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Variable Types and Terminology

• Denote an input variable by the symbol 𝑋. If 𝑋 is a vector, its 

components can be accessed by subscripts 𝑋𝑖 . Quantitative 

outputs will be denoted by 𝑌, qualitative outputs by G (for group).

• Observed values are written in lowercase; hence the 𝑖𝑡ℎ observed 

value of 𝑋 is written as 𝑥𝑖 (where 𝑥𝑖 is again a scalar or vector). 

Matrices are represented by bold uppercase letters; for example, 

a set of 𝑁 input p-vectors 𝑥𝑖, 𝑖 = 1, . . . ,𝑁 would be represented 

by the 𝑁 × 𝑝 matrix 𝑿.

• In general, vectors will not be bold, except when they have 𝑁

components; this convention distinguishes a 𝑝-vector of inputs 𝑥𝑖

for the 𝑖𝑡ℎ observation from the 𝑁-vector 𝒙𝒋 consisting of all the 

observations on variable 𝑋𝑗 . Since all vectors are assumed to be 

column vectors, the 𝑖𝑡ℎ row of 𝑿 is 𝑥𝑖
𝑇, the vector transpose of 

𝑥𝑖.  i.e. #samples = N; Dimension = p; 
e.g. p sensors and N observations from each.



CONTD…
• Loosely state the learning task as follows: given the value of an 

input vector 𝑋, make a good prediction of the output 𝑌, denoted by  

Ŷ. If Y takes values in ℝ then so should Ŷ; associated with 𝐺.

• For a two-class 𝐺, one approach is to denote the binary coded 
target as 𝑌 , and then treat it as a quantitative output. The 

predictions Ŷ will typically lie in [0, 1], and we can assign to  𝐺 the 
class label according to whether  𝑦 > 0.5. This approach generalizes 
to 𝐾-level qualitative outputs as well.

• We need data to construct prediction rules, often a lot of it. We 
thus suppose we have available a set of measurements (𝑥𝑖, 𝑦𝑖) or 
(𝑥𝑖, 𝑔𝑖), 𝑖 = 1, . . . , 𝑁, known as the training data, with which to 

construct our prediction rule.



Two Simple Approaches to Prediction: Least
Squares and Nearest Neighbors

• Two simple but powerful prediction methods: the linear model fit 
by least squares and the 𝑘-nearest-neighbor prediction rule. The 
linear model makes huge assumptions about structure and yields 
stable but possibly inaccurate predictions. The method of 𝑘-
nearest neighbors makes very mild structural assumptions: its 
predictions are often accurate but can be unstable.

• Linear Models and Least Squares

• Given a vector of inputs 𝑋𝑇 = (𝑋1, 𝑋2, . . . ,𝑋𝑝), we predict the  

output 𝑌 via the model.

Ŷ =  𝛽
0

+  𝑗=1
𝑝

𝑋𝑗
 𝛽𝑗



Linear Models and Least Squares

• The term  𝛽0 is the intercept, also known as the bias in machine 
learning.

Ŷ = 𝑋𝑇  𝛽

where, 𝑋𝑇 denotes vector or matrix transpose (𝑋 being a 

column vector). Here we are modeling a single output, so  𝑌 is a 

scalar; in general  𝑌 can be a 𝐾–vector, in which case  would be 

a 𝑝 × 𝐾 matrix of coefficients.

• In the (𝑝 + 1)-dimensional input–output space, (𝑋,  𝑌 ) represents 

a hyperplane. If the constant is included in 𝑋, then the 

hyperplane includes the origin and is a subspace; if not, it is an 

affine set cutting the 𝑌 -axis at the point (0,  𝛽0). From now on we 

assume that the intercept is included in  𝛽.



• Viewed as a function over the 𝑝-dimensional input space, 𝑓(𝑋) = 

𝑋𝑇b  is linear, and the gradient 𝑓0(𝑋) = b is a vector in input space 

that points in the steepest uphill direction.

• How do we fit the linear model we pick the coefficients  to 
minimize the residual sum of squares

𝑅𝑆𝑆 𝛽 =  𝑖 −1
𝑁 (𝑦𝑖 − 𝑥𝑖

𝑇𝛽) 2

• 𝑅𝑆𝑆(𝛽) is a quadratic function of the parameters, and hence its 
minimum always exists, but may not be unique. The solution is 
easiest to characterize in matrix notation. We can write

𝑅𝑆𝑆(𝛽) = 𝒚 − 𝑿𝛽 𝑇(𝒚 − 𝑿𝛽),

• where 𝑿 is an 𝑁 × 𝑝 matrix with each row an input vector, and 𝒚 is 

an 𝑁-vector of the outputs in the training set. Differentiating w.r.t. 

𝛽 we get the normal equations (derive):

𝑿𝑇 (𝒚 − 𝑿𝛽) = 0



• If 𝑿𝑇𝑿 is nonsingular, then the unique solution is given by

 𝛽 = 𝑿𝑇𝑿 −1𝑿𝑇𝐲

• And the fitted value at the 𝑖𝑡ℎ input 𝑥𝑖 is  𝑦𝑖 =  𝑦 𝑥𝑖 = 𝑥𝑖
𝑇  𝛽

• The entire fitted surface is characterized by the 𝑝 parameters  𝛽 . 

• Let, (see fig. in next slide) output class variable 𝐺 has the values:

BLUE and ORANGE. 



FIGURE 2.1. 𝐴 classification example in two dimensions. The classes are 

coded as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear 

regression. The line is the decision boundary defined by 𝑥𝑇  𝛽 = 0.5. The 

orange shaded region denotes that part of input space classified as ORANGE, 
while the blue region is classified as BLUE.

• Response 𝑌 coded as 0 for BLUE and 1 for ORANGE. The fitted 

values 𝑌 are converted to a fitted class variable  𝐺 according to the rule.

 𝐺 =  
𝑶𝑹𝑨𝑵𝑮𝑬 𝑖𝑓  𝑌 ≥ 0.5

𝑩𝑳𝑼𝑬 𝑖𝑓  𝑌 ≤ 0.5



• The set of points in ℝ2
classified as ORANGE corresponds to                    

𝑥 ∶ 𝑥𝑇  𝛽 > 0.5 , indicated in Figure 2.1, and the two predicted 

classes are separated by the decision boundary {𝑥 ∶ 𝑥𝑇  𝛽 =
0.5}, which is linear in this case. 

• Reason for error: Source of data (not discussed) or inappropriate 
model ??

 DATA SOURCE:

• Scenario 1: The training data in each class were generated from 
bivariate Gaussian distributions with uncorrelated components and 
different means.

• Scenario 2: The training data in each class came from a mixture of 
10 low variance Gaussian distributions, with individual means 
themselves distributed as Gaussian.



• A mixture of Gaussians is best described in terms of the generative 
model. In the case of one Gaussian per class, a linear decision 
boundary is the best one can do, and that our estimate is almost 
optimal. The region of overlap is inevitable, and future data to be 
predicted will be plagued by this overlap as well.

• In the case of mixtures of tightly clustered Gaussians the story is 
different. A linear decision boundary is unlikely to be optimal, and in 
fact is not. The optimal decision boundary is nonlinear and disjoint, 
and as such will be much more difficult to obtain.



Nearest-Neighbor Methods

• Specifically, the 𝑘-nearest neighbor fit for  𝑌 is defined as follows:

 𝑌 𝑥 =
1

𝐾
 𝑥

𝑖
𝜖𝑁𝑘(𝑥) 𝑦𝑖

where 𝑁𝑘(𝑥) is the neighborhood of 𝑥 defined by the 𝑘 closest 

points 𝑥𝑖 in the training sample. Closeness implies a metric, which for 

the moment we assume is Euclidean distance. 

• So, in words, we find the 𝑘 observations with 𝑥𝑖 closest to 𝑥 in 

input space, and average their responses.



15-Nearest Neighbor Classifier

FIGURE 2.2. The same classification example in two dimensions as 
in Figure 2.1. The classes are coded as a binary variable (BLUE = 
0, ORANGE = 1) and then fit by 15-nearest-neighbor averaging as 
in (2.8). The predicted class is hence chosen by majority vote 
amongst the 15-nearest neighbors



1−Nearest Neighbor Classifier

FIGURE 2.3. predicted by 1-nearest-neighbor classification.



Nearest Neighbor Classifier

• In Figure 2.2 we see that far fewer training observations are 
misclassified than in Figure 2.1.

• This should not give us too much comfort, though, since in 
Figure 2.3 none of the training data are misclassified. 

• A little thought suggests that for 𝑘-nearest-neighbor fits, the 
error on the training data should be approximately an increasing 
function of 𝑘, and will always be 0 for 𝑘 = 1. 

• An independent test set would give us a more satisfactory 
means for comparing the different methods.



Nearest Neighbor Classifier

• It appears that 𝑘-nearest-neighbor fits have a single parameter, 
the number of neighbors 𝑘, compared to the p parameters in 
least-squares fits. 

• Although this is the case, we will see that the effective number 

of parameters of 𝒌-nearest neighbors is 𝑵/𝒌 and is 

generally bigger than 𝑝, and decreases with increasing k. 

• It would seem that 𝑘-nearest-neighbor methods would be more 
appropriate for the mixture Scenario 2 described earlier, while for 
Gaussian data the decision boundaries of 𝑘-nearest neighbors 
would be unnecessarily noisy.



From Least Squares to Nearest Neighbors

• The linear decision boundary from least squares is very 
smooth, and apparently stable to fit. It does appear to rely 
heavily on the assumption that a linear decision boundary is 
appropriate. In language we will develop shortly, it has low 
variance and potentially high bias.

• On the other hand, the 𝑘-nearest-neighbor procedures do not 
appear to rely on any stringent assumptions about the underlying 
data, and can adapt to any situation. 



• However, any particular sub region of the decision boundary 
(for K-NN) depends on a handful of input points and their 
particular positions, and is thus wiggly and unstable—high 
variance and low bias.

 Local regression fits linear models by locally weighted 
least squares, rather than fitting constants locally.

 Linear models fit to a basis expansion of the original 
inputs allow arbitrarily complex models.

 Projection pursuit and neural network models consist of 
sums of nonlinearly transformed linear models.





Statistical Decision Theory (SDT) 

• SDT provides a framework for developing models such as those 
discussed informally so far. First consider the case of a 
quantitative output, and place ourselves in the world of random 
variables and probability spaces. 

• Let 𝑋 ∈ 𝑅𝑝 denote a real valued random input vector,  and      

𝑌 ∈ 𝑅 a real valued random output variable, with joint 

distribution 𝑃𝑟(𝑋, 𝑌 ). We seek a function 𝑓(𝑋) for predicting 𝑌
given values of the input 𝑋. This theory requires a loss function 

𝐿(𝑌, 𝑓(𝑋)) for penalizing errors in prediction, and by far the 

most common and convenient is squared error loss: 

𝐿 𝑌, 𝑓 𝑋 = 𝑌 − 𝑓 𝑋
2

This leads us to a criterion for choosing 𝑓,

𝐸𝑃𝐸(𝑓) = 𝐸 𝑌 − 𝑓 𝑋
2

(2.9)

= ∫ 𝑦 − 𝑓 𝑥 2 Pr(𝑑𝑥, 𝑑𝑦),
the expected (squared) prediction error.



By conditioning on 𝑋, we can write 𝐸𝑃𝐸 as

𝐸𝑃𝐸(𝑓) = 𝐸𝑋𝐸 𝑌 𝑋 ( 𝑌 − 𝑓 𝑋 2|𝑋) ……(2.11)

• And we see that it suffices to minimize EPE pointwise:

𝑓(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐𝐸𝑌|𝑋
( 𝑌 − 𝑐 2|𝑋 = 𝑥)

• The solution is

𝑓(𝑥) = 𝐸(𝑌 |𝑋 = 𝑥),

the conditional expectation, also known as the regression 
function. Thus the best prediction of 𝑌 at any point 𝑋 = 𝑥 is the 
conditional mean, when best is measured by average squared 
error.



• The nearest-neighbor methods attempt to directly implement 
this recipe using the training data. At each point 𝑥, we might ask 
for the average of all those 𝑦𝑖 𝑠 with input 𝑥𝑖 = 𝑥. Since there is 
typically at most one observation at any point 𝑥, we settle for. 

 𝑓 (𝑥) = 𝐴𝑣𝑒(𝑦𝑖|𝑥𝑖 ∈ 𝑁𝑘(𝑥)),

where “Ave” denotes average, and 𝑁𝑘(𝑥) is the neighborhood 
containing the k points in 𝑇 closest to 𝑥.

Two approximations are happening here:

 expectation is approximated by averaging over 
sample data;

 conditioning at a point is relaxed to conditioning on    
some region   “close” to the target point.



• How does linear regression fit into this framework? The simplest 
explanation is that one assumes that the regression function 𝑓(𝑥)
is approximately linear in its arguments:

𝑓 𝑥 ≈ 𝑥𝑇𝛽.

Issues with NN:
We often do not have very large samples?
If the linear or some more structured model is appropriate, then we 
can usually get a more stable estimate than k-nearest neighbors, 
although such knowledge has to be learned from the data as well.
As the dimension p gets large, so does the metric size of the k-
nearest neighborhood. So settling for nearest neighborhood as a 
surrogate for conditioning will fail.

Under mild regularity conditions on the joint probability 

distribution Pr(X, Y ), one can show that as N, k ->∞ such that 

k/N -> 0,
 𝑓(x) -> E(Y |X = x).

The convergence above still holds, but the rate of convergence 
decreases as the dimension increases.



Statistical Decision Theory…. Cont’d

• So both 𝑘-nearest neighbors and least squares end up 
approximating conditional expectations by averages. But they 
differ dramatically in terms of model assumptions:

 Least squares assumes 𝑓(𝑥) is well approximated by a 
globally linear function.

 𝑘-nearest neighbors assumes 𝑓(𝑥) is well approximated 
by a locally constant function.

• Model-based approach—we specify a model for the regression 
function. Plugging this linear model for 𝑓(𝑥) into EPE (2.9) and 
differentiating we can solve for 𝛽 theoretically (derive it):

𝛽 = 𝐸 𝑋𝑋𝑇 −1𝐸(𝑋𝑌).

Compare this with:       𝛽 = 𝑿𝑇𝑿 −1𝑿𝑇𝐲 <- Matrix notation

<*Vector vs matrix vs scalar notations; Dimensions of both expressions ??
(p*p)*(p*1) = (p*1);            (p*p)*(p*N)*(N*1) = (p*1);  *>



• Are we happy with the criterion (2.11)? What happens if we replace 
the 𝐿2 loss function with the 𝐿1: 𝐸|𝑌 − 𝑓(𝑋)|?

• The solution in this case is the conditional median,

 𝑓(𝑥) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑌 |𝑋 = 𝑥),

which is a different measure of location, and its estimates are 
more robust than those for the conditional mean. 𝐿1 criteria has 
discontinuities – so rarely used in practice; more on this later.

What do we do when the output is a categorical variable G?

Our loss function can be represented by a K×K matrix L, 

where K = card(G). L will be zero on the diagonal and nonnegative 

elsewhere, where L(k, l ) is the price paid for classifying an 

observation belonging to class Gk as Gl. Most often we use the 

zero–one loss function, where all misclassifications are charged a 
single unit.



• The expected prediction error is

𝐸𝑃𝐸 = 𝐸[𝐿(𝐺,  𝐺(𝑋))],

where again the expectation is taken with respect to the joint 
distribution Pr(𝐺, 𝑋). Again we condition, and can write 𝐸𝑃𝐸 as.

𝐸𝑃𝐸 = 𝐸𝑋  𝑘=1
𝐾 𝐿[𝒢𝑘 ,

 𝐺(𝑋)]Pr(𝒢𝑘|𝑋)

Minimize EPE pointwise,  and simplifying, gets (check derivation):

• This reasonable solution is known as the Bayes classifier, and says 
that we classify to the most probable class, using the conditional 
(discrete) distribution Pr(𝐺|𝑋). 

• Figure 2.5 shows the Bayes-optimal decision boundary for our simulation 
example. The error rate of the Bayes classifier is called the Bayes rate.

With 0-1 loss, this simplifies to:



Bayes Optimal Classifier

FIGURE 2.5. The optimal Bayes decision boundary for the 
simulation example of Figures 2.1, 2.2 and 2.3.

Since the generating density is known for each class,
this boundary can be calculated exactly.



• That the 𝑘-nearest neighbor classifier directly approximates this 
solution—a majority vote in a nearest neighborhood amounts to 
exactly this, except that conditional probability at a point is 
relaxed to conditional probability within a neighborhood of a point, 
and probabilities are estimated by training-sample proportions.

• A regression procedure, followed by classification to the largest 
fitted value, is another way of representing the Bayes classifier
(see analytics in book)




