

OpenGL pipeline Evolution

and
OpenGL Shading Language (GLSL)

Part 1/3

Prateek Shrivastava
CS12S008

shrvstv@cse.iitm.ac.in 1

INTRODUCTION
 OpenGL Shading Language (GLSL)

• "mini-programs" written in GLSL are often referred
to as shader programs, or simply shaders.

• GLSL programs don't stand on their own, they must
be a part of a larger program.

• Shaders can be used for algorithms related to

– Lighting.

– Shading (coloring).

– Tessellation.

– Generalized computation.

– Performing animation.

2

SIMPLIFIED PIPELINE MODEL

3

• Application will provide vertices, which are collections of data that are
composed to form geometric objects, to the OpenGL pipeline. The vertex
processing stage uses a vertex shader to process each vertex, doing any
computations necessary to determine where in the frame buffer each
piece of geometry should go.

• After all the vertices for a piece of geometry are processed, the rasterizer
determines which pixels in the frame buffer are affected by the geometry,
and for each pixel, the fragment processing stage is employed, where the
fragment shader runs to determine the final color of the pixel.

Evolution of OpenGL

4

Primitive
Setup and

Rasterization

Fragment
Coloring and

Texturing
Blending

Vertex
Data

Pixel
Data

Vertex
Transform

and Lighting

Texture
Store

OpenGL 1.0 pipeline

OpenGL 1.0 was released on July 1st, 1994
• Its pipeline was entirely fixed-function.
• The only operations available were fixed by the implementation.

The pipeline evolved, but remained fixed-function through OpenGL
versions 1.1 through 2.0 (Sept. 2004)

5

Primitive
Setup and

Rasterization

Fragment
Coloring and

Texturing
Blending

Vertex
Data

Pixel
Data

Vertex
Transform

and Lighting

Texture
Store

OpenGL 2.0 pipeline

OpenGL 2.0 (officially) added programmable shaders
• vertex shading enabled the application full control over manipulation

of the 3D geometry provided by the application.
• fragment shading provided the application capabilities for shading

pixels (pixel’s color).

However, the fixed-function pipeline was still available

Depreciation Model
• OpenGL 3.0 introduced the deprecation model

– the method used to remove features from OpenGL

• The pipeline remained the same until OpenGL 3.1
(released March 24th, 2009)

• OpenGL uses an opaque data structure called a context,
which OpenGL uses to store shaders and other data.

6

Context Type Description

Full
Includes all features (including those marked
deprecated) available in the current version of
OpenGL

Forward Compatible
Includes all non-deprecated features (i.e.,
creates a context that would be similar to the
next version of OpenGL)

What we can’t do ?

• Any use of the fixed function vertex or
fragment operations; shaders are mandatory.

• Use of glBegin/glEnd and Display lists to
define primitives; vertex arrays and vertex
buffers for geometry.

• Use of quad or polygon primitives; only
triangles.

• Use of most of the built-in attribute and
uniform variables in GLSL; pass them
manually to shaders.

 7

8

Primitive
Setup and

Rasterization

Fragment
Shader

Blending

Vertex
Data

Pixel
Data

Vertex
Shader

Texture
Store

OpenGL 3.1 pipeline

• OpenGL 3.1 removed the fixed-function pipeline programs

were required to use only shaders.

• Almost all data is GPU-resident

• All vertex data sent using buffer objects.

Vertex Shaders

• The main application of vertex shaders is to
change the vertices of the primitives you
already have defined and to setup variables
such as lightening that depend of the vertices.

• The vertex shader is a one vertex in, one
vertex out process, and it can't create more
vertices.(Geometry and Tessellation shaders
do that)

9

Vertex Shader

10

Fragment Shader

11

• Discarding Pixels
• Anisotropic Shading
• Data Driven Shading

12

Primitive
Setup and

Rasterization

Fragment
Shader

Blending

Vertex
Data

Pixel
Data

Vertex
Shader

Texture
Store

Geometry
Shader

OpenGL 3.2 pipeline

OpenGL version 3.2 added a new shader stage called
geometry shading which allows the modification
(and generation) of geometry within the OpenGL
pipeline.

Context Profiles

13

• OpenGL 3.2 also introduced context profiles

– profiles control which features are exposed

• it’s like GL_ARB_compatibility

– currently two types of profiles: core and
compatible

Context Type Profile Description

Full
core All features of the current release

compatible All features ever in OpenGL

Forward
Compatible

core All non-deprecated features

compatible Not supported

Geometry Shader

14

OpenGL 4.3 pipeline

15

Primitive
Setup and

Rasterization

Fragment
Shader

Blending

Vertex
Data

Pixel
Data

Vertex
Shader

Texture
Store

Geometry
Shader

Tessellation
Control
Shader

Tessellation
Evaluation

Shader

Released at SIGGRAPH 2012.

OpenGL Programming in a Nutshell

• Modern OpenGL programs essentially do the
following steps:

1. Create shader programs

2. Create buffer objects and load data into them

3. “Connect” data locations with shader variables

4. Render

16

REFERENCES

• SIGGRAPH 2012 Course : Introduction to
Modern OpenGL-Ed Angel University of New
Mexico, Dave Shreiner ARM.

• Graphics Shaders :Theory and Practice 2nd
edition, Mike Bailey,Steve Cunningham CRC
Press.

17

