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Local Methods in High Dimensions

• Two learning techniques for prediction so far: the stable but biased linear model and 
the less stable but apparently less biased class of 𝑘-nearest-neighbor estimates. 

• It would seem that with a reasonably large set of training data, we could always 
approximate the theoretically optimal conditional expectation by 𝑘-nearest-neighbor 
averaging, since we should be able to find a fairly large neighborhood of observations 
close to any 𝑥 and average them. 

• This approach and our intuition breaks down in high dimensions, and the 
phenomenon is commonly referred to as the curse of dimensionality.



FIGURE 2.6. The curse of dimensionality is well illustrated by a sub-cubical 
neighborhood for uniform data in a unit cube. The figure on the right shows the side-
length of the sub cube needed to capture a fraction r of the volume of the data, for 
different dimensions p. In ten dimensions we need to cover 80% of the range of each 
coordinate to capture 10% of the data.

Local Methods in High Dimensions



• Construct another uniform example. Suppose we have 1000 training examples 𝑥𝑖 generated uniformly on [−1, 1]𝑝. 
Assume that the true relationship between 𝑋 and 𝑌 is 𝑌 =  𝑓 𝑋 =  𝑒ି଼ ௑ మ ,

without any measurement error. We use the 1 −nearest-neighbor 
rule to predict 𝑦0 at the test-point 𝑥0 =  0. Denote the training set 
by τ. 

Compute the expected prediction error at 𝑥0 for our 
procedure, averaging over all such samples of size 1000. The mean 
squared error (𝑀𝑆𝐸) for estimating 𝑓(0):𝑀𝑆𝐸 𝑥0 =  𝐸 𝑓 𝑥0 −  𝑦ො0 ଶ=  𝐸 𝑦ො଴ − 𝐸 𝑦ො0 ଶ + 𝐸 𝑦ො0 −  𝑓 𝑥0 ଶ 2.25=  𝑉𝑎𝑟 𝑦ො0 +  𝐵𝑖𝑎𝑠ଶ 𝑦ො0



Local Methods in 
High Dimensions

• FIGURE 2.7. A simulation example, demonstrating the curse of dimensionality and its 
effect on 𝑀𝑆𝐸, bias and variance. The input features are uniformly distributed in −1, 1 ௉ for 𝑝 =  1, . . . , 10. The top left panel shows the target function (no noise) in  𝑅:  𝑓 𝑋 = 𝑒ି଼ ௑ ଶ , 
and demonstrates the error that 1 −nearest neighbor makes in estimating 𝑓(0). The 
training point is indicated by the blue tick mark. The top right panel illustrates why the 
radius of the 1 −nearest neighborhood increases with dimension p. The lower left panel 
shows the average radius of the 1 −nearest neighborhoods. The lower-right panel shows 
the 𝑀𝑆𝐸, squared bias and variance curves as a function of dimension 𝑝.



• In Figure 2.7 the 𝑀𝑆𝐸 is broken down into two components -
variance and squared bias. Such a decomposition is always 
possible and often useful, and is known as the bias–variance 
decomposition. 

• As the dimension increases, the nearest neighbor tends to stray 
further from the target point, and both bias and variance are 
incurred. By 𝑝 =  10, for more than 99% of the samples the 
nearest neighbor is a distance greater than 0.5 from the origin. As 𝑝 increases, the estimate tends to be 0 more often than not, and 
hence the 𝑀𝑆𝐸 levels off at 1.0, as does the bias, and the variance 
starts dropping.

• Similar phenomena occur more generally. The complexity of 
functions of many variables can grow exponentially with the 
dimension, and if we wish to be able to estimate such functions 
with the same accuracy as function in low dimensions, then we 
need the size of our training set to grow exponentially as well. 





• If the function always involves only a few dimensions as in Figure 𝟐.𝟖, then the 
variance can dominate instead.

• Suppose, on the other hand, that we know that the relationship between 𝑌 and 𝑋 is linear, 𝑌 =  𝑋்𝛽 + 𝜀, 
where 𝜀 ~ 𝑁(0,𝜎ଶ) and we fit the model by least squares to the training data. For 

an arbitrary test point 𝑥0, we have 𝑦ො  = 𝑥்0 𝛽መ, which can be written as 𝑦ො  = 𝑥்0𝛽 + ∑ ℓ𝑖ே௜ୀଵ (𝑥0)𝜀i, 
where ℓ𝑖(𝑥0) is the 𝑖௧௛ element of 𝑋 𝑋𝑇𝑋 ିଵ𝑥0. 



𝑌 =  𝑋்𝛽 + 𝜀, 
𝑦ො  = 𝑥்0𝛽 + ∑ ℓ𝑖ே௜ୀଵ (𝑥0)𝜀i, 

2.27

where ℓ𝑖(𝑥0) is the 𝑖௧௛ element of 𝑋 𝑋𝑇𝑋 ିଵ𝑥0



𝐸௫଴𝐸𝑃𝐸 𝑥0  ~  𝐸௫బ𝑥଴் 𝐶𝑜𝑣 𝑋 ିଵ𝑥0𝜎ଶ/𝑁 + 𝜎ଶ=  𝑡𝑟𝑎𝑐𝑒 𝐶𝑜𝑣 𝑋 ିଵ𝐶𝑜𝑣 𝑥0 𝜎ଶ/𝑁 +  𝜎2=  𝜎ଶ(𝑝/𝑁)  + 𝜎ଶ. 2.28

• we see that the expected 𝐸𝑃𝐸 increases linearly as a function of 𝑝,with slope 𝜎ଶ/𝑁. 
If N is large and/or 𝜎ଶ is small, this growth in variance is negligible (0 in the 
deterministic case). By imposing some heavy restrictions on the class of models 
being fitted, we have avoided the curse of dimensionality. 

If N is large and τ were selected at random, and assuming E(X) = 0, 

then XTX -> NCov(X) and



Expected Prediction Error of 1NN vs. OLS

• FIGURE 2.9. The curves show the expected prediction error (𝑎𝑡 𝑥0 =  0) for 1 −nearest neighbor relative to least squares for the model 𝑌 =  𝑓(𝑋)  + 𝜀 . For the 
blue curve, 𝒇(𝒙)  =  𝒙𝟏, while for the orange curve 𝒇 𝒙 =  𝟏𝟐 𝒙𝟏 +  𝟏 𝟑.



• Figure 2.9 compares 1 −nearest neighbor vs. Least squares in two situations, 
both of which have the form 𝑌 =  𝑓(𝑋)  +  ε,𝑋 uniform as before, and 𝜀~𝑁(0, 1). The 
sample size is 𝑁 =  500. 

• For the blue curve, 𝑓(𝑥) is linear in the first coordinate, for the orange curve, cubic 
as in Figure 2.8. Shown is the relative 𝐸𝑃𝐸 of 1-nearest neighbor to least squares, 
which appears to start at around 2 for the linear case. Least squares is unbiased in 
this case, and as discussed above the 𝐸𝑃𝐸 is slightly above 𝜎ଶ =  1.

• The EPE for 1-nearest neighbor is always above 2, since the variance of 𝑓መ(𝑥0) in 
this case is at least 𝜎ଶ, and the ratio increases with dimension as the nearest 
neighbor strays from the target point. For the cubic case, least squares is biased, 
which moderates the ratio. Clearly we could manufacture examples where the bias 
of least squares would dominate the variance, and the 1-nearest neighbor would 
come out the winner.



Statistical Models, Supervised Learning and
Function Approximation

• Squared error loss lead us to the regression function 𝑓(𝑥)  = 𝐸(𝑌 |𝑋 =  𝑥) for a quantitative response. The class of nearest-
neighbor methods can be viewed as direct estimates of this 
conditional expectation, but we have seen that they can fail in at 
least two ways:

 If the dimension of the input space is high, the nearest 
neighbors need not be close to the target point, and can 
result in large errors;

 If special structure is known to exist, this can be used to 
reduce both the bias and the variance of the estimates.



A Statistical Model for the Joint Distribution 𝑷𝒓 (𝑿,𝒀 )
• Suppose in fact that our data arose from a statistical model.𝑌 =  𝑓(𝑋)  +  𝜀, 

where the random error 𝜀 has 𝐸(𝜀)  =  0 and is independent of 𝑋. 
Note that for this model, 𝑓(𝑥)  =  𝐸(𝑌 |𝑋 =  𝑥), and in fact the 
conditional distribution Pr (𝑌 |𝑋) depends on X only through the 
conditional mean 𝑓(𝑥).
• The additive error model is a useful approximation to the truth. For 

most systems the input–output pairs (𝑋,𝑌 ) will not have a 
deterministic relationship 𝑌 =  𝑓(𝑋).  Generally there will be other 
unmeasured variables that also contribute to 𝑌 , including 
measurement error. The additive model assumes that we can 
capture all these departures from a deterministic relationship via 
the error 𝜀.



Supervised Learning

• Assume a training set of observations 𝑇 =  (𝑥𝑖,𝑦𝑖), 𝑖 =  1, . . . ,𝑁. 
The observed input values to the system 𝑥𝑖 are also fed into 
an artificial system, known as a learning algorithm (usually a 
computer program), which also produces outputs 𝑓መ(𝑥𝑖) in 
response to the inputs. The learning algorithm has the 
property that it can modify its input/output relationship 𝑓መ in 
response to differences     𝑦𝑖 − 𝑓መ(𝑥௜) between the original and 
generated outputs. 

• This process is known as learning by example. Upon 
completion of the learning process the hope is that the 
artificial and real outputs will be close enough to be useful 
for all sets of inputs likely to be encountered in practice.



Function Approximation
• The approach taken in applied mathematics and statistics has 

been from the perspective of function approximation and 
estimation. Here the data pairs {𝑥௜ ,𝑦௜} are viewed as points in a (𝑝 + 1)-dimensional Euclidean space. The function 𝑓(𝑥) has domain 
equal to the 𝑝-dimensional input subspace, and is related to the 
data via a model  𝑦𝑖 =  𝑓(𝑥௜) + 𝜀𝑖. Although somewhat less 
glamorous than the learning paradigm, treating supervised 
learning as a problem in function approximation encourages the 
geometrical concepts of Euclidean spaces and mathematical 
concepts of probabilistic inference to be applied to the problem. 

• Many of the approximations we will encounter have associated a 
set of parameters 𝜃 that can be modified to suit the data at hand. 
For example, the linear model 𝑓 𝑥 = 𝑥்𝛽 has 𝜃 = 𝛽. Another class 
of useful approximates can be expressed as linear basis 
expansions. 𝑓𝜃(𝑥)  = ∑ ℎ𝑘 𝑥 𝜃𝑘,௄௞ୀଵ



• where the ℎ𝑘 are a suitable set of functions or transformations of 
the input vector 𝑥. Traditional examples are polynomial and 
trigonometric expansions, where for example ℎ𝑘 might be 𝑥ଵଶ, 𝑥ଵ𝑥ଶଶ, cos (𝑥ଵ) and so on. Encounter nonlinear expansions, such as the 
sigmoid transformation common to neural network models,ℎ𝑘(𝑥)  = ଵଵାୣ୶୮ (ି௫೅ఉೖ)

• We can use least squares to estimate the parameters 𝜃 in 𝑓𝜃 as we 
did for the linear model, by minimizing the residual sum-of 
squares 𝑅𝑆𝑆(𝜃)  = ∑ 𝑦௜  − 𝑓ఏ(𝑥௜) ଶே௜ୀଵ



• As a function of 𝜃 This seems a reasonable criterion for an additive 
error model. In terms of function approximation, we imagine our 
parameterized function as a surface in 𝑝 + 1 space, and what we 
observe are noisy realizations from it. This is easy to visualize 
when 𝑝 =  2 and the vertical coordinate is the output 𝑦, as in Figure 2.10. The noise is in the output coordinate, so we find the set of 
parameters such that the fitted surface gets as close to the 
observed points as possible, where close is measured by the sum 
of squared vertical errors in 𝑅𝑆𝑆(𝜃).

• For the linear model we get a simple closed form solution to the 
minimization problem. This is also true for the basis function 
methods, if the basis functions themselves do not have any hidden 
parameters. Otherwise the solution requires either iterative 
methods or numerical optimization.

• While least squares is generally very convenient, it is not the only 
criterion used and in some cases would not make much sense.



Statistical Models, Supervised Learning and 
Function Approximation

• FIGURE 2.10. Least squares fitting of a function of two inputs. 
The parameters of 𝑓𝜃(𝑥) are chosen so as to minimize the sum-of-
squared vertical errors.



Basis Functions and Dictionary Methods

• Radial basis functions are symmetric p-dimensional kernels located 
at particular centroids,

• 𝑓ఏ 𝑥 = 𝐾ఒ೘ 𝜇௠, 𝑥 𝜃௠; 
• For example, the Gaussian kernel 𝐾ఒ 𝜇, 𝑥 =  𝑒ି ೣషഋ మమഊ  is popular.

• Radial basis functions have centroids 𝜇𝑚 and scales λ𝑚 that have to 
be determined. The spline basis functions have knots. 

• A single-layer feed-forward neural network model with linear 
output weights can be thought of as an adaptive basis function 
method. The model has the form𝑓𝜃 𝑥 = ∑ 𝛽𝑚ெ௠ୀଵ 𝜎(𝛼௠்𝑥 +  𝑏𝑚),



Model Selection and the Bias–Variance
Tradeoff

• All the models described above and many others discussed in later chapters 
have a smoothing or complexity parameter that has to be determined:

 the multiplier of the penalty term;

 the width of the kernel;

 or the number of basis functions.

• The data arise from a model 𝑌 =  𝑓(𝑋)  +  𝜀, with 𝐸(𝜀)  =  0 and𝑉𝑎𝑟 𝜀 =  𝜎ଶ. The expected prediction error at 𝑥0, also known as test or 
generalization error, can be decomposed:𝐸𝑃𝐸𝑘(𝑥0)  =  𝐸[(𝑌 −  𝑓መ௞ 𝑥଴ ) |𝑋 = 𝑥଴]ଶ=  𝜎ଶ  +  [𝐵𝑖𝑎𝑠ଶ( 𝑓መ𝑘(𝑥0))  + 𝑉𝑎𝑟𝝉 ( 𝑓መ𝑘(𝑥0))] 2.46 = 𝜎ଶ + 𝑓 𝑥0 − ଵ௞ ∑ 𝑓௞ℓୀଵ 𝑥 ℓ ଶ + ఙଶ௞ . 2.47



• The first term 𝝈𝟐 is the irreducible Error.

• The second and third terms are under our control, and make up the mean 
squared error (MSE) of 𝑓መ𝑘(𝑥0) in estimating 𝑓(𝑥0), which is broken down 
into a bias component and a variance component. 

• The bias term is the squared difference between the true mean 𝑓(𝑥0) and 

the expected value of the estimate ఛ ௞ 0 0 ଶ—where the expectation averages the randomness in the training data. This 
term will most likely increase with k, if the true function is reasonably 
smooth. For small k the few closest neighbors will have values 𝑓(𝑥(ℓ)) close to 𝑓(𝑥0), so their average should close to 𝑓(𝑥0). As k grows, the neighbors are 
further away, and then anything can happen.



• The variance term decreases as the inverse of 𝑘. So as 𝑘 varies, 
there is a bias–variance tradeoff.

• More generally, as the model complexity of our procedure is 
increased, the variance tends to increase and the squared bias 
tends to decrease. The opposite behavior occurs as the model 
complexity is decreased. For 𝑘-nearest neighbors, the model 
complexity is controlled by 𝑘.

• Typically we would like to choose our model complexity to trade 
bias off with variance in such a way as to minimize the test error. 
An obvious estimate of test error is the training error         ଵே ∑ 𝑖 𝑦𝑖 − 𝑦𝑖ෝ  ଶ. Unfortunately training error is not a good estimate 
of test error, as  it does not properly account for model complexity.





Accuracy is a description of bias; a sample will appear accurate (i.e. have low bias), 
but may result in underfitting.  

Precision is a description of variance - may also result in an overreliance on the 
training data (overfitting).







Watch the fun:

https://mlu-explain.github.io/bias-variance/



Model Selection and 
the Bias–Variance

Tradeoff

FIGURE 2.11. Test and training error as a function of model complexity.



• Figure 2.11 shows the typical behavior of the test and training 
error, as model complexity is varied. The training error tends to 
decrease whenever we increase the model complexity, that is, 
whenever we fit the data harder. However with too much fitting, 
the model adapts itself too closely to the training data, and will not 
generalize well (i.e., have large test error). In that case the 
predictions 𝑓መ(𝑥0) will have large variance, as reflected in the last 
term of expression (2.46). In contrast, if the model is not complex 
enough, it will under fit and may have large bias, again resulting in 
poor generalization. 



In statistics, the bias of an estimator (or bias function) is the difference between 
this estimator's expected value and the true value of the parameter being estimated. 
An estimator or decision rule with zero bias is called unbiased.




