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Introduction

• How do we represent a text document or protein
sequence, which can be of variable length?

• One approach is to define a generative model for the data, 
and use the inferred latent representation and/or the
parameters of the model as features, and then to plug
these features in to standard methods

• Another approach is to assume that we have a way of
measuring the similarity between objects, that doesn’t  
require preprocessing them into feature vector format

• For example, when comparing strings, we can compute the 
edit distance between them
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Kernel functions
• We define a kernel function to be a real-valued function of 

two arguments, 𝜅(𝐱, 𝐱′) ∈ 𝑅, for𝐱,𝐱′ ∈ X.

• X is some abstract space

• Typically the function has the following properties:

• Symmetric

• Non-negative

• Can be interpreted as a measure of similarity

• We will discuss several examples of kernel functions
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RBF kernels
• Squared exponential kernel (SE kernel) or Gaussian kernel

• If 𝚺 is diagonal, this can be written as

We can interpret the 𝜎𝑗 as defining the characteristic length 

scale of dimension j

• If Σ is spherical, we get the isotropic kernel

An example of RBF  (Radial basis function) kernel (since it is a 
function of ||x – x’||) where 𝜎2 is known as the bandwidth
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Kernels for comparingdocuments

• If we use a bag of words representation, where 𝐱𝑖𝑗 is the

number of times words 𝑗 occurs in document 𝑖, we can use  
the cosine similarity

• Unfortunately, this simple method does not work very well
• Stop words (such as “the” or “and”) are not 

discriminative
• Similarity is artificially boosted when a discriminative 

word occurs multiple times
• Replace the word count vector with Term frequency 

inverse document frequency (TF-IDF)
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Kernels for comparingdocuments

• Define the term frequency as:

• This reduces the impact of words that occur many times 
with a document

• Define inverse document frequency where 𝑁 is the total 
number of documents

• Our new kernel has the form
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Kernels for comparingdocuments - Example
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Doc 𝑥

car 27

auto 3

insurance 3

best 14

df idf

car 18164 1.65

auto 6722 2.08

insurance 19240 1.63

best 25234 1.51

Doc tf tf-idf

car 1.45 2.39

auto 0.60 1.25

insurance 0.60 0.98

best 1.18 1.78

• The number of times
each word occurs in a 
particular document (𝑥𝑖𝑗) 

which belongs to a 
collection of 811,400 
documents and the 
number of documents 
in which each word 
occurs (document 
frequency) is given. 

• idf, tf, tf-idf are 
calculated

𝜙 𝑥 can be
used for 
comparing 
documents



Mercer (positive definite)kernels
• Gram matrix is defined as

• If the Gram matrix is positive definite for any set of inputs, 
the Kernel is a Mercer kernel

• Mercer’s theorem: If the Gram matrix is positive definite,
we can compute an eigenvector decomposition of it as
follows:

• where 𝚲 is a diagonal matrix of eigenvalues 𝜆𝑖 > 0
• Now consider an element of 𝐊
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Mercer (positive definite)kernels
• In general, if the kernel is Mercer, then there exists a 

function 𝜙 mapping 𝐱 ∈ 𝑋to𝑅𝐷such that

• For example, consider the (non-stationary) polynomial
kernel

If 𝑀 = 2, 𝛾 = 𝑟 = 1 and 𝐱, 𝐱′ ∈ 𝑅2, we have

This can be written as 𝜙 𝐱 𝑇𝜙 𝐱′ , where
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Linearkernels
• Deriving the feature vector implied by a kernel is in general 

quite difficult, and only possible if the kernel is Mercer.

• However, deriving a kernel from a feature vector is easy

• If 𝜑(𝐱) = 𝐱, we get the linear kernel, defined by 𝜅

• This is useful if the original data is already high dimensional, 
and if the original features are individually informative

• Not all high dimensional problems are linearly separable. 
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Matern kernels
• The Matern kernel, which is commonly used in Gaussian 

process regression

• Where 𝑟 = ||𝐱 − 𝐱′||, 𝜈 > 0, 𝓁 > 0, and 𝐾𝜈 is a modified 
Bessel function

• As 𝜈 → ∞, this approaches the SE  kernel. If 𝜈 = 1/2, the 
kernel simplifies to
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String kernels
• The real power of kernels arises when the inputs are 

structured objects.

• As an example, we now describe one way of comparing two 
variable length strings using a string kernel

• Consider two strings 𝐱 and 𝐱′ of lengths 𝐷, 𝐷’, each defined 
over the alphabet𝐴

• 𝐴 = {𝐴,𝑅,𝑁,𝐷,𝐶,𝐸,𝑄,𝐺,𝐻, 𝐼, 𝐿,𝐾,𝑀, 𝐹,𝑃,𝑆,𝑇,𝑊,𝑌,𝑉}

• Let x be the following sequence of length 110

• and let 𝐱 be the following sequence of length 153
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String kernels
• These strings have the substring LQE in common. We can 

define the similarity of two strings to be the number of 
substrings they have in common.

• Now let 𝜑𝑠(𝑥) denote the number of times that substring 𝑠
appears in string 𝑥

• More formally and more generally, let us say that s is a
substring of 𝑥 if we can write 𝑥 = 𝑢𝑠𝑣 for some (possibly
empty)  strings 𝑢, 𝑠and 𝑣.

• where 𝑤𝑠 ≥ 0 and 𝐴∗ is the set of all strings (of any 
length) from the alphabet 𝐴
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Using kernels insideGLMs
• We define a kernel machine to be a GLM (generalized 

linear model) where the input feature vector has the form

where 𝜇𝑘 ∈ 𝑋 are a set of 𝐾 centroids

• If κ is an RBF kernel, this is called an RBF network

• We will discuss ways to choose the 𝜇𝑘 parameters

• Note that in this approach, the kernel need not be a 
Mercer  kernel.

• We can use the kernelized feature vector for logistic 
regression by defining
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Using kernels insideGLMs
• This provides a simple way to define a non-linear decision

boundary

• As an example, consider the data coming from the
𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 𝑜𝑟 or 𝑥𝑜𝑟 function.
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Two classes of object which correspond to labels 0 and 1  
The inputs are colored shapes as shown in (a). These have 
been described by a set of 𝐷 features or attributes, which 
are stored in an 𝑁 × 𝐷 design matrix 𝑿, shown in (b).
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Design Matrix

Consider a simple toy example of classification



A function is fitted with 𝑁 data points with K uniformly 
spaced RBF prototypes (𝜇1 … 𝜇𝐾). The design matrix is a 
𝑁 × 𝐾 matrix given by:
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Design Matrix when a kernelized feature 
vector is used
RBF Kernel: Feature vector: 



Using kernels insideGLMs
• Use kernelized feature vector inside a linear regression
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L1VMs, RVMs, and other sparse vector
machines
• The main issue with kernel machines is: how do we choose 

the centroids μk?

• If the input is low-dimensional Euclidean space, we can
uniformly tile the space occupied by the data with 
prototypes

• However, this approach breaks down in higher numbers of
dimensions because of the curse of dimensionality

• A simpler approach is to make each example 𝐱𝑖 be a 
prototype, so we get

19



L1VMs, RVMs, and other sparse vector
machines
• Now 𝐷 = 𝑁, we have as many parameters as data points

• However, we can use any of the sparsity- promoting
priors for𝒘 to efficiently select a subset of the training
exemplars. We call this a sparse vector machine

• Most natural choice is to use L1 regularization resulting in L1VM
or “L1 regularised vector machine”

• By analogy, we define the use of an L2 regularizer to be a L2VM
or “L2-regularized vector machine”
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• Greater sparsity can be achieved by using Automatic relevance 
determination (ARD)/ sparse Bayesian learning (SBL) resulting 
in relevance vector machine or RVM

• Another very popular approach to creating a sparse kernel 
machine is to use a support vector machine or SVM

• Rather than using a sparsity-promoting prior, it essentially 
modifies the likelihood term. Nevertheless, the effect is
similar, as we will see

L1VMs, RVMs, and other sparse vector
machines
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Example of non-linear binary classification using an RBF kernel 
with bandwidth σ = 0.3. (a) L2VM with λ = 5. (b) L1VM with λ 
= 1. (c) RVM. (d) SVM with C = 1/λ chosen by cross validation. 
Black circles denote the support vectors
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Example of kernel based regression on the noisy sinc function using an RBF 
kernel with bandwidth 𝜎 = 0.3. (a) L2VM with 𝜆 = 0.5. (b) L1VM with 𝜆 = 0.5. (c) 
RVM. (d) SVM regression with 𝐶 = 1/𝜆 chosen by cross validation, and ϵ = 0.1. 
Red circles denote the retained training exemplars. 23



The kerneltrick
• Rather than defining our feature vector in terms of 

kernels, 𝝋(𝐱) = [𝜅(𝐱, 𝐱1), . . . , 𝜅 𝐱, 𝐱𝑁 ], we can work 
with the original feature vectors 𝐱, but modify the 
algorithm so that it replaces all inner products of the 
form < 𝐱, 𝐱’ > with a call to the kernel function, 𝜅(𝒙, 𝒙’)

• This is called the kernel trick.
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Kernelized nearest neighborclassification
• Recall that in a 1-NN classifier, we need to compute the

Euclidean distance of a test vector to all  the training
points, find the closest one, and look up its label

• This can be kernelized by observing that

• This allows us to apply the nearest neighbor classifier to
structured data objects.
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Kernelized K-medoids clustering
• This is similar to K-means, but instead of representing each 

cluster’s centroid by the mean of all data vectors assigned to 
this cluster, we make each centroid be one of the data 
vectors themselves

• When we update the centroids, we look at each object (𝑖) 
that belongs to the cluster (𝑘), and measure the sum of its 
distances to all the others in the same cluster; we then pick 
the one which has the smallest such sum

• Where 𝑧𝑖 is the cluster which 𝑖 belongs to

• This algorithm can be kernelized by using to replace the 
distance computation

26



Kernelized ridgeregression
• Applying the kernel trick to distance-based methods was 

straightforward

• It is not so obvious how to apply it to parametric models
such as ridge regression

• The primal problem

• Let 𝐱 ∈ 𝑅𝐷be some feature vector, and 𝐗 be the 
corresponding 𝑁 × 𝐷design matrix

• Minimize

• The optimal solution is given by
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Kernelized ridgeregression
• The dual problem

• Using the matrix inversion lemma 

• Takes 𝑂(𝑁3 + 𝑁2𝐷) time to compute. This can be 
advantageous if 𝐷 is large
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Proof for
• Start with

• Add to both sides

• Left-multiply both sides by and right-
multiply both sides by  

• Therefore
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Kernelized ridgeregression
• We can partially kernelize this, by replacing 𝐗𝐗𝑇with the 

Gram matrix𝐊

• But what about the leading 𝐗𝑇 term?

• Let us define the following dual variables:

• Then we can rewrite the primal variables as follows

• This tells us that the solution vector is just a linear sum 
of the 𝑁 training vectors. When we plug this in at test 
time to compute the predictive mean, we get
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Kernelized ridgeregression
• So we have successfully kernelized ridge regression by 

changing from primal to dual variables

• This technique can be applied to many other linear 
models, such as logistic regression

• The cost of computing the dual variables 𝜶 is 𝑂(𝑁3), 
whereas the cost of computing the primal variables 𝒘 is 
𝑂(𝐷3)

• However, prediction using the dual variables takes 
𝑂(𝑁𝐷) time, while prediction using the primal variables 
only takes 𝑂(𝐷) time
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Support vector machines(SVMs)
• Consider the 𝓁2 regularized empirical risk function

• If L is quadratic loss, this is equivalent to ridge regression

• We can rewrite these equations in a way that only 
involves inner products of the form 𝐱𝑇𝐱, which we can 
replace by calls to a kernel function, 𝜅(𝐱, 𝐱)

• This is kernelized, but not sparse

• If we replace the quadratic loss with some other loss 
function, we can ensure that the solution is sparse, so 
that predictions only depend on a subset of the training 
data, known as support vectors

• This combination of the kernel trick plus a modified loss
function is known as a support vector machine or SVM 32



SVMs for regression
• The problem with kernelized ridge regression is that the

solution vector𝒘 depends on all the training inputs

• We now seek a method to produce a sparse estimate

• Consider the epsilon insensitive loss function

• This means that any point lying inside an 𝜖-tube around the 
prediction is not penalized
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SVMs for regression

(a) Illustration of 𝓁2, Huber and 𝜖-insensitive loss functions, 
where 𝜖 = 1.5

(b) Illustration of the 𝜖-tube used in SVM regression. 
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SVMs for regression

• The corresponding objective function

• where ො𝑦𝑖 = 𝑓(𝐱𝑖) = 𝒘𝑇𝐱𝑖 + 𝑤0 and 𝐶 = 1/𝜆 is a 
regularization constant

• This objective is convex and unconstrained, but not 
differentiable, because of the absolute value function in 
the loss term
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SVMs forregression
• One popular approach is to formulate the problem as a 

constrained optimization problem

• In particular, we introduce slack variables to represent the
degree to which each point lies outside the tube

• We can rewrite the objective               
as follows:

• This is a quadratic function of 𝐰, and must be 
minimized subject to the linear constraints as well as 
the positivity constraints 𝜉𝑖

+ ≥ 0 and 𝜉𝑖
− ≥ 0
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SVMs for regression
• This is a standard quadratic program in 2𝑁 + 𝐷 + 1

variables.
• The optimal solution has the form

where 𝛼𝑖 ≥ 0

• Furthermore, it turns out that the 𝜶 vector is sparse, 
because we don’t care about errors which are smaller 
than 𝜖. The 𝐱𝑖 for which 𝛼𝑖 > 0 are called the support 
vectors. These are points for which the errors lie on or 
outside the 𝜖-tube
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SVMs for regression
• Once the model is trained, we can then make predictions

using

• Plugging in the definition of ෝ𝐰 we get

• Finally, we can replace 𝐱𝑖
𝑇𝐱 with 𝜅(𝐱𝑖 , 𝐱) to get a 

kernelized solution
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SVMs forclassification
• The Hinge loss is defined as

• We have assumed the labels are 𝑦 ∈ 1,−1 , 𝜂 = 𝑓(𝐱)
is our “confidence” in choosing label 𝑦 = 1; however, it 
need not have any probabilistic semantics

Illustration of various 
loss functions for 
binary classification. 
The horizontal axis is 
the margin η, the 
vertical axis is the 
loss. 
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SVMs forclassification
• The overall objective has the form

• Once again, this is non-differentiable, because of the max 
term. However, by introducing slack variables 𝜉𝑖, one can  
show that this is equivalent to solving

• This is a quadratic program in N + D + 1 variables, subject 
to 𝑂(𝑁) constraints. Standard solvers take 𝑂(𝑁3) time
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SVMs forclassification
• One can show that the solution has the form

• Where 𝜶 is sparse (because of the hinge loss)

• The𝒙𝑖 for which 𝛼𝑖 > 0 are called support vectors; these
are points which are either incorrectly classified, or are  
classified correctly but are on or inside the margin
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SVMs forclassification
• At test time, prediction is done using

• Using the kernel trick we have

This takes 𝑂(𝑠𝐷) time to compute, where 𝑠 ≤ 𝑁 is the 
number of support vectors. This depends on the sparsity 
level, and hence on the regularizer 𝐶
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The large marginprinciple

Illustration of the large margin principle
Left: a separating hyper-plane with large margin
Right: a separating hyper-plane with small margin
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The large marginprinciple

Illustration of the geometry of a 
linear decision boundary in 2d. A 
point 𝐱 is classified as belonging in 
decision region 𝑅1 if 𝑓(𝐱) > 0, 
otherwise it belongs in decision 
region 𝑅0; here 𝑓(𝐱) is known as a 
discriminant function. The 
decision boundary is the set of 
points such that 𝑓(𝐱) = 0. 𝒘 is a 
vector which is perpendicular to 
the decision boundary. The term 
𝑤0 controls the distance of the 
decision boundary from the origin. 
The signed distance of 𝐱 from its 
orthogonal projection onto the
decision boundary, 𝒙⊥, is given by 
𝑓(𝐱)/||𝒘||. 
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The large marginprinciple
• Here, we derive the Equation form a completely different 

perspective.

• where 𝑟 is the distance of 𝐱 from the decision boundary 
whose normal vector is 𝐰, and 𝒙⊥ is the orthogonal 
projection of 𝐱 onto this boundary

• Now so 

• Hence
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The large marginprinciple
• We would like to make this distance 𝑟 = 𝑓(𝐱)/||𝒘|| as

large as possible

• Intuitively, the best one to pick is the one that maximizes
the margin, i.e., the perpendicular distance to the closest
point

• In addition, we want to ensure each point is on the correct
side of the boundary, hence we want 𝑓(𝐱𝑖) 𝑦𝑖 > 0.

• So our objectivebecomes
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The large marginprinciple
• Our objective: 

• Note that by rescaling the parameters using𝒘 → 𝑘𝒘 and 
𝑤0 → 𝑘𝑤0, we do not change the distance of any point to  the
boundary, since the 𝑘 factor cancels out when we divide by
||𝒘||.

• Therefore let us define the scale factor such that 𝑦𝑖𝑓𝑖 = 1 for
the point that is closest to the decision boundary

• We therefore want to optimize

• The constraint says that we want all points to be on the correct
side of the decision boundary with a margin of at least 1
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Soft marginconstraints
• If the data is not linearly separable (even after using the

kernel trick), there will be no feasible solution in which
𝑦𝑖𝑓𝑖 ≥ 1 for all 𝑖.

• We replace the hard constraints with the soft margin
constraints that 𝑦𝑖𝑓𝑖 ≥ 1 − 𝜉𝑖.

• Our objective was:

• The new objective  becomes
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Soft marginconstraints
• We therefore have introduced
slack variables 𝜉𝑖 ≥ 0 such that
𝜉𝑖 = 0 if the point is on or
inside the correct margin
boundary, and 𝜉𝑖 = |𝑦𝑖 − 𝑓𝑖|
otherwise
• 0 < 𝜉𝑖 ≤ 1 the point lies
inside the margin, but on the
correct side of the decision
boundary
• If 𝜉𝑖 > 1, the point lies on the
wrong side of the decision
boundary
• Points with circles around 
them are support vectors.
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Probabilisticoutput
• An SVM classifier produces a hard-labeling, 𝑦(𝐱) =
𝑠𝑖𝑔𝑛(𝑓(𝐱)).

• However, we often want a measure of confidence in our
prediction

• One heuristic approach is to interpret 𝑓(𝐱) as the log-odds 
ratio, log(𝑝(𝑦 = 1|𝐱)/𝑝(𝑦 = 0|𝐱) )

• where a, b can be estimated by maximum likelihood on a 
separate validation set

• However, the resulting probabilities are not particularly 
well calibrated
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Probabilisticoutput

Log-odds vs x for 3 different methods

Suppose we have 1d data where p(x|y = 0) =Unif(0, 1) and p(x|y = 1) 
= Unif(0.5, 1.5). Since the class-conditional distributions overlap in 
the middle, the log-odds of class 1 over class 0 should be zero in [0.5, 
1.0], and infinite outside this region.
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SVMsfor multi-class classification
• A binary logistic regression model is “upgraded” to the 

multi-class case, by  replacing the sigmoid function with
the softmax, and the Bernoulli distribution with the
multinomial.

• Upgrading an SVM to the multi-class case is not so easy, 
since the outputs are not on a calibrated scale and hence  
are hard to compare to eachother

• The obvious approach is to use a one-versus-the-rest 
approach (also called one-vs-all), in which we train 𝐶 binary  
classifiers, 𝑓𝑐(𝐱), where the data from class 𝑐 is treated as 
positive, and the data from all the other classes is treated  
as negative
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SVMsfor multi-class classification
• However, this can result in regions of input space which 

are ambiguously labeled.

• The green region is predicted to be both class 1 and class 
2.
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SVMsfor multi-class classification
• Another approach is to use the one-versus-one or OVO

approach, also called all pairs, in which we train C(C−1)/2  
classifiers to discriminate all pairs 𝑓𝐶,𝐶′

• We then classify a point into the class which has the 
highest number of votes. However, this can also result in 
ambiguities

54



ChoosingC
• Typically C  is chosen by cross-validation.

• C  interacts quite strongly with the kernelparameters.

• To choose C  efficiently, one can develop a path following 
algorithm 

• The basic idea is to start with λ large, so that the margin
1/||𝒘(𝜆)|| is wide, and hence all points are inside of it
and  have 𝛼𝑖 = 1

• By slowly decreasing λ, a small set of points will move
from inside the margin to outside, and their 𝛼𝑖 values
will  change from 1 to 0, as they cease to be support
vectors
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SVM vs. Other Methods
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SVM classifier break-even F1 results are shown for the 10 
largest categories and for micro-averaged performance 
over all 90 categories on the Reuters-21578 data set. 
(https://nlp.stanford.edu/IR-
book/html/htmledition/experimental-results-1.html)

https://nlp.stanford.edu/IR-book/html/htmledition/experimental-results-1.html


Summary of key points
• Summarizing the above discussion, we recognize that SVM 

classifiers involve three keyingredients:

• The kernel trick : prevent underfitting

• Sparsity, large margin principle : prevent overfitting
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