OPERATING SYSTEMS
CS3500

PROF. SUKHENDU DAS DEPTT. OF COMPUTER SCIENCE
AND ENGG,, IIT MADRAS, CHENNAI - 600036.

Email: sdas@cse.iitm.ac.in
URL: http://www.cse.iitm.ac.in/~vplab/os.html

OCT.-2022.

VM_II

PAGE REPLACEMENT

WHAT HAPPENS IFTHERE IS NO FREE FRAME?

* Used up by process pages
* Also in demand from the kernel, I/O buffers, etc
e How much to allocate to each?

* Page replacement — find some page in memory, but not really in use, page it
out

* Algorithm — terminate? swap out! replace the page!

* Performance — want an algorithm which will result in minimum number

of page faults

* Same page may be brought into memory several times

PAGE REPLACEMENT

* Prevent over-allocation of memory by modifying page-fault service

routine to include page replacement

* Use modify (dirty) bit to reduce overhead of page transfers — only

modified pages are written to disk

* Page replacement completes separation between logical memory and

physical memory — large virtual memory can be provided on a smaller

physical memory

NEED FOR PAGE REPLACEMENT

frame valid-invalid
N/ bit e
w
0 A 6| v
PE—>
1 B > [
2 C 3| v
3 D 2| v. .
logical memory page table for 0 | kernel
2 D ;
3| c 2"
frame valid-invalid 4 =
N/ bit n
5 H
0 E 7\ v
1| F 4| v Gl &
ol @ i 7] E e
3 H S| v, pingsical mmacy backing store
logical memory page table for

for process 2 process 2

BASIC PAGE REPLACEMENT

|. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement algorithm to select a
victim frame
- Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the page and

frame tables

4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault — increasing EAT;

Use dirty bit to swap out contents (for code, say ?)

PAGE REPLACEMENT

frame valid—invalid bit
T 2
swap out
change victim
0 |i to invalid @ page
flv /
@ f| victim ©
reset page
table for o
page table
hew page @ —_— \
desired
page in

physical
memory

PAGE AND FRAME REPLACEMENT ALGORITHMS

* Frame-allocation algorithm determines

* How many frames to give each process

* Which frames to replace

* Page-replacement algorithm
* Want lowest page-fault rate on both first access and re-access
* Evaluate algorithm by running it on a particular string of memory references
(reference string) and computing the number of page faults on that string
* String is just page numbers, not full addresses
* Repeated access to the same page does not cause a page fault

* Results depend on number of frames available

* In all our examples, the reference string of referenced page numbers is

7,01 20,3,04,230,3,0,3,2,1,2,0,1, 7,0, 1

GRAPH OF PAGE FAULTS VERSUS THE NUMBER OF FRAMES

—
(@)

—t
BN
#‘

—_
]

—
o

number of page faults

N A~ O @

1 2 3 4 5 6
number of frames

FIRST-IN-FIRST-OUT (FIFO) ALGORITHM
* Referencestring: 7, 0, 1, 2,0, 3, 0,4, 2,3,0,3,0,3,2,1,2,0,1, 7, 0, 1

* 3 frames (3 pages can be in memory at a time per process)

reference string
7 01 2 0 3 0 4 2 3 0 3 2 1 2 01 7 01

7| |7 |7| |2 2| |2| |4| |4| 4| |O 0| |0 7| |7| |7
0| (0| |0 3| [3] |3 2] |2] |2 1] |1 1 |10(|0
1| |1 1| |0| |0f |O] (3] |3 3| |2 2| (2] |1

page frames
15 page faults
 Can vary by reference string: consider 1, 2, 3,4, 1, 2, 5, 1, 2, 3, 4, 5
* Adding more frames can cause more page faults!

« Belady’'s Anomaly

* How to track ages of pages!?

* Just use a FIFO queue

FIFO ILLUSTRATING BELADY SANOMALY

—_
o
|

number of page faults

N P~ (@) (00
|

OPTIMALALGORITHM

* Replace page that will not be used for longest period of time

* #page faults =. ? is optimal for the example, better than FIFO

* How do you know this!?

e Can't read the future

* Used for measuring how well your algorithm performs

reference string
7 012 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7| |7] |7] |2 2 2 2 2 7
0| (0] |0 0 4 0 0 0
1 |1 3 3 3 1 1

page frames

LEAST RECENTLY USED (LRU) ALGORITHM

* Use past knowledge rather than future
* Replace page that has not been used in the most amount of time
* Associate time of last use with each page

reference string
/7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

i i I 2 4, 14| (4| (O 1 1 1
Of (O] |O 0 Ol 0 B |8 3 0 0
. 3 gl = e 2 2 7

page frames

. . faults (?)
— better than FIFO but worse than OPT

* Generally good algorithm and frequently used

* But how to implement?

LRU ALGORITHM (CONT.)

* Counter implementation

* Every page entry has a counter; every time page is referenced through this

entry, copy the clock into the counter
* When a page needs to be changed, look at the counters to find smallest value

* Search through table needed

* Stack implementation
* Keep a stack of page numbers in a double link form:
* Page referenced:
* move it to the top
* requires 6 pointers to be changed

* But each update more expensive

* No search for replacement

LRU ALGORITHM (CONT.))

* LRU and OPT are cases of stack algorithms that don’t have Belady's

Anomaly

* Use of A Stack to Record Most Recent Page References
reference string

4 ¢ 0 7 1 0 1 2 1 2 7 1 2

before

LRU APPROXIMATION ALGORITHMS

* LRU needs special hardware and still slow

* Reference bit
* With each page associate a bit, initially = 0
* When page is referenced bit set to |
* Replace any with reference bit = 0 (if one exists)
* We do not know the order, however.

* Additional Reference bits used too — use K-bit Shift Reg; least No. replaced

* Second-chance algorithm
* Generally FIFO, plus hardware-provided reference bit
* “Clocl’’ replacement algo.
* If page (victim) to be replaced has
* Reference bit = 0 -> replace it

* reference bit = | then:

* set reference bit 0, leave page in memory

next :‘
victim 1

SECOND-CHANCE

ALGORITHM

reference pages

bits

0

0

~

= = =

v

_/

circular queue of pages

(a)

reference pages

bits

0

0

~

= = =

v

_/

circular queue of pages

(b)

ENHANCED SECOND-CHANCE ALGORITHM

* Improve algorithm by using reference bit and modify bit (if available) in

concert

* Take ordered pair (reference, modify):
* (0, 0) neither recently used not modified — best page to replace

* (0, I) not recently used but modified — not quite as good, must write out

before replacement
* (I,0) recently used but clean — probably will be used again soon
* (I, 1) recently used and modified — probably will be used again soon and

need to write out before replacement

* When page replacement called for; use the clock scheme but use the four

classes - replace page in lowest non-empty class

* Might need to search circular queue several times

COUNTING ALGORITHMS

* Keep a counter of the number of references that have been made to each page

* Not common

* Lease Frequently Used (LFU) Algorithm:

* Replaces page with smallest count — page heavily used and then idle in
memory for a long time; Solution — use SR - exponentially decaying average

usage count.

* Most Frequently Used (MFU) Algorithm:

* Based on the argument that the page with the smallest count was probably just

brought in and has yet to be used

* Both not commonly used

PAGE-BUFFERING ALGORITHMS-

Typically used as additional measures with PRA, for enhancement of performance.

Keep a pool of free frames, always

* Then frame available when needed; But, Page fault forces to locate a free &
victim frames

* Read page into free frame and select victim to evict and add to free pool

* When convenient, evict victim

Possibly, keep list of modified pages

* When backing store otherwise idle, write pages there and set modify bit to

non-dirty

Possibly, keep free frame contents intact and note what is in them
* If referenced again before reused, no need to load contents again from disk

* Generally useful to reduce penalty if wrong victim frame selected

APPLICATIONS AND PAGE REPLACEMENT

All of these algorithms have OS guessing about future page access
Some applications have better knowledge — i.e. databases

Memory intensive applications can cause double buffering
* OS keeps copy of page in memory as |/O buffer
* Application keeps page in memory for its own work
Operating system can given direct access (ie the ability to use a secondary

storage partition as a large sequential array of logical blocks) to the disk,

getting out of the way of the applications

* Raw disk mode — not like conventional File system access

Bypasses buffering, locking, etc.

