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Introduction

• How do we represent a text document or protein
sequence, which can be of variable length?

• One approach is to define a generative model for the data, 
and use the inferred latent representation and/or the
parameters of the model as features, and then to plug
these features in to standard methods

• Another approach is to assume that we have a way of
measuring the similarity between objects, that doesn’t  
require preprocessing them into feature vector format

• For example, when comparing strings, we can compute the 
edit distance between them



Kernel functions
• We define a kernel function to be a real-valued function of 

two arguments, 𝜅(𝐱, 𝐱′) ∈ ℝ, for𝐱,𝐱′ ∈ X.

• Typically the function has the following properties:

• Symmetric

• Non-negative

• Can be interpreted as a measure of similarity

• We will discuss several examples of kernel functions



RBF kernels
• Squared exponential kernel (SE kernel) or Gaussian kernel

• If 𝚺 is diagonal, this can be written as

We can interpret the 𝜎𝑗 as defining the characteristic length 

scale of dimension j

• If 𝚺 is spherical, we get the isotropic kernel

An example of RBF  (Radial basis function) kernel (since it is a 
function of ||𝐱 – 𝐱’||) where 𝜎2 is known as the bandwidth



Mercer (positive definite)kernels
• Gram matrix is defined as

• If the Gram matrix is positive definite for any set of inputs, 
the Kernel is a Mercer kernel

• Mercer’s theorem: If the Gram matrix is positive definite,
we can compute an eigenvector decomposition of it as
follows:

• where 𝚲 is a diagonal matrix of eigenvalues 𝜆𝑖 > 0
• Now consider an element of 𝐊



Mercer (positive definite)kernels
• In general, if the kernel is Mercer, then there exists a 

function 𝜙 mapping 𝐱 ∈ 𝑋toℝ𝐷such that

• For example, consider the (non-stationary) polynomial
kernel

If 𝑀 = 2, 𝛾 = 𝑟 = 1 and 𝐱, 𝐱′ ∈ 𝑅2, we have

This can be written as 𝜙 𝐱 𝑇𝜙 𝐱′ , where

So using this kernel is equivalent to working in a 6 
dimensional feature space.



Using kernels insideGLMs
• We define a kernel machine to be a GLM (generalized 

linear model) where the input feature vector has the form

where 𝝁𝑘 ∈ 𝑋 are a set of 𝐾 centroids

• If 𝜅 is an RBF kernel, this is called an RBF network

• We will discuss ways to choose the 𝝁𝑘parameters

• Note that in this approach, the kernel need not be a 
Mercer  kernel.



Using kernels insideGLMs
• This provides a simple way to define a non-linear decision

boundary

• As an example, consider the data coming from the
𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 𝑜𝑟 or 𝑥𝑜𝑟 function.

(a) xor truth table. (b) Fitting a linear logistic regression classifier 
using degree 10 polynomial expansion. (c) Same model, but using 
an RBF kernel with centroids specified by the 4 black crosses



L1VMs, and other sparse vector machines

• The main issue with kernel machines is: how do we choose 
the centroids 𝝁𝑘?

• If the input is low-dimensional Euclidean space, we can
uniformly tile the space occupied by the data with 
prototypes

• However, this approach breaks down in higher numbers of
dimensions because of the curse of dimensionality

• A simpler approach is to make each example 𝐱𝑖 be a 
prototype, so we get



L1VMs, and other sparse vector machines

• Now 𝐷 = 𝑁, we have as many parameters as data points

• However, we can use any of the sparsity- promoting
priors for𝒘 to efficiently select a subset of the training
exemplars. We call this a sparse vector machine

• Most natural choice is to use ℓ1 regularization resulting in L1VM
or “ℓ1-regularised vector machine”

• By analogy, we define the use of an ℓ2 regularizer to be a L2VM
or “ℓ2- regularized vector machine”

• Another very popular approach to creating a sparse kernel 
machine is to use a support vector machine or SVM



The kerneltrick
• Rather than defining our feature vector in terms of 

kernels, 𝜙(𝐱) = [𝜅(𝐱, 𝐱1), . . . , 𝜅 𝐱, 𝐱𝑁 ], we can work 
with the original feature vectors 𝐱, but modify the 
algorithm so that it replaces all inner products of the 
form < 𝐱, 𝐱’ > with a call to the kernel function, 𝜅(𝐱, 𝐱’)

• This is called the kernel trick.



Support vector machines(SVMs)
• Consider the ℓ2 regularized empirical risk function

• If L is quadratic loss, this is equivalent to ridge regression

• We can rewrite these equations in a way that only 
involves inner products of the form 𝐱𝑇𝐱, which we can 
replace by calls to a kernel function, 𝜅(𝐱, 𝐱)

• This is kernelized, but not sparse

• If we replace the quadratic loss with some other loss 
function, we can ensure that the solution is sparse, so 
that predictions only depend on a subset of the training 
data, known as support vectors

• This combination of the kernel trick plus a modified loss
function is known as a support vector machine or SVM



SVMs forclassification
• The Hinge loss is defined as:

• We have assumed the labels are 𝑦 ∈ 1,−1 , 𝜂 = 𝑓 𝐱
= 𝐰𝑇𝐱 + 𝑤0 is our “confidence” in choosing label 𝑦 = 1; 
however, it need not have any probabilistic semantics

Illustration of various 
loss functions for 
binary classification. 
The horizontal axis is 
the margin 𝜂, the 
vertical axis is the 
loss



SVMs forclassification
• The overall objective has the form

• This is non-differentiable, because of the max term. 
However, by introducing slack variables 𝜉𝑖, one can  show 
that this is equivalent to solving

• This is a quadratic program in 𝑁 + 𝐷 + 1 variables, 
subject to 𝑂(𝑁) constraints. We can eliminate the primal 
variables 𝐰, 𝑤0 and 𝜉𝑖, and just solve the 𝑁 dual 
variables, which correspond to the Lagrange multipliers 
for the constraints. Standard solvers take 𝑂(𝑁3) time



SVMs forclassification
• The solution involves constructing a dual problem 

where a Lagrange multiplier 𝜆𝑖 is associated with 
every constraint in the primary problem

• One can show that the solution has the form

• 𝛼𝑖 = 𝜆𝑖𝑦𝑖 and where 𝜶 is sparse (because of the hinge
loss)

• The 𝐱𝑖 for which 𝛼𝑖 > 0 are called support vectors; these
are points which are either incorrectly classified, or are  
classified correctly but are on or inside the margin



SVMs forclassification

Illustration of the soft margin principle. Points with circles 
around them are support vectors. We also indicate the value of 
the corresponding slack variables.



SVMs forclassification
• At test time, prediction is done using

• Using the kernel trick we have

This takes 𝑂(𝑠𝐷) time to compute, where 𝑠 ≤ 𝑁 is the 
number of support vectors. This depends on the sparsity 
level, and hence on the regularizer 𝐶



The large marginprinciple
• In this section, we derive the Equation form a completely 

different perspective.

• where 𝑟 is the distance of 𝐱 from the decision boundary 
whose normal vector is 𝐰, and 𝐱⊥ is the orthogonal 
projection of 𝐱 onto this boundary



The large marginprinciple

Illustration of the large margin principle
Left: a separating hyper-plane with large margin
Right: a separating hyper-plane with small margin



The large marginprinciple

Illustration of the geometry of a 
linear decision boundary in 2d. A 
point 𝐱 is classified as belonging in 
decision region 𝑅1 if 𝑓(𝐱) > 0, 
otherwise it belongs in decision 
region 𝑅0; here 𝑓(𝐱) is known as a 
discriminant function. The 
decision boundary is the set of 
points such that 𝑓(𝐱) = 0. 𝐰 is a 
vector which is perpendicular to 
the decision boundary. The term 
𝑤0 controls the distance of the 
decision boundary from the origin. 
The signed distance of 𝐱 from its 
orthogonal projection onto the
decision boundary, 𝒙⊥, is given by 
𝑓(𝐱)/||𝐰||. 



The large marginprinciple
• We would like to make this distance 𝑟 = 𝑓(𝐱)/||𝐰|| as

large as possible

• Intuitively, the best one to pick is the one that maximizes
the margin, i.e., the perpendicular distance to the closest
point

• In addition, we want to ensure each point is on the correct
side of the boundary, hence we want 𝑓(𝐱𝑖) 𝑦𝑖 > 0.

• So our objectivebecomes



The large marginprinciple
• Note that by rescaling the parameters using𝐰 → 𝑘𝐰 and 
𝑤0 → 𝑘𝑤0, we do not change the distance of any point to  
the boundary, since the 𝑘 factor cancels out when we
divide by ||𝐰||.

• Therefore let us define the scale factor such that 𝑦𝑖𝑓𝑖 = 1
for the point that is closest to the decision boundary

• We therefore want to optimize

• The constraint says that we want all points to be on the
correct side of the decision boundary with a margin of at  
least 1




