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Shrinkage Methods

• By retaining a subset of the predictors and discarding the 
rest, subset selection produces a model that is interpretable 
and has possibly lower prediction error than the full model. 
However, because it is a discrete process—variables are 
either retained or discarded—it often exhibits high variance, 
and so doesn’t reduce the prediction error of the full model. 
Shrinkage methods are more continuous, and don’t suffer as 
much from high variability.

Ridge Regression

• Ridge regression shrinks the regression coefficients by 
imposing a penalty on their size. 



FIGURE 3.7. Estimated 
prediction error curves and 
their standard errors for the 

various selection and 
shrinkage methods. Each 

curve is plotted as a function 
of the corresponding 

complexity parameter for that 
method. The horizontal axis 
has been chosen so that the 

model complexity increases as 
we move from left to right. 
The estimates of prediction 

error and their standard errors 
were obtained by tenfold 

cross-validation; full details 
are given in Section 7.10. The 

least complex model within 
one standard error of the best 

is chosen, indicated by the 
purple vertical broken lines.



• The ridge coefficients minimize a penalized residual sum of 
squares,

 𝛽𝑟𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽  𝑖=1
𝑁 (𝑦𝑖 − 𝛽0 −  𝑗=1

𝑝
𝑥𝑖𝑗𝛽𝑗)

2 + 𝜆  𝑗=1
𝑝

𝛽𝑗
2 . (3.41)

• Here 𝜆 ≥ 0 is a complexity parameter that controls the 
amount of shrinkage: the larger the value of 𝜆, the greater 
the amount of shrinkage. The coefficients are shrunk toward 
zero (and each other). 

• An equivalent way to write the ridge problem is

 𝛽𝑟𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽  𝑖=1
𝑁 (𝑦𝑖 − 𝛽0 −  𝑗=1

𝑝
𝑥𝑖𝑗𝛽𝑗)

2,

3.42

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑗=1
𝑝

𝛽𝑗
2 ≤ 𝑡,



• Which makes explicit the size constraint on the parameters. 
There is a one to-one correspondence between the 
parameters 𝜆 in (3.41) and 𝑡 in (3.42). When there are many 
correlated variables in a linear regression model, their 
coefficients can become poorly determined and exhibit high 
variance. A wildly large positive coefficient on one variable 
can be canceled by a similarly large negative coefficient on 
its correlated cousin. By imposing a size constraint on the 
coefficients, as in (3.42), this problem is alleviated.

• The ridge solutions are not equivariant under scaling of the 
inputs, and so one normally standardizes the inputs before 
solving (3.41). The solution to (3.41) can be separated into 
two parts, after reparametrization using centered inputs: 
each 𝑥𝑖𝑗 gets replaced by 𝑥𝑖𝑗 −  𝑥𝑗 . We estimate 𝛽0 by 

 𝑦 =
1

𝑁
 1

𝑁 𝑦𝑖. 



• The remaining coefficients get estimated by a ridge 
regression without intercept, using the centered 𝑥𝑖𝑗 . 
Henceforth we assume that this centering has been done, so 
that the input matrix 𝐗 has 𝑝 (rather than 𝑝 + 1) columns.

• Writing the criterion in (3.41) in matrix form,

𝑅𝑆𝑆 𝜆 = 𝐲 − 𝐗𝛽 𝑇 𝐲 − 𝐗𝛽 + 𝜆𝛽𝑇𝛽, (3.43)

• The ridge regression solutions are easily seen to be

 𝛽𝑟𝑖𝑑𝑔𝑒 = 𝐗𝑇𝐗 + 𝜆 𝐈 −1𝐗𝑇𝐲, (3.44)

• Where 𝐈 is the 𝑝 × 𝑝 identity matrix. Notice that with the 
choice of quadratic penalty 𝛽𝑇𝛽, the ridge regression solution 
is again a linear function of 𝐲. The solution adds a positive 
constant to the diagonal of 𝐗𝑇𝐗 before inversion. 



• This makes the problem nonsingular, even if 𝐗𝑇𝐗 is not of full 
rank, and was the main motivation for ridge regression when 
it was first introduced in statistics (Hoerl and Kennard, 1970). 
Traditional descriptions of ridge regression start with 
definition (3.44). We choose to motivate it via (3.41) and 
(3.42), as these provide insight into how it works.



• Ridge regression can also be derived as the mean or mode 
of a posterior distribution, with a suitably chosen prior 

distribution. In detail, suppose 𝑦𝑖 ~ 𝑁(𝛽0 + 𝑥𝑖
𝑇𝛽, 𝜎2), and the 

parameters 𝛽𝑗 are each distributed as 𝑁(0, 𝜏2), independently 
of one another. Then the (negative) log-posterior density of 
𝛽, with  𝜏2 and 𝜎2 assumed known, is equal to the 
expression in curly braces in (3.41), with 𝜆 = 𝜎2/𝜏2 Thus the 
ridge estimate is the mode of the posterior distribution; 
since the distribution is Gaussian, it is also the posterior 
mean.

• The 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑆𝑉𝐷) of the centered input 
matrix 𝐗 gives us some additional insight into the nature of 
ridge regression. The 𝑆𝑉𝐷 of the 𝑁 × 𝑝 matrix 𝐗 has the form

𝐗 = 𝐔𝐃𝐕𝑇 (3.45)



• Using the singular value decomposition we can write the 
least squares fitted vector as

𝐗  𝛽𝑙𝑠 = 𝐗 𝐗𝑇 𝐗 −1𝐗T𝐲,

(3.46)
= 𝐔𝐔T𝐲,

• After some simplification. Note that 𝐔𝑇𝐲 are the 
coordinates of 𝐲 with respect to the orthonormal basis 
𝐔. Note also the similarity with (3.33); 𝐐 and 𝐔 are 

generally different orthogonal bases for the column 
space of 𝐗 (𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒 3.8).
Now the ridge solutions are

𝐗  𝛽𝑟𝑖𝑑𝑔𝑒 = 𝐗 𝐗T𝐗 + λ𝐈
−1

𝐗T𝐲

(3.47)

= 𝐔 𝐃 𝐃2 + λ𝐈 −1𝐃 𝐔T𝐲

=  𝑗=1
𝑝

𝒖𝑗

𝑑𝑗
2

𝑑𝑗
2+𝜆

𝒖𝑗
𝑇y,



• Where the 𝒖𝑗 are the columns of 𝐔. Note that since 𝜆 ≥ 0, we 

have 𝑑𝑗
2/(𝑑𝑗

2 + 𝜆) ≤ 1. Like linear regression, ridge regression 

computes the coordinates of 𝐲 with respect to the 
orthonormal basis 𝐔. It then shrinks these coordinates by 

the factors 𝑑𝑗
2/(𝑑𝑗

2 + 𝜆) .This means that a greater amount of 

shrinkage is applied to the coordinates of basis vectors with 

smaller 𝑑𝑗
2.

• What does a small value of 𝑑𝑗
2 mean? The 𝑆𝑉𝐷 of the 

centered matrix 𝐗 is another way of expressing the 
𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 of the variables in 𝐗. The sample 

covariance matrix is given by  𝐒 = 𝐗T𝐗/N, and from (3.45) we 
have

𝐗T𝐗 = 𝐕𝐃2𝐕T, (3.48)



• Which is the 𝑒𝑖𝑔𝑒𝑛 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 of 𝐗T𝐗 (and of 𝐒, up to a 
factor 𝑁).The eigenvectors 𝑣𝑗 (columns of 𝐕) are also called 
the 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 (or Karhunen–Loeve) directions of 𝐗. 

Sample variance is easily seen to be and in fact               
𝐳1 = 𝐗𝑣1 = 𝒖1𝑑1

𝑉𝑎𝑟 𝐳1 = 𝑉𝑎𝑟 𝐗𝑣1 =
𝑑1

2

𝑁
, (3.49)

• Subsequent principal components 𝒛𝑗 have maximum variance 

𝑑𝑗
2/𝑁, subject to being orthogonal to the earlier ones. 

Conversely the last principal component has minimum 
variance. Hence the small singular values 𝑑𝑗 correspond to 
directions in the column space of 𝐗 having small variance, 

and ridge regression shrinks these directions the most.



• The effective degrees of freedom is given as:

𝑑𝑓 𝜆 = 𝑡𝑟 𝐗 𝐗T𝐗 + λ𝐈
−1

𝐗T ,

= 𝑡𝑟 𝐇𝜆

=  𝑗=1
𝑝 𝑑𝑗

2

𝑑𝑗
2+𝜆

. (3.50)

• This monotone decreasing function of 𝜆 is the 
𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 of the ridge regression fit. 
Usually in a linear-regression fit with 𝑝 variables, the 
degrees-of-freedom of the fit is 𝑝, the number of free 
parameters. The idea is that although all 𝑝 coefficients in a 

ridge fit will be non-zero, they are fit in a restricted fashion 
controlled by 𝜆 . Note that 𝑑𝑓(𝜆) = 𝑝 when 𝜆 = 0 (no 
regularization) and 𝑑𝑓(𝜆) → 0 as 𝜆 → ∞.



The Lasso

• The lasso is a shrinkage method like ridge, with subtle but 
important differences. The lasso estimate is defined by

 𝛽𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽  𝑖=1
𝑁 (𝑦𝑖 − 𝛽0 −  𝑗=1

𝑝
𝑥𝑖𝑗𝛽𝑗)

2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑗=1
𝑝

|𝛽𝑗| ≤ 𝑡. (3.51)

• Write the lasso problem in the equivalent Lagrangian form

 𝛽𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽

1

2
 

𝑖=1

𝑁

𝑦𝑖 − 𝛽0 −  

𝑗=1

𝑝

𝑥𝑖𝑗𝛽𝑗

2

+ 𝜆  

𝑗=1

𝑝

|𝛽𝑗| .

(3.52)



• Notice the similarity to the ridge regression problem (3.42) or 

(3.41): the 𝐿2 ridge penalty  1
𝑝

𝛽
𝑗

2
is replaced by the 𝐿1 lasso 

penalty  1
𝑝

|𝛽𝑗| .

• Thus the lasso does a kind of continuous subset selection. If 

𝑡 is chosen larger than 𝑡0 =  1
𝑝

|  𝛽𝑗| (where  𝛽𝑗 =  𝛽𝑗
𝑙𝑠, the least 

squares estimates), then the lasso estimates are the  𝛽𝑗’s. On 
the other hand, for 𝑡 = 𝑡0/2 say, then the least squares 
coefficients are shrunk by about 50% on average.



Discussion: Subset Selection, 
Ridge Regression and the Lasso

• In the case of an orthonormal input matrix 𝐗 the three 
procedures have explicit solutions. Each method applies a 

simple transformation to the least squares estimate  𝛽𝑗.

• Ridge regression does a proportional shrinkage. Lasso 
translates each coefficient by a constant factor 𝜆, truncating 
at zero. This is called “soft thresholding,”. Best-subset 
selection drops all variables with coefficients smaller than 

the 𝑀th largest; this is a form of “hard-thresholding.”

• Back to the no orthogonal case; some pictures help 
understand their relationship. Figure 3.11 depicts the lasso 
(𝑙𝑒𝑓𝑡) and ridge regression (𝑟𝑖𝑔ℎ𝑡) when there are only two 
parameters. The residual sum of squares has elliptical 
contours, centered at the full least squares estimate.



FIGURE 3.11. Estimation picture for the lasso (left) and ridge 
regression (right). Shown are contours of the error and constraint 

functions. The solid blue areas are the constraint regions             
|𝛽1| + |𝛽2| ≤ 𝑡 and 𝛽1

2 + 𝛽2
2 ≤ 𝑡2, respectively, while the red ellipses 

are the contours of the least squares error function.



• The constraint region for ridge regression is the disk

𝛽1
2 + 𝛽2

2 ≤ 𝑡, while that for lasso is the diamond

|𝛽1| + |𝛽2| ≤ 𝑡. Both methods find the first point where the 

elliptical contours hit the constraint region. Unlike the disk, 
the diamond has corners; if the solution occurs at a corner, 
then it has one parameter 𝛽𝑗 equal to zero. When 𝑝 > 2, the 

diamond becomes a rhomboid, and has many corners, flat 
edges and faces; there are many more opportunities for the 
estimated parameters to be zero. Consider the criterion

•  𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽  𝑖=1
𝑁 (𝑦𝑖 − 𝛽0 −  𝑗=1

𝑝
𝑥𝑖𝑗𝛽𝑗)

2 + 𝜆  𝑗=1
𝑝

|𝛽𝑗|
𝑞 (3.53)

for 𝑞 ≥ 0. The contours of constant value of  𝑗 |𝛽𝑗|
𝑞are shown 

in Figure 3.12, for the case of two inputs.



• Thinking of 𝛽𝑗
𝑞 as the log-prior density. The case                     

𝑞 = 1 (𝑙𝑎𝑠𝑠𝑜) is the smallest 𝑞 such that the constraint region 
is convex; non-convex constraint regions make the 
optimization problem more difficult. In this view, the lasso, 
ridge regression and best subset selection are Bayes 
estimates with different priors. They are derived as posterior 
modes, that is, maximizers of the posterior. 

FIGURE 3.12. Contours of constant value of  𝑗 𝛽𝑗
𝑞 for given 

values of 𝑞.



• FIGURE 3.13. Contours of constant value of  𝑗 𝛽𝑗
𝑞 for                    

𝑞 = 1.2 (𝑙𝑒𝑓𝑡 𝑝𝑙𝑜𝑡), and the elastic-net penalty                        
 𝑗 (𝛼𝛽𝑗

2 + (1 − 𝛼)|𝛽𝑗|) for 𝛼 = 0.2 (𝑟𝑖𝑔ℎ𝑡 𝑝𝑙𝑜𝑡). Although visually 

very similar, the elastic-net has sharp corners, while the 𝑞 =
1.2 penalty does not

• Zou and Hastie (2005) introduced the 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡 penalty

𝜆  𝑗=1
𝑝

(𝛼𝛽𝑗
2 + (1 − 𝛼)|𝛽𝑗|) (3.54)



Least Angle Regression

• Least angle regression (𝐿𝐴𝑅) is a relative newcomer                 
(𝐸𝑓𝑟𝑜𝑛 𝑒𝑡 𝑎𝑙. , 2004), and can be viewed as a kind of 
“𝑑𝑒𝑚𝑜𝑐𝑟𝑎𝑡𝑖𝑐” version of forward stepwise regression

• Figure 3.10. Forward stepwise regression builds a model 
sequentially, adding one variable at a time. At each step, it 
identifies the best variable to include in the active set, and 
then updates the least squares fit to include all the active 
variables.

• Least angle regression uses a similar strategy, but only 
enters “as much” of a predictor as it deserves. At the first 
step it identifies the variable most correlated with the 
response. Rather than fit this variable completely, 𝐿𝐴𝑅
moves the coefficient of this variable continuously toward its 
leastsquares value (causing its correlation with the evolving 
residual to decrease in absolute value). 



• As soon as another variable “catches up” in terms of 
correlation with the residual, the process is paused. The 
second variable then joins the active set, and their 
coefficients are moved together in a way that keeps their 
correlations tied and decreasing. This process is continued 
until all the variables are in the model, and ends at the full 
least-squares fit. Algorithm 3.2 provides the details.



Algorithm 3.2 Least Angle Regression.

1. Standardize the predictors to have mean zero and unit 
norm. Start with the residual 𝐫 = 𝐲 −  𝐲, 𝛽1, 𝛽2, . . . , 𝛽𝑝 = 0.

2. Find the predictor 𝐱𝑗 most correlated with 𝐫.

3. Move 𝛽𝑗 from 0 towards its least-squares coefficient ⟨𝐱j,r⟩, 
until some other competitor 𝐱𝑘 has as much correlation with 
the current residual as does 𝐱𝑗 .

4. Move 𝛽𝑗 and 𝛽𝑘 in the direction defined by their joint least 
squares coefficient of the current residual on (𝐱𝑗 , 𝐱𝑘), until 
some other competitor 𝐱𝑙 has as much correlation with the 
current residual.

5. Continue in this way until all 𝑝 predictors have been 
entered. After min(𝑁 − 1, 𝑝) steps, we arrive at the full 
least-squares solution.



• Suppose 𝐴𝑘 is the active set of variables at the beginning of 
the 𝑘th step, and let  𝛽𝐴𝑘

be the coefficient vector for these 

variables at this step; there will be 𝑘 − 1 nonzero values, 

and the one just entered will be zero. If 𝐫𝑘 = 𝐲 − 𝐗𝐴𝑘
𝛽𝐴𝑘

is 

the current residual, then the direction for this step is

𝛿𝑘 = 𝐗𝐴𝑘

𝑇 𝐗𝐴𝑘

−1
𝐗𝐴𝑘

𝑇 𝐫𝑘. (3.35)

• The coefficient profile then evolves as 𝛽𝐴𝑘
(𝛼) = 𝛽𝐴𝑘

+ 𝛼 · 𝛿𝑘. 

• By construction the coefficients in 𝐿𝐴𝑅 change in a piecewise 
linear fashion.



Algorithm 3.2a Least Angle Regression: Lasso Modification.

• The 𝐿𝐴𝑅(lasso) algorithm is extremely efficient, requiring the 
same order of computation as that of a single least squares 
fit using the 𝑝 predictors. Least angle regression always 
takes 𝑝 steps to get to the full least squares estimates. The 
lasso path can have more than 𝑝 steps, although the two are 
often quite similar. Algorithm 3.2 with the lasso modification 
3.2a is an efficient way of computing the solution to any 
lasso problem, especially when 𝑝 ≫ 𝑁

4a. If a non-zero coefficient hits zero, drop its 
variable from the active set of variables and 
recompute the current joint least squares direction.



FIGURE 3.16. Comparison of 𝐿𝐴𝑅 and lasso with forward stepwise, 
forward stagewise (𝐹𝑆) and incremental forward stagewise 

(𝐹𝑆0) regression. The setup is the same as in Figure 3.6, except 𝑁 =
100 here rather than 300. Here the slower FS regression ultimately 

outperforms forward stepwise. LAR and lasso show similar behavior 
to 𝐹𝑆 and 𝐹𝑆0. Since the procedures take different numbers of steps 
(across simulation replicates and methods), we plot the MSE as a 

function of the fraction of total L1 arc-length toward the least-
squares fit. 



Methods Using Derived Input 
Directions

• In many situations we have a large number of inputs, often 
very correlated. The methods in this section produce a small 
number of linear combinations 𝑍𝑚, 𝑚 = 1, . . . , 𝑀 of the 
original inputs X𝑗 , and the 𝑍𝑚 are then used in place of the X𝑗

as inputs in the regression. The methods differ in how the
linear combinations are constructed.

Principal Components 
Regression

• In this approach the linear combinations 𝑍𝑚 used are used as 
the principal components.



Partial Least Squares

• This technique also constructs a set of linear 
combinations of the inputs for regression, but unlike 
principal components regression it uses 𝐲 (in addition to 
𝐗) for this construction.

• Like principal component regression, partial least 
squares (𝑃𝐿𝑆) is not scale invariant, so we assume that 
each 𝐱𝑗 is standardized to have mean 0 and variance 1. 

• 𝑃𝐿𝑆 begins by computing  𝜑1𝑗 = ⟨𝐱𝑗, 𝐲⟩ for each 𝑗. From 
this we construct the derived input 𝒛1 =  𝑗  𝜑1𝑗 𝐱𝑗, which 
is the first partial least squares direction. The outcome 

𝐲 is regressed on 𝒛1 giving coefficient  𝜃1, and then we 
orthogonalize 𝐱1, . . . , 𝐱𝑝 with respect to 𝒛1. 



Partial Least Squares

• We continue this process, until M ≤ 𝑝 directions have 
been obtained. In this manner, partial least squares 
produces a sequence of derived, orthogonal inputs or 
directions 𝒛1, 𝒛2, . . . , 𝒛𝑀. 

• As with principal-component regression, if we were to 
construct all M = p directions, we would get back a 

solution equivalent to the usual least squares 
estimates; using M < p directions produces a reduced 

regression. 





• What optimization problem is partial least squares solving? 
Since it uses the response 𝐲 to construct its directions, its 
solution path is a nonlinear function of 𝐲. It can be shown 
(𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒 3.15) that partial least squares seeks directions that 
have high variance and have high correlation with the 
response, in contrast to principal components regression 
which keys only on high variance the 𝑚𝑡ℎprincipal 
component direction 𝑣𝑚 solves:

max
𝛼

𝑉𝑎𝑟 𝐗𝛂

(3.63)
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ||𝛼|| = 1, 𝛼𝑇𝐒𝑣ℓ = 0, ℓ = 1, . . . , 𝑚 − 1,

• here 𝐒 is the sample covariance matrix of the 𝐱𝑗 . 



• The 𝑚𝑡ℎ 𝑃𝐿𝑆 direction  ߮𝑚 solves:

max
𝛼

𝐶𝑜𝑟𝑟2 𝐲, 𝐗𝛼 𝑉𝑎𝑟 𝐗𝛼 (3.64)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ||𝛼|| = 1, 𝛼𝑇𝐒  ߮ℓ = 0, ℓ = 1, . . . , 𝑚 − 1,

• If the input matrix 𝑿 is orthogonal, then partial least 
squares finds the least squares estimates after 𝑚 = 1 
steps.



Discussion: A Comparison of the 
Selection and  Shrinkage Methods

• To summarize, 𝑷𝑳𝑺, 𝑷𝑪𝑹 and ridge regression tend to 

behave similarly. Ridge regression may be preferred because 
it shrinks smoothly, rather than in discrete steps. Lasso falls 
somewhere between ridge regression and best subset 
regression, and enjoys some of the properties of each.



Incremental Forward Stagewise 
Regression





The Grouped Lasso

• In some problems, the predictors belong to pre-defined 
groups; In this situation it may be desirable to shrink and 
select the members of a group together. The 𝑔𝑟𝑜𝑢𝑝𝑒𝑑 𝑙𝑎𝑠𝑠𝑜 is 
one way to achieve this. Suppose that the 𝑝 predictors are 
divided into 𝐿 groups, with 𝑝ℓ the number in group ℓ. For 
ease of notation, we use a matrix 𝐗ℓ to represent the 
predictors corresponding to the ℓ𝑡ℎ group, with 

corresponding coefficient vector 𝛽ℓ.The grouped-lasso 
minimizes the convex criterion

• min
𝛽∈ℝ𝑝

||𝐲 − 𝛽0𝟏 −  ℓ=1
𝐿 𝐗ℓ𝛽ℓ ||2

2 + 𝜆  ℓ=1
𝐿 𝑝ℓ| 𝛽ℓ |2 ,     

(3.80)

• where the 𝑝ℓ terms accounts for the varying group sizes, 

and || · ||2 is the Euclidean norm (not squared).



• Since the Euclidean norm of a vector 𝛽ℓ is zero only if all of 
its components are zero, this procedure encourages sparsity 
at both the group and individual levels. That is, for some 
values of 𝜆, an entire group of predictors may drop out of the 
model. This procedure was proposed by Bakin (1999) and Lin 
and Zhang (2006), and studied and generalized by Yuan and 
Lin (2007).

Further Properties of the Lasso

• A number of authors have studied the ability of the lasso 
and related procedures to recover the correct model, as 𝑁
and 𝑝 grow. Examples of this work include Knight and Fu 
(2000), Greenshtein and Ritov (2004), Tropp (2004), Donoho 
(2006𝑏), Meinshausen (2007), Meinshausen and B¨uhlmann 
(2006), Tropp (2006), Zhao and Yu (2006), Wainwright 
(2006), and Bunea et al. (2007).



Computational Considerations

• Least squares fitting is usually done via the Cholesky 
decomposition of the matrix 𝐗T𝐗 or a QR decomposition of 𝐗. 
With 𝑁 observations and 𝑝 features, the Cholesky 
decomposition requires 𝑝3 + 𝑁𝑝2/2 operations, while the 𝑄𝑅
decomposition requires 𝑁𝑝2 operations. Depending on the 
relative size of 𝑁 and 𝑝, the Cholesky can sometimes be 
faster; on the other hand, it can be less numerically stable 
(Lawson and Hansen, 1974). Computation of the lasso via the 
𝑳𝑨𝑹 algorithm has the same order of computation as a least 
squares fit.






