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Models

Discrete Model:
* Polygon mesh is constructed.
* Particles (or mass) nodes at vertices of mesh.

Continuous Model:

e Use continuum mechanics to model
deformable objects



Mass Spring System

t is a Discrete Model.

t consist of point masses connected by mass-
ess springs.

Mesh Structure
Types of Springs — structural, shear.
Springs are modeled as linear elastic.



Mass Spring System

* Spring Force

fsij = ks (|x; — x| = 1;))

(% — x;)

\%—xﬂ

where, f;; is spring force acting on node i by spring
between i and j, k; is spring’s stiffness, [;; is rest length
of string between node i & j, x;, x; are the node
positions of i and j.



Mass Spring System

* Damping Force
faij = kq (v; —v;)

[— (vj —vi)- (% — x)] (% — x:)
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where, f;;;is damping force acting on node i by spring
betweeniandj, k  is spring’s damping coefficient,
v;, v; are the node velocities of i and j.



Mass Spring System

* Net Force

freti = Zfsij + Zfdij + Sfexti
J J

where, f.,¢; is the external force on node i, f, ¢ is the
net force.

e Position: x(t+At) = x(t) + At v(t+At)

+ Velocity: v(t+At) = v(t)+ At 1retd

m;i



Mass Spring System
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Finite Element Method

It is a continuous method.

Mesh can be regular or irregular.

Nodes in mesh contains mass.

First the deformation energy is determined.

Forces on nodes are calculated as derivative of
deformation energy.



Deformation Function

Deformation Function gives the relationship between each
material point and its deformed location.

%= ¢(X)
p(X)=FX+ ¢
g 99X
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where, ¢ () is the deformation function (or deformation map),

X is the original reference state,
X is the deformed state,
F is the deformation gradient.



Deformation Function

Reference Configuration
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Deformed Configuration



Deformation Gradient Calculation

We have, x = qb()_()) =FX+ ¢

One of the method to represent deformable object is
tetrahedral mesh. In each tetrahedron, the vertices satisfy,

= ¢(X) =FX; + t

So we have,

= ¢(X,) = FX, +
%, = ¢(X,) = FX, +
= ¢(X;) = FX; +
%= ¢(Xy) = FX, +

X| — Xyq = F(X1 X4)
=> X, — X, = F(X2 X4)
X3 — X4 = F(X3 X4)
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Deformation Gradient Calculation

* Previous expression can be written as,
D, = FD.
* where,D, is termed as deformed shape matrix,
D, is termed as reference shape matrix
* So, we have deformation gradient as,

F = D,D, *



Strain Measure

Strain measure shows how far current configuration is from
rest configuration. It is derived from deformation gradient.

Green Strain Measure
1
E = 5 (FFT — 1)

Small Strain Measure

1
E = E (F + FT) — 1
where, | represents rest configuration

F is the deformation gradient.



Linear model

Strain Energy Density
Y(F) = pe? + 3 tr¥(e)
First Piola Stress

oY(F)
P(F) = Y

P(F) = 2ue + Atr(e)I
P(F) = wW(F+FT =2D) + Atr(F — DI
where, pand A are Lame’ constants

€ is the small strain measure
F is the deformation gradient.



St. Venant-Kirchhoff model

Strain Energy Density

W(F) = pE? + 2 tr?(E)
First Piola Stress

P(F) = F[2uE + Atr(E)I]
where, pand A are Lame’ constants

E is the green strain measure
F is the deformation gradient.



Strain Energy

Strain Energy Density, Y (F), denotes the strain energy per
unit deformed volume.

Total Strain Energy is calculated by integrating energy density
function, over the entire domain as,

E[$] = [W(F) dX

Strain Energy on discrete nodes

Elx] = E[p]| = [¢(F) dX
Force acting on nodes can be calculated as
0E (x)

f: 0x




Force

Total Energy of body is sum of strain energy (E) and kinetic
energy (K) as

1
Etorar = E(x) + K(v) = E(x) + XiZ; 5 myvy|?

Total energy of body is conserved over time, thus

aEtotal

ot =0

0E (x )
Iivzl [ ai ) vl + m; al vl] = (0, where N is total nodes.
l

JE (x) .
P - 6E X
fi = mia; = x) wherefl is force on node i.

0X;



Steps in Finite Element Method

09 (X)

e Deformation Gradient: F = =

* Internal Force: f =

0X

* Green Strain Measure: E = % (FFT =)

e Strain Energy Density: Y(F) = pE? + % tr?(E)
e Strain Energy: E[¢] = [ Y(F) dX

e Discrete Strain Energy: E[x] = E[QB] = fl/)(ﬁ) dX

0E (x)
dx
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