Ax = b:

aP/aM:le—IQ—b] =( 2 —1] |x b
mecans =
aP/BXQ: —X1+2x—by =0 —1 2 X? b>

Linear algebra recognizes this P(x) as% xTAx — xTh, and knows
immediately that Ax = b gives the minimum.

Substitute x = A~1b into P(x):

1 |
Minimum value Ppin = E(A_lb)TA (A~'p) — (A7) h = —EbTA_lb.



Minimizing with Constraints

* Many applications add extra equations Cx = d on top of the
minimization problem.

* These equations are constraints. We minimize P(x) subject to the
extra requirement Cx = d.

e Usually x can’t satisfy n equations Ax = b and also [ extra
constraints Cx = d. We have too many equations and we need [
more unknowns.



Minimizing with Constraints

Those new unknowns y4, ..., y; are called Lagrange multipliers.
1
L(x,y) = P(x)+y (Cx—d) = > TAx—x"o+x"'cy—y'a.

L is chosen exactly so that dL /0y = 0 brings back Cx = d. When
we set the derivatives of L to zero, we have n + [ equations forn + [
unknowns x and y:

Constrained dL/dx=0: Ax+C'y=b
minimization JdL/dy=0: (Cx —



Minimizing with Constraints

Example. Suppose P(x1, x2) —% x4 + = xz Its smallest value is

certainly P,,,;,, = O.
* This unconstrained problemhasn = 2,A = [,and b = 0.

* So the minimizing equation Ax = b just givesx; = 0and
Xy = 0.

* Now add one constraint c;x; + c,x, = d.

* This puts x on a line in the x; — x5, plane. The old minimizer
X1 = X, = 0isnotontheline.

* The Lagrangian L(x,y) = 5 x4 + = xz + y(c1x; + x5, —d) has
n+1l = 2+ 1 partial derlvatlves

Contd.



Minimizing with Constraints

The Lagrangian L(x,y) = % x4 +% x% + y(cyxy + cyx, —d) has
n+ 1l = 2+ 1 partial derivatives:

dL/dx; =0 x1+c1y=0
dL/dx» =0 xp+cy=0
dL/dy =0 C1X1 +cxn =d.
Substituting x; = —cyy and x, = —c,y into the 3™ equation gives
_Clzy_czzy = d. Soluti - —d ~ad . cd
olution y= m X = m Xy = m

The constrained minimum of P = szx 1s reached at that solution point:

1, 1, led*+c3d*> 1 d?
Fe/min=3X11T 3% =573 "33 =53 3
2 (c{+c3) 2¢1+c5

This equals — —}d as predicted in equation (5), since b = 0 and P,;, = 0.



The Rayleigh quotient

e Goal is to find a minimization problem equivalent to Ax = Ax.

* The function to minimize cannot be a quadratic, or its derivative

would be linear, and the eigenvalue problem is nonlinear (A times
X).

* The trick that succeeds is to divide one quadratic by another one:

xTAx

xT

Rayleigh quotient Minimize R(x) =

X

61 Rayleigh’s Principle: The minimum value of the Rayleigh quotient is

the smallest eigenvalue A;. R(x) reaches that minimum at the first eigenvector
x; of A:
xTAxl xr]rllxl

Minimum where Ax; = Ax; R(x1) = T— =~ = A1.




The Rayleigh quotient

61 Rayleigh’s Principle: The minimum value of the Rayleigh quotient is

the smallest eigenvalue A;. R(x) reaches that minimum at the first eigenvector
x; of A:

xTAxl B xrlr/llxl B

Minimum where Ax; = Ax; R(x1) = T T Al
2
* If we keep xTAx = 1, then R(x) is a minimum when xT x = ||x||

is as large as possible.

* We are looking for the point on the ellipsoid x” Ax = 1 farthest
from the origin—the vector x of greatest length. Its longest axis
points along the first eigenvector. So R(x) is a minimum at x;.

Algebraically, we can diagonalize the symmetric A by an orthogonal matrix: QTAQ =
A. Then set x = Qy and the quotient becomes simple:

(OV)TA(Qy)  YTAY Ayt + A

R(x) — _ _
) (Oy)T(Qy)  »ly Vit y2

(11)



The Rayleigh quotient

Algebraically, we can diagonalize the symmetric A by an orthogonal matrix: QTAQ =
A. Then set x = Qy and the quotient becomes simple:
_(O)TAQY) _ YT AY Ayt Ay

R(x) = — = 11
D= ooy Ty it b

The minimum of R is Ay, at the point where yj =1l andy, =--- =y, =0:

At all points M (}% +y% T —I—yﬁ) < (/11}% + /'Lzy% Tt /')Ln}'ﬁ).

The Rayleigh quotient in equation (11) is never below A, and never above A, (the largest
eigenvalue). Its minimum is at the eigenvector x; and its maximum is at x;;:

T T
XpAXy Xy Anxy

x ! x, XFx,

= An.

Maximum where Ax,, = A,x, R(x,) =



