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LOGISTIC REGRESSION
• The posterior probability of class 𝐶1 can be written as a 

logistic sigmoid acting on a linear function of the feature 
vector 𝜙 so that

• with

• Here 𝜎(・) is the logistic sigmoid function defined by

• In the terminology of statistics, this model is known as 
logistic regression, although it should be emphasized 
that this is a model for classification rather than 
regression.



LOGISTIC REGRESSION
• For an M-dimensional feature space 𝜙, this model has M 

adjustable parameters.

• By contrast, if we had fitted Gaussian class conditional 
densities using maximum likelihood, we would have used 
2M parameters for the means and M(M + 1)/2 
parameters for the (shared) covariance matrix.

• Together with the class prior 𝑝(𝐶1), this gives a total of 
M(M+5)/2+1 parameters, which grows quadratically with 
M, in contrast to the linear dependence on M of the 
number of parameters in logistic regression.

• For large values of M, there is a clear advantage in 
working with the logistic regression model directly.



LOGISTIC REGRESSION
• We now use maximum likelihood to determine the 

parameters of the logistic regression model.

• To do this, we shall make use of the derivative of the 
logistic sigmoid function, which can conveniently be 
expressed in terms of the sigmoid function itself

• For a data set {𝜙𝑛, 𝑡𝑛}, where 𝑡𝑛 ∈ {0, 1} and 
𝜙𝑛 = 𝜙(𝐱𝑛), with 𝑛 = 1, . . . , 𝑁, the likelihood function 
can be written



LOGISTIC REGRESSION

• Here

• We can define an error function by taking the negative 
logarithm of the likelihood, which gives the cross entropy
error function in the form

• Where



LOGISTIC REGRESSION

• Taking the gradient of the error function with respect to 
w, we obtain

• where we have made use of the derivative of sigmoid.

• In particular, the contribution to the gradient from data 
point n is given by the ‘error’ 𝑦𝑛 − 𝑡𝑛 between the target 
value and the prediction of the model, times the basis 
function vector 𝜙𝑛.



CLASSIFICATION AND REGRESSION TREES

• The process of selecting a specific model, given a new 
input x, can be described by a sequential decision 
making process corresponding to the traversal of a 
binary tree (one that splits into two branches at each 
node). 

• Here we focus on a particular tree-based framework 
called classification and regression trees, or CART 
(Breiman et al., 1984)



CLASSIFICATION AND REGRESSION TREES

Illustration of a two-dimensional input 
space that has been partitioned into  five 
regions using axis-aligned boundaries.

Binary tree corresponding to 
the partitioning of input space



CLASSIFICATION AND REGRESSION TREES

• In the example given in previous slide, the first step 
divides the whole of the input space into two regions 
according to whether 𝑥1 ≤ 𝜃1 or 𝑥1 > 𝜃1 where 𝜃1 is a 
parameter of the model.

• This creates two sub regions, each of which can then be 
subdivided independently.

• For instance, the region 𝑥1 ≤ 𝜃1 is further subdivided 
according to whether 𝑥2 ≤ 𝜃2 or 𝑥2 > 𝜃2, giving rise to 
the regions denoted A and B.

• For any new input x, we determine which region it falls 
into by starting at the top of the tree at the root node 
and following a path down to a specific leaf node 
according to the decision criteria at each node.



CLASSIFICATION AND REGRESSION TREES

• Within each region, there is a separate model to predict 
the target variable.

• For instance, in regression we might simply predict a 
constant over each region, or in classification we might 
assign each region to a specific class.

• EXAMPLE: For instance, to predict a patient’s disease, we 
might 
• first ask “is their temperature greater than some threshold?”. If 

the answer is yes, then 

• we might next ask “is their blood pressure less than some 
threshold?”. 

Each leaf of the tree is then associated with a specific 
diagnosis.



CLASSIFICATION AND REGRESSION TREES

• Consider first a regression problem in which the goal is 
to predict a single target variable 𝑡 from a D-dimensional 
vector 𝐱 = 𝑥1, . . . , 𝑥𝐷

𝑇 of input variables.

• The training data consists of input vectors 
{𝐱1, . . . , 𝐱𝑁} along with the corresponding continuous 
labels {𝑡1, . . . , 𝑡𝑁}.

• If the partitioning of the input space is given, and we 
minimize the sum-of-squares error function, then the 
optimal value of the predictive variable within any given 
region is just given by the average of the values of 𝑡𝑛 for 
those data points that fall in that region.



WHEN TO STOP ADDING NODES

• A simple approach would be to stop when the reduction 
in residual error falls below some threshold.

• However, it is found empirically that often none of the 
available splits produces a significant reduction in error, 
and yet after several more splits a substantial error 
reduction is found.

• For this reason, it is common practice to grow a large 
tree, using a stopping criterion based on the number of 
data points associated with the leaf nodes, and then 
prune back the resulting tree.

• The pruning is based on a criterion that balances residual 
error against a measure of model complexity.



• If we denote the starting tree for pruning by 𝑇0, then we 
define 𝑇 ⊂ 𝑇0 to be a subtree of 𝑇0 if it can be obtained 
by pruning nodes from 𝑇0 (in other words, by collapsing 
internal nodes by combining the corresponding regions).

• Suppose the leaf nodes are indexed by 
𝜏 = 1, . . . , |𝑇|, with leaf node 𝜏 representing a region 𝑅𝜏
of input space having 𝑁𝜏 data points, and |𝑇| denoting 
the total number of leaf nodes.

• The optimal prediction for region 𝑅𝜏 is then given by

WHEN TO STOP ADDING NODES



• and the corresponding contribution to the residual sum-
of-squares is then

• The pruning criterion is then given by

• The regularization parameter λ determines the trade-off 
between the overall residual sum-of-squares error and 
the complexity of the model as measured by the number 
|𝑇| of leaf nodes, and its value is chosen by cross-
validation.

WHEN TO STOP ADDING NODES



• For classification problems, the process of growing and 
pruning the tree is similar, except that the sum-of-squares 
error is replaced by a more appropriate measure of 
performance.

• If we define 𝑝𝜏𝑘 to be the proportion of data points in region 
𝑅𝜏 assigned to class 𝑘, where 𝑘 = 1, . . . , 𝐾, then two 
commonly used choices are the cross-entropy

• and the Gini index

• These both vanish for 𝑝𝜏𝑘 = 0 and 𝑝𝜏𝑘 = 1 and have a 
maximum at 𝑝𝜏𝑘 = 0.5.

WHEN TO STOP ADDING NODES



Advantages

• The cross entropy and the Gini index are better measures 
than the misclassification rate for growing the tree 
because they are more sensitive to the node probabilities.

• Also, unlike misclassification rate, they are differentiable 
and hence better suited to gradient based optimization 
methods.

• The human interpretability of a tree model such as CART 
is often seen as its major strength.

Disadvantages

• In practice it is found that the particular tree structure 
that is learned is very sensitive to the details of the data 
set, so that a small change to the training data can result 
in a very different set of splits.



Feed-forward Network Functions
• The linear models for regression and classification are 

based on linear combinations of fixed nonlinear basis 
functions 𝜙𝑗(𝐱) and take the form

• where 𝑓(・) is a nonlinear activation function in the case 
of classification and is the identity in the case of 
regression.

• Our goal is to extend this model by making the basis 
functions 𝜙𝑗(𝐱) depend on parameters and then to allow 
these parameters to be adjusted, along with the 
coefficients {𝑤𝑗}, during training.



Feed-forward Network Functions
• The basic neural network model can be described a 

series of functional transformations. First we construct M 
linear combinations of the input variables 𝑥1, . . . , 𝑥𝐷 in 
the form

• where 𝑗 = 1, . . . , 𝑀, and the superscript (1) indicates that 
the corresponding parameters are in the first ‘layer’ of 
the network.

• We shall refer to the parameters 𝑤𝑗𝑖
1

as weights and the 

parameters 𝑤𝑗0
1

as biases.

• The quantities 𝑎𝑗 are known as activations.



Feed-forward Network Functions
• Each of them is then transformed using a differentiable, 

nonlinear activation function ℎ(・) to give

• These quantities, in the context of neural networks, are called 
hidden units.

• The nonlinear functions ℎ(・) are generally chosen to be 
sigmoidal functions such as the logistic sigmoid or the ‘tanh’. 

• These values are again linearly combined to give output unit 
activations

where 𝑘 = 1, . . . , 𝐾, and 𝐾 is the total number of outputs.

• This transformation corresponds to the second layer of the 
network, and again the 𝑤𝑘0

2
are bias parameters.



Feed-forward Network Functions
• Finally, the output unit activations are transformed using 

an appropriate activation function to give a set of 
network outputs 𝑦𝑘.

• The choice of activation function is determined by the 
nature of the data and the assumed distribution of target 
variables and follows the same considerations as for 
linear models.

• Thus for standard regression problems, the activation 
function is the identity so that 𝑦𝑘 = 𝑎𝑘.

• Similarly, for multiple binary classification problems, each 
output unit activation is transformed using a logistic 
sigmoid function so that

where



Feed-forward Network Functions
• Finally, for multiclass problems, a softmax activation 

function is used.

• We can combine these various stages to give the overall 
network function that, for sigmoidal output unit 
activation functions, takes the form

where the set of all weight and bias parameters have been 
grouped together into a vector w.

• Thus the neural network model is simply a nonlinear 
function from a set of input variables {𝑥𝑖} to a set of 
output variables {𝑦𝑘} controlled by a vector w of 
adjustable parameters.



Network diagram for the two layer neural network. The input, hidden, and output 

variables are represented by nodes, and the weight parameters are represented by 

links between the nodes, in which the bias parameters are denoted by links coming 

from additional input and hidden variables 𝑥0and 𝑧0. Arrows denote the direction of 

information flow through the network during forward propagation.



Feed-forward Network Functions
• The process of evaluating

can be interpreted as a forward propagation of 
information through the network.

• The bias parameters can be absorbed into the set of 
weight parameters by defining an additional input 
variable 𝑥0 whose value is clamped at 𝑥0 = 1, so that 



Feed-forward Network Functions
• We can similarly absorb the second-layer biases into the 

second-layer weights, so that the overall network 
function becomes

• If the activation functions of all the hidden units in a 
network are taken to be linear, then for any such network 
we can always find an equivalent network without 
hidden units.

• Neural networks are said to be universal approximators. 
For example, a two-layer network with linear outputs can 
uniformly approximate any continuous function on a 
compact input domain to arbitrary accuracy provided the 
network has a sufficiently large number of hidden units.



Illustration of the capability of a multilayer perceptron to approximate four different 

functions comprising (a) 𝑓(𝑥) = 𝑥2, (b) 𝑓(𝑥) = sin(𝑥), (c), 𝑓(𝑥) = |𝑥|, and 

(d) 𝑓(𝑥) = 𝐻(𝑥) where 𝐻(𝑥) is the Heaviside step function. In each case, 𝑁 = 50 data 

points, shown as blue dots, have been sampled uniformly in 𝑥 over the interval (−1, 1) 

and the corresponding values of 𝑓(𝑥) evaluated. These data points are then used to 

train a two layer network having 3 hidden units with ‘tanh’ activation functions and linear 

output units. The resulting network functions are shown by the red curves, and the 

outputs of the three hidden units are shown by the three dashed curves.



Network training
• Given a training set comprising a set of input vectors 
{𝐱𝑛}, where 𝑛 = 1, . . . , 𝑁, together with a corresponding 
set of target vectors {𝐭𝑛} for regression, we minimize the 
error function

• Now consider the case of binary classification in which 
we have a single target variable 𝑡 such that 𝑡 = 1
denotes class 𝐶1 and 𝑡 = 0 denotes class 𝐶2.

• Consider a network having a single output whose 
activation function is a logistic sigmoid

so that 0 ≤ 𝑦 𝐱,𝐰 ≤ 1.



Network training
• We can interpret 𝑦(𝐱,𝐰) as the conditional probability 
𝑝(𝐶1|𝐱), with 𝑝(𝐶2|𝐱) given by 1 − 𝑦(𝐱,𝐰).

• The conditional distribution of targets given inputs is 
then a Bernoulli distribution of the form

• If we consider a training set of independent 
observations, then the error function, which is given by 
the negative log likelihood, is then a cross-entropy error 
function of the form

where 𝑦𝑛 denotes 𝑦(𝐱𝑛, 𝐰).



Network training
• Using the cross-entropy error function instead of the 

sum-of-squares for a classification problem leads to 
faster training as well as improved generalization.

• If we have 𝐾 separate binary classifications to perform, 
then we can use a network having 𝐾 outputs each of 
which has a logistic sigmoid activation function.

• Associated with each output is a binary class label 
𝑡𝑘 ∈ {0, 1}, where 𝑘 = 1, . . . , 𝐾.

• If we assume that the class labels are independent, given 
the input vector, then the conditional distribution of the 
targets is



Network training
• Taking the negative logarithm of the corresponding 

likelihood function then gives the following error 
function

• where 𝑦𝑛𝑘 denotes 𝑦𝑘(𝐱𝑛, 𝐰).

• Finally, we consider the standard multiclass classification 
problem in which each input is assigned to one of 𝐾
mutually exclusive classes.

• The binary target variables 𝑡𝑘 ∈ {0, 1} have a 1-of-𝐾
coding scheme indicating the class, and the network 
outputs are interpreted as 𝑦𝑘(𝐱,𝐰) = 𝑝(𝑡𝑘 = 1|𝐱),
leading to the following error  function



Network training

Geometrical view of the error function 𝐸(𝐰)
as a surface sitting over weight space. 

Point 𝐰𝐴 is a local minimum and 𝐰𝐵 is the 

global minimum. At any point 𝐰𝐶, the local 

gradient of the error surface is given by the 

vector 𝛻𝐸.



Network training
• The output unit activation function is given by the 

softmax function

• which satisfies 0 ≤ 𝑦𝑘 ≤ 1 and  𝑘 𝑦𝑘 = 1.



Gradient descent optimization
• The simplest approach to using gradient information is to 

choose the weight update to comprise a small step in the 
direction of the negative gradient, so that

where the parameter 𝜂 > 0 is known as the learning rate.

• After each such update, the gradient is re-evaluated for 
the new weight vector and the process repeated.

• Note that the error function is defined with respect to a 
training set, and so each step requires that the entire 
training set be processed in order to evaluate 𝛻𝐸.

• At each step the weight vector is moved in the direction 
of the greatest rate of decrease of the error function, and 
so this approach is known as gradient descent or steepest 
descent.



Gradient descent optimization
• On-line gradient descent, also known as sequential 

gradient descent or stochastic gradient descent, makes 
an update to the weight vector based on one data point 
at a time, so that



Error Backpropagation
• Our goal in this section is to find an efficient technique for 

evaluating the gradient of an error function 𝐸(𝐰) for a feed-
forward neural network.

• We shall see that this can be achieved using a local message 
passing scheme in which information is sent alternately 
forwards and backwards through the network and is known 
as error backpropagation, or sometimes simply as backprop.

• We now derive the backpropagation algorithm for a general 
network having arbitrary feed-forward topology, arbitrary 
differentiable nonlinear activation functions, and a broad 
class of error function.

• The resulting formulae will then be illustrated using a simple 
layered network structure having a single layer of sigmoidal 
hidden units together with a sum-of-squares error.



Error Backpropagation
• Many error functions of practical interest, for instance 

those defined by maximum likelihood for a set of i.i.d. 
data, comprise a sum of terms, one for each data point in 
the training set, so that

• Here we shall consider the problem of evaluating 
𝛻𝐸𝑛(𝐰) for one such term in the error function.

• This may be used directly for sequential optimization, or 
the results can be accumulated over the training set in 
the case of batch methods.



Error Backpropagation
• Consider first a simple linear model in which the outputs 
𝑦𝑘 are linear combinations of the input variables 𝑥𝑖 so 
that

together with an error function that, for a particular input 
pattern 𝑛, takes the form

• where 𝑦𝑛𝑘 = 𝑦𝑘(𝐱𝑛, 𝐰). The gradient of this error 
function with respect to a weight 𝑤𝑗𝑖 is given by



Error Backpropagation
• In a general feed-forward network, each unit computes a 

weighted sum of its inputs of the form

• where 𝑧𝑖 is the activation of a unit, or input, that sends a 
connection to unit 𝑗, and 𝑤𝑗𝑖 is the weight associated 
with that connection.

• This sum is transformed by a nonlinear activation 
function ℎ(・) to give the activation 𝑧𝑗 of unit 𝑗 in the 
form

• Now consider the evaluation of the derivative of 𝐸𝑛 with 
respect to a weight 𝑤𝑗𝑖.



Error Backpropagation
• First we note that 𝐸𝑛 depends on the weight 𝑤𝑗𝑖 only via 

the summed input 𝑎𝑗 to unit 𝑗. We can therefore apply 
the chain rule for partial derivatives to give

• We now introduce a useful notation

where the 𝛿’s are often referred to as errors.

• Using we can write 



Error Backpropagation
• We thus obtain

• For the output units, we have

Illustration of the calculation of 𝛿𝑗 for hidden 

unit 𝑗 by backpropagation of the 𝛿’s from 

those units 𝑘 to which unit 𝑗 sends 

connections. The blue arrow denotes the 

direction of information flow during forward 

propagation, and the red arrows indicate 

the backward propagation of error 

information.



Error Backpropagation
• To evaluate the 𝛿’s for hidden units, we again make use 

of the chain rule for partial derivatives,

where the sum runs over all units 𝑘 to which unit 𝑗 sends 
connections.

• If we now substitute the definition of 𝛿 we obtain the 
following backpropagation formula



Error Backpropagation: Summary
The backpropagation procedure can therefore be 
summarized as follows:

• Apply an input vector 𝐱𝑛 to the network and forward 
propagate through the network to find the activations of 
all the hidden and output units.

• Evaluate the 𝛿𝑘 for all the output units.

• Backpropagate the 𝛿’s to obtain 𝛿𝑗 for each hidden unit 
in the network.

• Evaluate the required derivatives.

For batch methods, the derivative of the total error 𝐸 can 
then be obtained by repeating the above steps for each 
pattern in the training set and then summing over all 
patterns:


