Overview of Supervised
Learning

Chap—2;-Part- Il

T. Hastie, R.Tibshirani, J. Friedman, "The Elements of Statistical
Learning: Data Mining, Inference and Prediction", Springer Series in
Statistics, 2009

Local Methods in High Dimensions

« Two learning techniques for prediction so far: the stable but biased linear model and
the /ess stable but apparently less biased class of k-nearest-neighbor estimates.

« It would seem that with a reasonably large set of training data, we could always
approximate the theoretically optimal conditional expectation by k-nearest-neighbor

averaging, since we should be able to find a fairly large neighborhood of observations
close to any x and average them.

« This approach and our intuition breaks down in high dimensions, and the
phenomenon is commonly referred to as the curse of dimensionality.

Local Methods in High Dimensions

Unit Cube - | i |

)
0.8
N W

-
-~
r '

1

]
.I
\
Distance
0.6

0.4

0.2

-

) .2 0.4 .6
Neighborhood ao 0 0

Fraction of Volume

FIGURE 2.6. The curse of dimensionality is well illustrated by a sub-cubical
neighborhood for uniform data in a unit cube. The figure on the right shows the side-
length of the sub cube needed to capture a fraction r of the volume of the data, for
different dimensions p. In ten dimensions we need to cover 80% of the range of each
coordinate to capture 10% of the data.

« Construct another uniform example. Suppose we have

1000 training examples x; generated uniformly on [-1,1]p.
Assume that the true relationship between X and Y is

Y = () = eslil,

without any measurement error. We use the 1 —nearest-neighbor
rule to predict y, at the test-point x, = 0. Denote the training set
by 7.

Compute the expected prediction error at x, for our
procedure, averaging over all such samples of size 1000. The mean
squared error (MSE) for estimating f(0):

(MSE(XO) = Ef [f(xo) - 5;0]2
= Ez[90 —EzP)I* + [E- (o) — f(x)]? 225
= Vary;($,) + Bias*(§,)

~N

_

1-NN in One Dimension T1-NN in One vs. Two Dimensions

Z

10

05

Local Methods in
High Dimensions

(X)

X2
00

05

00 02 04 06 08 1D

10

T T
-0.5 0.0 0.5 1.0

-1.0 X X X
MSE vs. Dimensiaon

Distance to 1-NN vs. Dimension _
Varnenco

Average Distan: 1o Nearest Nelghtor

00 02 04 06 08

2 4a 6 a 10

Dimension [IETIass

FIGURE 2.7. A simulation example, demonstrating the curse of dimensiona and its

effect on MSE, bias and variance. The input features are uniformly distributed in [-1,1]" for

p = 1,...,10. The top left panel shows the target function (no noise) in R: f(X) = e—8|'X'|2 ,

and demonstrates the error that 1 —nearest neighbor makes in estimating f(0). The
training point is indicated by the blue tick mark. The top right panel illustrates why the
radius of the 1 —nearest neighborhood increases with dimension p. The lower left panel
shows the average radius of the 1 —nearest neighborhoods. The lower-right panel shows
the MSE, squared bias and variance curves as a function of dimension p.

In Figure 2.7 the MSE is broken down into two components -
variance and squared bias. Such a decomposition is always
possible and often useful, and is known as the bias-variance
decomposition.

As the dimension increases, the nearest neighbor tends to stray
further from the target point, and both bias and variance are
incurred. By p = 10, for more than 99% of the samples the
nearest neighbor is a distance greater than 0.5 from the origin. As
p increases, the estimate tends to be 0 more often than not, and
hence the MSE levels off at 1.0, as does the bias, and the variance
starts dropping.

Similar phenomena occur more generally. The complexity of
functions of many variables can grow exponentially with the
dimension, and if we wish to be able to estimate such functions
with the same accuracy as function in low dimensions, then we
need the size of our training set to grow exponentially as well.

1-NN in One Dimension MSE vs. Dimension

MSE
o Variance 4
” o - 5q Bas E
=
g =~ - ;
°"m—1—'—-- L1 L 3-0'0::0".: :
10 05 0.0 05 1.0 2 4 3] 10
X DImersion
FIGURE 2.8. A simulation example with the same setup as in Figure 2.7. Here
the function is constant in all but one dimension: F(X) = 3(X: + 1)*. The

vanance dominates.

« If the function always involves only a few dimensions as in Figure 2.8, then the
variance can dominate instead.

« Suppose, on the other hand, that we know that the relationship between Y and
X is linear,

Y = X"B +¢

where ¢ ~ N(0,0%) and we fit the model by least squares to the training data. For
an arbitrary test point x,, we have y = xT,, which can be written as

y = xTO,B + Zliv=1£i (xo)€;

where #,(x,) is the it* element of X(X7X) 1x,.

Y = XTB + ¢,

where ¢,(x,) is the it* element of X(X"X) 1x,

y = xTO,B + Z?’=1’€i (x0) €,

E, iz Er(yo — o}

1'|.'i£|_.]_' |:I T-I' n |-I':[| 'lI + E,.l- -_:I';,I_I . E T -:LI" I] 2 -—
1'|-':I.1|:L|.[||_|.[|| —1'|'.J.1'1'|:L||}|']:rlEl..:n |1I,||||
o + B (XX X)) tape™ + 07,

ok

2.27

If N is large and T were selected at random, and assuming E(X) = 0,

then XTX -> NCov(X) and

Ex EPE(x,) ~ Ex,xo Cov(X) ™ xy52/N + 0”
= trace[Cov(X)~1Cov(x,)]52/N + o2

= o%(p/N) + o2 2.28

- we see that the expected EPE increases linearly as a function of p,with slope ¢2/N.
If N is large and/or o2 is small, this growth in variance is negligible (0 in the
deterministic case). By imposing some heavy restrictions on the class of models
being fitted, we have avoided the curse of dimensionality.

Expected Prediction Error of 1NN vs. OLS

Expected Prediction Error of 1NN vs. OLS

<]

Dimension

« FIGURE 2.9. The curves show the expected prediction error (at x, = 0) for
1 —nearest neighbor relative to least squares for the model Y = f(X) +¢. For the

blue curve, f(x) = x,, while for the orange curve f(x) = %(x1 + 1)3.

Figure 2.9 compares 1 —nearest neighbor vs. Least squares in two situations,
both of which have the form Y = f(X) + & X uniform as before, and ¢~N(0,1). The
sample size is N = 500.

For the blue curve, f(x) is linear in the first coordinate, for the orange curve, cubic
as in Figure 2.8. Shown is the relative EPE of 1-nearest neighbor to least squares,
which appears to start at around 2 for the linear case. Least squares is unbiased in
this case, and as discussed above the EPE is slightly above ¢? = 1.

The EPE for 1-nearest neighbor is always above 2, since the variance of f(x,) in
this case is at least ¢2, and the ratio increases with dimension as the nearest
neighbor strays from the target point. For the cubic case, least squares is biased,
which moderates the ratio. Clearly we could manufacture examples where the bias
of least squares would dominate the variance, and the 1-nearest neighbor would
come out the winner.

Statistical Models, Supervised Learning and
Function Approximation

Squared error loss lead us to the regression function f(x) =

E(Y |X = x)for a quantitative response. The class of nearest-
neighbor methods can be viewed as direct estimates of this
conditional expectation, but we have seen that they can fail in at
least two ways:

% If the dimension of the input space is high, the nearest
neighbors need not be close to the target point, and can
result in large errors;

% If special structure is known to exist, this can be used to
reduce both the bias and the variance of the estimates.

A Statistical Model for the Joint Distribution Pr(X,Y)

« Suppose in fact that our data arose from a statistical model.
Y = f(X) + ¢

where the random error e has E(¢) = 0 and is independent of X.
Note that for this model, f(x) = E(Y |X = x),and in fact the
conditional distribution Pr(Y |X) depends on X only through the
conditional mean f(x).

« The additive error model is a useful approximation to the truth. For
most systems the input-output pairs (X,Y) will not have a
deterministic relationship Y = f(X). Generally there will be other
unmeasured variables that also contribute to Y , including
measurement error. The additive model assumes that we can

capture all these departures from a deterministic relationship via
the error «.

Supervised Learning

Assume a training set of observations T = (xi,yi),i = 1,...,N.
The observed input values to the system x; are also fed into
an artificial system, known as a learning algorithm (usually a
computer program), which also produces outputs f(xi) in
response to the inputs. The learning algorithm has the
property that it can modify its input/output relationship f in
response to differences y, — f(x;) between the original and
generated outputs.

This process is known as learning by example. Upon
completion of the learning process the hope is that the
artificial and real outputs will be close enough to be useful
for all sets of inputs likely to be encountered in practice.

Function Approximation

« The approach taken in applied mathematics and statistics has
been from the perspective of function approximation and
estimation. Here the data pairs {x;, y;} are viewed as points in a
(p + 1)-dimensional Euclidean space. The function f(x) has domain
equal to the p-dimensional input subspace, and is related to the
data via a model y, = f(x;) + ¢,. Although somewhat less
glamorous than the learning paradigm, treating supervised
learning as a problem in function approximation encourages the
geometrical concepts of Euclidean spaces and mathematical
concepts of probabilistic inference to be applied to the problem.

« Many of the approximations we will encounter have associated a
set of parameters 6 that can be modified to suit the data at hand.
For example, the linear model f(x) = xTB has 8 = 5. Another class
of useful approximates can be expressed as linear basis
expansions.

fO(x) = Zlk(=1 h,.(x)6,,

where the h, are a suitable set of functions or transformations of
the input vector x. Traditional examples are polynomial and
trigonometric expansions, where for example h, might be x?, x;x3,
cos(x;) and so on. Encounter nonlinear expansions, such as the
sigmoid transformation common to neural network models,

h,(x) =

1
1+exp(—xT By)

We can use least squares to estimate the parameters 6 in f, as we
did for the linear model, by minimizing the residual sum-of
squares

RSS(0) = Xi=1(vi — fo(x:))?

« As a function of 6 This seems a reasonable criterion for an additive
error model. In terms of function approximation, we imagine our
parameterized function as a surface in p + 1 space, and what we
observe are noisy realizations from it. This is easy to visualize
when p = 2 and the vertical coordinate is the output y, as in Figure
2.10. The noise is in the output coordinate, so we find the set of
parameters such that the fitted surface gets as close to the
observed points as possible, where close is measured by the sum
of squared vertical errors in RSS(6).

« For the linear model we get a simple closed form solution to the
minimization problem. This is also true for the basis function
methods, if the basis functions themselves do not have any hidden
parameters. Otherwise the solution requires either iterative
methods or numerical optimization.

« While least squares is generally very convenient, it is not the only
criterion used and in some cases would not make much sense.

Statistical Models, Supervised Learning and
Function Approximation

2.6 Statistical Models, Supervised Learning and Function Approximation 31

« FIGURE 2.10. Least squares fitting of a function of two inputs.
The parameters of f,(x) are chosen so as to minimize the sum-of-
squared vertical errors.

Basis Functions and Dictionary Methods

Radial basis functions are symmetric p-dimensional kernels located
at particular centroids,

fo(x) = K, (Umy X) O

_ _IIx—ull2 _
For example, the Gaussian kernel Ky(u,x) = e~ 22 is popular.

Radial basis functions have centroids u,, and scales A, that have to
be determined. The spline basis functions have knots.

A single-layer feed-forward neural network model with linear

output weights can be thought of as an adaptive basis function
method. The model has the form

fo(x) = Xm=1Bmo(amx + bm),

Model Selection and the Bias—Variance
Tradeoff

« All the models described above and many others discussed in later chapters
have a smoothing or complexity parameter that has to be determined:
% the multiplier of the penalty term;

% the width of the kernel;
% or the number of basis functions.
« The data arise from a model Y = f(X) + & with E(¢) = 0and

Var(e) = o*. The expected prediction error at x,, also known as test or
generalization error, can be decomposed:

EPE, (x,) = E[(Y — fk(xo)) ZLX = Xo] A
= 0% + [Bias®(f(xy)) + Vary (f;(xy))] 2.46

=% + [f(xo) — %Z?zlf (X(f))r + %2. 2.47

. The first term o? is the irreducible Error.

« The second and third terms are under our control, and make up the mean
squared error (MSE) of f,(x,) in estimating f(x,), which is broken down
into a bias component and a variance component.

« The bias term is the squared difference between the true mean f(x,) and

~ 2
the expected value of the estimate [ET (fk (XO)) — f(xo)]

—where the expectation averages the randomness in the training data. This
term will most likely increase with k, if the true function is reasonably
smooth. For small k the few closest neighbors will have values f(x ,) close to
f(x,), so their average should close to f(x,). As k grows, the neighb)ors are
further away, and then anything can happen.

- The variance term decreases as the inverse of k. So as k varies,
there is a bias—-variance tradeoff.

« More generally, as the model complexity of our procedure is
increased, the variance tends to increase and the squared bias
tends to decrease. The opposite behavior occurs as the model
complexity is decreased. For k-nearest neighbors, the model
complexity is controlled by k.

« Typically we would like to choose our model complexity to trade
bias off with variance in such a way as to minimize the test error.
An obvious estimate of test error is the training error

%Zi(yi — ¥,)%. Unfortunately training error is not a good estimate
of test error, as it does not properly account for model complexity.

bias low, varance low bias high,
variance low

bias low, bias high,

variance high varnance high

Accuracy is a description of bias; a sample will appear accurate (i.e. have low bias),
but may result in underfitting.

Precision is a description of variance - may also result in an overreliance on the
training data (overfitting).

9

Ep. [(y — f(z; D))] = (Bia-s_a f (3 D’]])L + Varp [f (z; D)] + o2

where

-

Biasp [f (z; D]] = Ep [.f (z; D) — f{J}] = Ep [f {:ﬂﬁﬂﬂ — b ['S’U}]

and

2

Varp [f (z; D)] = Ep[(Eplf (z; D)] — f (z; D))"].

The expectation ranges over different choices of the training set D =

Var[X] = E[X?] - E[X]%.

Rearranging, we get:
E[X?] = Var[X] + E[X]%.
Since [is deterministic, i.e. independent of D,

E[f] = f.
Thus, given ¥ = f 4 £ and E[g] = 0 (because ¢ is noise), implies E[y] = E[f +] = E[f] =

Also, since Var[e] = o2,

Varly] = El(y — E[41)*] = Bl(y — £)*] = B[(f + € — f)’] = E[¢*] = Varle] + Ele]* = o* + 0* = ¢°,
Thus, since € and f are independent, we can write
MSE=E[(y—fF]= [(f+e—F)]
E[(f+e—f +E[f] - E[f])?]
=E[(f—E[f]}]+E[E]+E[(E[f]—f}2]+2E[{f—E[f])E]+ZE[(E[f])] +2E[(B[f] - £)(f - EIf])]
= (f - E[lf])’ + B[] + E [(E[f] - £)*] + 2(f - E[f]) E[c] + 2E[e] E [E[f] - f] + 2E [E[f] - f](f - E[f])
= (f - B[f])* + B[*] + E [(E[f] - £)°]
= (f — E[f])* + Var[e] + Var [f]

= Bias[f|? + Varle] + Var [f]

= Bias[f? + ¢® + Var [f].

Approaches

Dimensionality reduction and feature selection can decrease variance by simplifying models. Similarly, a larger
training set tends to decrease variance. Adding features (predictors) tends to decrease bias, at the expense of

introducing additional variance. Learmning algorithms typically have some tunable parameters that control bias and
variance; for example,

= |inear and Generalized linear models can be regulanzad to decrease their variance at the cost of increasing their
bias.

= [n artificial neural networks, the varance increases and the bias decreases as the number of hidden units

increase, although this classical assumption has been the subject of recent debate. Like in GLIMs,
regularization i1s typically applied.

s In k-nearest neighbor models, a high value of k leads to high bias and low variance
« [n instance-based learning, regularization can be achieved varying the mixture of prototypes and exemplars.

= [n decision trees, the depth of the tree determines the vanance. Decision trees are commaonly pruned to control

variance.

One way of resolving the trade-off 15 to use mixture models and ensemble learning. For example, boosting
combines many "weak" (high bias) models in an ensemble that has lower bias than the individual models, while

bagging combines "strong” learners in a way that reduces their variance.

IModel validation methods such as cross-validation (statistics) can be used to tune models so as to optimize the trade-
off.

k-nearest neighbors

In the case of k-nearest neighbors regression, when the expectation is taken over the possible labeling of a fixed

training set, a closed-form expression exists that relates the bias—variance decomposition to the parameter k&

o

' fe
Bl(y - f(2))? | X =] = (ﬂ:u-::n =) f(Nifa)))
3 =1

3
!'.T.—. 3
— + o

k

where Ny (z), ..., Ni(z) are the k nearest neighbors of x in the training set. The bias (first term) is a monotone
rising function of &, while the variance (second term) drops off as kis increased. In fact, under "reasonable
assumptions” the bias of the first-nearest neighbor (1-NN) estimator vanishes entirely as the size of the training set
approaches infinity.

Watch the fun:

https://mlu-explain.github.io/bias-variance/

Model Selection and
the Bias-Variance
Tradeoff

High Bins
Low Vanntico

.-'.

Trnining Samnpla

Model Complexity

FIGURE 2.11. Test and training error as a function of model complexity.

Figure 2.11 shows the typical behavior of the test and training
error, as model complexity is varied. The training error tends to
decrease whenever we increase the model complexity, that is,
whenever we fit the data harder. However with too much fitting,
the model adapts itself too closely to the training data, and will not
generalize well (i.e., have large test error). In that case the
predictions f(x,) will have large variance, as reflected in the last
term of expression (2.46).In contrast, if the model is not complex
enough, it will under fit and may have large bias, again resulting in
poor generalization.

In statistics, the bias of an estimator (or bias function) is the difference between
this estimator's expected value and the true value of the parameter being estimated.
An estimator or decision rule with zero bias is called unbiased.

A

Bias(6,0) = Biasg[0] = E,4[0] — 0 =E,4[0 — 6],

