What 1s Statistics?

Definition of Statistics

— Statistics is the science of collecting, organizing, analyzing,
and interpreting data in order to make a decision.

e Branches of Statistics

— The study of statistics has two major branches -
descriptive(exploratory) statistics and inferential statistics.

e Descriptive statistics is the branch of statistics that
involves the organization, summarization, and display of
data.

e Inferential statistics is the branch of statistics that
involves using a sample to draw conclusions about
population. A basic tool in the study of inferential statistics
is probability.



Scatterplots and Correlation



Displaying relationships: Scatterplots

Interpreting scatterplots

Adding categorical variables to scatterplots

Measuring linear association: correlation r

Facts about correlation



Response variable measures an outcome of a
study.

An explanatory variable explains, influences or
cause changes in a response variable.

Independent variable and dependent variable.

WARNING: The relationship between two
variables can be strongly influenced by other
variables that are lurking in the background.

Note: There is not necessary to have a cause-and-effect
relationship between explanatory and response
variables.

Example. Sales of personal computers and athletic shoes



Abundance per 10,000 kg of prey
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Definitions

Sample space: the set of all possible outcomes.
We denote S

Event: an outcome or a set of outcomes of a
random phenomenon. An event is a subset of the
sample space.

Probability is the proportion of success of an
event.

Probability model: a mathematical description
of a random phenomenon consisting of two
parts: S and a way of assigning probabilities to
events.



Probability distributions

* Probability distribution of a
random variable X: it tells what values

X can take and how to assign probabilities to
those values.

— Probability of discrete random variable: list
of the possible value of X and their

probabilities
— Probability of continuous random variable:
density curve.



Measuring linear association: correlation r

(The Pearson Product-Moment Correlation Coefficient or Correlation Coefficient)

 The correlation r measures the strength and
direction of the linear association between two
quantitative variables, usually labeled X and Y.
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Facts about correlation

« What kind of variables do we use?
— 1. No distinction between explanatory and response variables.
— 2. Both variables should be quantitative
 Numerical properties
~- 1. =1=5r<]
— 2. r>0: positive association between variables
— 3. r<0: negative association between variables
— 4. Ifr=1orr=-1, it indicates perfect linear relationship
— 5. As |r| is getting close to 1, much stronger relationship

< —negative relationship—>< — positive relationship— >

i 0 1

< ————stronger stronger ————>

— 6. Effected by a few outliers > not resistant.
— 7. It doesn’t describe curved relationships

— 8. Not easy to guess the value of r from the appearance of a
scatter plot
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Some necessary elements of

Probability theory and Statistics




The NORMAL DISTRIBUTION

The normal (or Gaussian) distribution, is a very
commonly used (occurring) function in the fields of
probability theory, and has wide applications in the
fields of:

- Pattern Recognition;

- Machine Learning;

- Artificial Neural Networks and Soft computing;

- Digital Signal (image, sound , video etc.) processing
- Vibrations, Graphics etc.



Its also called a BELL function/curve.

The formula for the normal distribution is:

L expl 1(" Ay,

p(X)_O'r ¥

The parameter M is called the mean or expectation (or
median or mode) of the distribution.

The parameter O is the standard deviation;
and variance is thus O2.
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The normal distribution p(x), with any mean g and
any positive deviation o, has the following properties:

o It is symmetric around the mean (u) of the distribution.

e Itis unimodal: its first derivative is positive for x < yu,
negative for x > y, and zero only at x = p.

o It has two inflection points (where the second
derivative of fis zero and changes sign), located one
standard deviation away from the mean, x =y — oand x =
U + o.

e Itis log-concave.

o It is infinitely differentiable, indeed supersmooth of
order 2.



Also, the standard normal distribution
p (with gy = 0 and o = 1) also has the following properties:

o Its first derivative p’(x) is: —x.p(x).
e Its second derivative p’’(x) is: (x2 — 1).p(x)
e More generally, its n-th derivative :

p"(x) is: (-1)"H,(x)p(x),

where, H, is the Hermite polynomial of order n.



The 68 — 95 - 99.7% Rule:
All normal density curves satisfy the following property
which is often referred to as the Empirical Rule:

- 68% of the observations fall within
1 standard deviation of the mean,

that is, between (,Ll—O') and (,LH' O')

- 959 of the observations fall within
2 standard deviations of the mean,

that is, between (u—20)and (u+20)

- 99.7% of the observations fall within
3 standard deviations of the mean,
that is, between

(1—30)and (1 +30)







A normal distribution:

1. is symmetrical (both halves are identical);

2. is asymptotic (its tails never touch the
underlying x-axis; the curve reaches to — «
and + o and thus must be truncated);

3. has fixed and known areas under the curve
(these fixed areas are marked off by units
along the x-axis called z-scores; imposing
truncation, the normal curve ends at + 3.00
z on the right and - 3.00 z on the left).



Areas Under the Normal Curve for Various Z Scores
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Example of the Probability of Observing an OQutcome in a Standar
Distribution

p(Z)




Conditional Distribution

The conditional probability mass fimction of Y given X 15

plyle) = P(Y =X =3) = P(};Xyi? e pi?m?

For continuous randorn variables, we can define the conditional probability densily fimetion:
P(AN B)

P(B)
Multiplication rule: P(ANB) =PF(A| B)F(E) =P(B| A)P(A).

Rewriting the above equation yields:

Conditional probability: P(A|B) =

The marginal density of Y can then be obtained from:




, when P(B) > 0.

Any other formula regarding conditional probability can be derived from the above formula.
Specifically, if you have two random variables X and Y, you can write

P(Xe(C)Y € D)
PYeD

P(XeClYeD)= , where C, D C R.

the conditional PMF. Specifically, the conditional PMF of X given event A, is defined

Pra(z:) = P(X = 2|4
P(X = z; and A)
P(4)

Similarly, we define the conditional CDF of X given A as




Two discrete random variables X and Y are independent if

PI}"'[I: y} — PX{‘T')-P}’(EJ"]: for E‘ﬂﬂ:? Y-

Fquivalently, X and Y are independent if

Fxy(z,9) = Fx(z)Fy(y), forallz,y

For discrete random variables X and Y, the conditional PMFs of X given Y and
vice versa are defined as

Pxy(z:,y;)
Py(y;)

PH(E“&? yj}
PI(:EE-:}

Pxiy(zi|y;) =

Pyx (yj|z:) =

for any x; € Rx and y; € Ry.




So, if X and Y are independent, we have
Py (2:]y;) = P(X = z;|Y = ;)
Pxy (z:,y;)
Py (y;)

_ Px(z:)Pr(y;)

Py (y;)
= Px(z:).

As we expect, for independent random variables, the conditional PMF is equal to the marginal PMF.
In other words, knowing the value of ¥ does not provide any information about X.




Expected Value of Random Variables

The expected value of a random variable is the weighted average of all

possible values of the variable. The weight here means the probability
of the random variable taking a specific value.

ElX] = Y Xip(xi)

xi= The valuesthat X takes

p(x) = The probabilitythat X takes the value x; K
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ElX] =

f(x)is the PDF of X

Probability Density Function (PDF) of X

N
G-l (3D
£




Example Let X be a continuous random variable with support Ry = [0.«) and probability density
function

0 othenwise

) = { Adexp(-Ax) Ifx € [0,=)

where 1 > 0. Its expected value is

BLY] = | sfato)ds

= mxﬁLexp —Ax)dx
[ xhexp(-2x)

i

E[f] = Z{H+ b o x(x) (by the transformation thearem)




Expectation of g(X)

Let g(X) be a function of X. We can imagine a long-term average of g( X') just
as we can imagine a long-term average of X. This average is written as E(g(X)).
Imagine observing X many times (/N times) to give results x1, zo, ..., zx. Apply
the function g to each of these observations, to give g(z1), ..., g(xx). The mean
of g(x1), g(x2), ..., g(xy) approaches E(g(X)) as the number of observations N
tends to infinity.

Definition: Let X be a continuous random wvariable, and let g be a function. The
expected value of g(X) is

B(s(x)) = [ " 9(@)fx(z) de

—00

Definition: Let X be a discrete random variable, and let ¢ be a function. The
expected value of g(X) is

( )Zg ) fx(z ZQ




Let X and Y be independent random variables, and g, i be functions. Then

E(XY)
E(g(xm(}’))

Probability as a

1 if event A occurs,
0 otherwise.

Define the indicator random variable: [, = {

Then E(L4) = P(I4




Law of Total Probability:

Law of Total Expectation:

1. If By, By, B4, ... is a partition of the sample space S,

EX — Z E[X|B;]P(B;) (5.3)

2. For a random variable X and a discrete random variable Y,

EX = ) E[X|Y =y;]Pr(y;) (5.4)

Y, cRy




Conditional Distribution and Conditional Expectation

The conditional probability mass fimetion of Y given X 15

Conditlonal probability: P(4|B) = [JJ(]? (;)B ) . Wyle) = P(¥ =X = 1) = F(E;EHH,I ? z) _ F{??]_
= ple
Multiplication rule: P{AN B) =P(A| B)P(B) = P(B | A)P(A).

For continuous random variables, we can define the conditional probability densily fimetion

f (31 B"]

fls)
The conditional expectation of a random variable ¥ 13 the expected value of ¥ given [X=x], and is denoted: E[YX=x] or E[¥]x]. If the
conditional probability density function 15 known, then the conditional expeetation can be found usmng:

flyl=) =

ffﬁm y- f(y‘m)dy if ¥ 18 continuous
Y, yplyle)  FY s discrete

ﬂﬂx:ﬂ:{

To obtain the unconditional expectation of ¥, we can take the expectation of E[1|X]. The result 15 the theorem of total expectation:

Joo E[Y|X = 2] f(z)dz if X is continuous

BlY] = { Yo EY|X =¢glple) i X is discrete. )




Conditional Expectation of X:

-Xl‘A Z EEPIH{‘T':}

I!_ EHI

EX|[Y =yj]= )  z:Pxjy(zi|y;)

i cHy

Iterated Expectations:

Let us look again at the law of total probability for expectation. Assuming g(Y) = E[X|Y], we
have

E[X]= ) E[X]Y = y;]Py(y;)

ijR}'

= ) 9()Pr(y

y;€Ry

_ Blg(Y)]
— BE[X|Y]]




Theorem 1 Let X.Y, Z be random variables, a,b € R, and g : R — R. Assuming all the
ollowing expectations exist, we have

i) ElalY] =a

ii) ElaX +bZ|Y| = aE|X|Y| + bE|Z|Y]

i) E[X|Y] > 04X >0.

v) E[E|X]Y]] = E| _,,] N

“P EXg(Y)Y]=g(Y)EX|Y]. In particular, [Elg(Y)|Y] =
vit) EXY, ()] = E[1|}]

UEH‘EEX} Z|} %

fol
¢
(i
(
(mf E|X|Y|=EX] if X and Y are in dependent.
(v)
(v
(vid
(v



Theorem 2 For any function h: R — IR,
E[(X — E[X|Y])] < E[(X — h(Y))?]
and we have equality if and only if h(Y) = E|X|Y].

This follows immediately from the law of total expectation:

E(X):Ey{ X|}} ZE}{W_y

Laws of Total Expectation and Variance

If all the expectations below are finite, then for ANY random variables X and
Y, we have:

E(X) =Ry (E(X | },,)) Law of Total Expectation.

Note that we can pick any r.v. Y. to make the expectation as easy as we ca.

i) B(g(X))= Ey( (g(X }|}))fm‘aﬂyﬁmcﬁoﬂ 7.




we can give a proof of (1) in the special case where (X, Y, Z) are jointly continuous

with a pdf f(z,v, 2):

[z f(z,y,2
BX|Y =3 7= = S

|

E[E[Xiy,zzz]|2=z]=f fjfmy’y;)dm . #(z, v, z) dz dy

[(Jerenon) s

=ffm-f(ﬂ:,y)dfﬂdy

—E[X|Z=1

You can give a similar proof in the case where X, Y, Z are jointly diserete, with a joint probability
mass function f(z,v,2) = P(X =z,Y =y, Z = 2), for (z, y, 2) ranging over some countable
support set. Basically, you do this by replacing [ with ) in the proof above.

One thing you can say is that

EIEIX|Y,2]| Z)=EX | Z]




EEX|Y;Z||]Y =y|l. EIX|Y;Z]is a random variable. Given that Y = y, its possible
values are E|X|Y = y; Z = z| where z varies over the range of Z. Given that Y =y, the
probability that E[X|Y:Z| = E[X|Y =y; Z = 2| is just P(Z = 2|Y =y). Hence,

E[EXY; Z][Y =y EZHXW:% =2|P(Z =z2|Y =y)

ZZTP =z|Y =y, Z=2)P(Z =

ZE:P(X:J:_,Y_y,Z_
PY=y7Z=
=2,Y =y,7=2)
P(Y =y)
PX=zY =y
P(Y =y)

Z tP(X =z|Y =y)

Z,T

EX|Y =y




This follows immediately from the law of total expectation:

E(X) = Er{E(X|Y)} - ZEJ{IY—y P(Y

Laws of Total Expectation and Variance

If all the expectations below are finite, then for ANY random variables X and
Y, we have:

i) E(X)zEy(E(}{H’)) Law of Total Expectation.

Note that we can pick any r.v. Y. to make the expectation as easy as we can.

i) E(g(X)) = Ey( (g(X )m) for any fimction g.

Var(X) = By (wr(}{ | tr’)) + Vary (E(}: v))

Law of Total Variance.




(i) is a special case of (ii), so we just need to prove (ii). Begin at RHS:

RHS = Ey [E(Q{X) m} By | > g(z)P(X = rli”}}

M [ g()P(X =2|Y

y
(iii) Wish to prove Var(X) = Ey[Var(X | Y)| + Vary[E(X | Y)]. Begin at RHS:
Ey [Var(X | V)] + Vary [E(X | V)]

i ™

2
=Ey {E{Xi’ V) — (E(X | }f})ﬂ} +{ Ey { [E(X | I"}]E} — [Ey-{E(:Y | 1"}1}
E(X) by part (i)

=By (E(X|V)} By ([E(X|V)P) + By ([E(X|V)P) - (BX)°

E(X?) by part (i)

=E(X?) — (EX)?

—Var(X)=LHS. O




Theorem 2.4: The Partition Theorem (Law of Total Probability)

, B,,, form a partition of {). Then for any event A,

=Y P(ANB;) => PA|B)P(B)
=1 1=1

Proof of partition formula

ZE(X | A P(A;) = Z/X(m]]?{dm | A:) - P(A;)
n I 0}

— ZfX{w]P(dm M Ay )

_ Z‘/X[M]I,L () P (dw)
— ZE{XIA :]'!n

where IA,- is the indicator function of the set .4, .

If the partition { 4; }7°, is finite, then, by linearity, the previous expression becomes




5.2. Expectation and Variance of Standard Normal Distribution. Assume X v N(0,1).
Then

EX:fI pe " 1 dy = ,

o0

because the function inside the integral is odd. We can also say that X is symmetric with respect
to zero, so EX = 0. Now,

]E}J'f.'?—L +mﬂ:gc”""zfgdm—1
Vo J o I

Why is this? We know that
+00 -
/ e 2 dp = vor.

oc

Letu=e"2/2 v=g. Integrate by parts: note that uv = ze=*/2 = () for z = +00. So

+o0 . +00 +00
f e™” 32d3:=f udy = uv|$j§~/ v du
—oC —0 —2C

00 3 oo 9 o0 2
= —f zde * /% = —f m(—m)e_x"” de = / 2262 dg.

20 =) =00

This is equal to v/2m, which proves EX? = 1. So VarX = EX? — (EX)? = 1. This proves that

X ~N(0,1) = EX=0, VarX =1]




|
Normal Density: (X) = expl—— e ,U) ]

af

o | [(x—,ux )2_2pxy (x_lux )(y_luy)
2(1-py,) O %0

i
270,0,,/(1- p?.)
# - Mean, o - S.D.; p,, -Correlation Coetticient

Visualize p as equivalent to the orientation of tilted asymmetric Gaussian
filter.

n
For x as a discrete random variable, o Sk
the expected value of x: E()C) Z xiP(xi) lux
E(x) is also called the first moment of the dlstrlbutlon

The kth moment is defined as: E(x ) Z ka(X )

Bivariate Normal Density:

+E

Oy

e

p(x,y)=

P(x;) is the probability of x = x..



Covariance of x and y, is defined as: ny — E[(.x T ,le )(y o ,Lly )]

Covariance indicates how much x and y vary together. The value
depends on how much each variable tends to deviate from its mean, and also
depends on the degree of association between x and y.

O B S SR ey ¥
Correlation between x and y: ,Oxy = = = [( 3 )(
0.0 ¢ O, 02 5

—)]

Property of correlation coefficient: —1 S IOxy S 1

ForZ = ax + by ;
El(z—p.)'1=a’0;, +2abo,, +b°0;;

I 0 =0, a0 n 0 R b



E{(X — px (Y — pv)]
OxXay

] N
o3 h .
where: : , WIETE jf = Z.'Pz €L

=1

PxXy =

o gy and oy are defined as above

covanances and variances based on a sample
pairs, Ty Is defined as:

Y (2 - Z)(% - 7)

¢Z&ﬂﬁ‘fFﬂZLﬂ@‘ﬁF

where:

* 7} 15 sample size

e ;. 4; are the individual sample points indexed with /

o7 = % ZT_I z; (the sample mean); and analogously for i

Rearranging gives us this formula for 1y,

ﬂzm%—Z%E% |
/52— (Do) (L~ (Du)f




An equivalent expression gives the formula for r4,, as the mean of the products of the standard scores as follow;
Ty T

* n,T;,Y;, T,y are defined as above, and s, S, are defined below

o (""L T) I3 the standard score (and analogously for the standard score of y)

£

Alternative formulae for v, are also available. For example, one can use the following formula for -

E LilYy — N

(n—1)s;3,

Tmy —

where:

* N, ;,Y;, T,y are defined as above and:

1,‘/ 1 E ( — I)* (the sample standard deviation); and analogously for Sy




Several sets of (X, y) points, with the correlation coefficient of x and y
for each set.
The correlation reflects the strength and direction of a linear relationship (top
row),
but not the slope of that relationship (middle),
nor many aspects of nonlinear relationships (bottom).
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Ef.u‘f?"} bs‘rﬁ%h, a‘gqf ‘f;"{;

E(XY) — E(X)E(Y)

Pxy =

VE(X?) — B2(X)
The correlation coefficient can also be viewed as the cosine of the angle

between the two vectors (# P) of samples drawn from the two random variables -
i.e. between the two observed vectors in N-dimensional space (for N observations

VE(Y?) — EX(Y)

of each variable) - http://www.hawaii.edu/powerkills/lUC.HTM

This method only works with centered data, i.e., data which have been

shifted by the sample mean so as to have an average of zero.



One defines also the correlation
Cov[XY]

ol X]o[Y]

Here is a key connection between linear algebra and probability theory:

Corr[XY] =

If X,Y are two random variables of zero mean, then the covariance Cov|XY| =
E[X - Y] is the clc-t pr D-:lut:t :::f Ji and Y. The standard deviation of X is the
length = & 7 { the angle between the two vectors.
Positive (X*) egative correlation means an obtuse
angle. ‘

If correlation c reometric significance of independence’

Two ra [ and only if for any functions f, g the
randor ) ated.

https://people ath19b_2011/handouts/lecturel2.pdf




1< p <0
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LAPLACE:
1 [z — p]
r|p,b) = —
flalin) = gpexp (~254)
1 [exp (—%) if v <

2 exp (—I—;E) if ¢ >

Double Exponential Density:

P(x)__i_l;_ ‘x C/‘
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Read about:

» Central Limit Theorem
 Uniform Distribution

* Geometric Distribution

« Quantile-Quantile (QQ) Plot

* Probability-Probability (P-P) Plot



Name of the probability distribution

Frobability distribution function

Variance

Binomial distribution

Pr{X=F)= (z)p#{l _ gyt

np(l —p)

Geometric distribution

Pr(X = k)= (L-p)*'p

Mormal distribution

[ 0'2] T i
flz|pot) = ¢ 1
j v 2ol

Uniform distribution (continuous)

fora <z <b,

ftm,m:{m
1]

forz <aorx >0

Exponential distribution

Fo | X) = de

Poisson distribution

E—}. AT

x!

Fa | 2) =




The variance of a random variable A is the expected value of the squared deviation from the mean of X, pt = E[X ]:

Var(X) = B|(X - |

(X - E[X])’]

X* — 2XE[X] +E[X]*]
X*] ~ 2E[X]E[X] + B[X]
X*] - E[X]’

In other words, the variance of X'is equal fo the mean of the square of X minus the square of the mean of X,

A formula for calculaiing the variance of an eniire population of size \is:

— Yo yN oL
= (28— # = Lin1 & %ﬂ:l ) ‘(N.

Using Bessel's correction o calculate an unbiased esiimate of the population variance from a finiie sample of n observations




Discrete random variable [edit]

If the generator of random variable X is discrete with probability mass function & — p1, @g = Do, ..., Iy Py, then
T
2
Var(X) = pi« (m: — 1)’
i=1
or equivalently,

Var(X) = (Z;ﬂ-emf_) -
i=1

where g is the expected value. That is,

1
#=Ziﬂ'5mf~
i=1

(When such a discrete weighted variance is specified by weights whose sum is not 1, then one divides by the sum of the weights.

The variance of a collection of n equally likely values can be writien as

, 1 7
o 2wt ={ 2 e |~

=1 f=1

where {4 is the average value. That is,




If the random variable X has a probability density function f(z), and F(z) is the corresponding cumulative distribution function, then

Var(X) =¢* = /{m — p)* f(z) dz

R

— /F a:?f(m} da:—‘zﬁ./r;m_f(m}dm_l_ﬂzﬁ;ﬂm} iz
=/HT'E dF{i’)—ZM-/l;mdF(mj+ﬁ[ dF(z)

R

=/&:2dF{5:]—2JL¢-#-+LLE -1
4

= f 7’ dF(z) - i,
S

or equivalently,

Var(X) = Lmzf[m:]dm — 2,

where p is the expected value of X given by

;L:./:E; a:f(m]dm:‘ﬂmdF(m},




T8’ 2 V2 ' 2 : C 1 |

E(X —p)? = B(X?—2Xu+ ) ym variable X 1s defined as
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On simplification, *

e

X] = E[(X - E(X])"} /x e

; =ELﬁ{f _2xEX] + EX1Y HADEDESS
= E[X"] - 2E[XE[X]] + E[X)*
= E[X*] - 2E[X1E[X] + E[X]"™.
= EX*] - E[X]’ (X) -




Definition [edt]

Throughout this arficle, boldfaced unsubscripted X and Y are used to refer fo random vectors, and unboldiaced subscripted Xa,; and Y;
are used to refer to scalar random variables.

If the eniries in the column vecior

KZ(XI,.X‘E,.H,XR)T -

are random variables, each with finite variance and expecied value, then l@waﬂante mairix Kyy he matrix whose (3, j) entry is the
covarianceltp 177 - =

—__—4

Kx;x; = cov[Xy, X;] = E[(X; — E[X)(X; - B[X)]))

where the operator E denotes the expected value (mean) of its argument.

Conilicting nomenclatures and notations [ edit]

Nomenclatures differ. Some statisticians, following the probabilist Wiliam Feller in his two-volume book An Introduction to Probabifity
Theary and its Applications, 9 call the matrix Kxx the variance of the random vector X, because it is the natural generalization to higher
dimensions of the 1-dimensional variance. Others call it the covariance matrix, because it is the matrix of covariances between the scalar
components of the vector X.

var(X) = cov(X, X) = B[(X - E[X])(X - E[X])"].

—_— _

O, =E[(x—ﬂx)(—ﬂy)]

Sample paints from a bivariate
(3aussian distribution with a standarg
deviation of 3 in roughly the lower left
Upper right direction and of 1in the
orthogonal direction. Because the x
and y companents co-vary, the
variances of = and y do not fully
describe the distribution. A2 x 2
covariance matniy is needed; the
directions of the arrows correspond t
the eigenvectars of this covariance
matrix and their lengths to the square
roots of the eigenvalues.

S

Both forms are quite standard, and there is no ambiguity befween them. The matrix Ky is also ofien called tréarfance-cwarfance mam}ynte the diagonal ferms are in fac

variances. S — _ —

By comparison, the notation for the cross-covariance mairix befiween two vectors is

cov(X, Y) = Kxy = E[(X - E[X])(Y - E[Y])"].




Basic properties

For Kxx = var(X) = E|(X - E[X]) (X - B[X])" | and sixx = E[X], where X = (X;,..., X,)" is a n-timensional random variable, the
following hasic properties apphy: 4

1. Kxx = B(XXY) — pxpx”

2 Kyy 15 positive-semidefiniie, ie.a* Kyy a >0 foralla e B

3. Kxy is symmetric, ie. KT = Kxx

4. For any constant (ie. non-random) m X 7 mairix A and constant m x 1 vector a, one has var(AX + a) = A var(X) A"

5.17'Y is another random vector with the same dimension as X, then var(X + Y) = var(X) + cov(X, Y) + cov(Y, X) + var(Y)
where cov(X, Y) is the cross-covariance matrix of X and Y.

For random veciors X and Y, each coniaining random elemenis whose expecied
value and variance exisi, the cross-covariance matrix of X and Y is defined
D},H]:p.EEhE

Kxy = cov(X,Y)¥ B[(X — pux)(Y — py)?] (Eq1)

where ux = BE[X] and py = E[Y]| are vectors containing the expected values of
X and Y. The vectors X and Y need not have the same dimension, and either might be a scalar value

The cross-covariance matrix is the mairix whose ('I.,i?::l entry is the covariance

Kx,v; = cov| Xy, ¥5] = E[(X; — E[X:|}(Y; — E[¥;])]




For the cross-covariance mairiy, the following basic properiies apply

1. eov(X,Y) = BXYT] - uxpy”

2 cov(X,Y) = cov(Y, X)T

3. cov(Xy + Xs,Y) = cov(X;,Y) + cov(X,, Y)

4.cov(AX +a,BTY +b) = 4 cov(X,Y) B

5.1F X and Y are independent (or somewhat less restrictedly, if every random variable in X is uncorrelated with every random
variable in Y), then cov(X,Y) = O,

where X, X and X5 are random p x 1 veciors, Y is a random g % 1 vector, aisa g x Lvecior, bisap % 1 vecior, A and B
are ff x p marices of constants, and O,y is ap X g matrix of zeroes.

Given a sample consisting of n independent observations x,..., ¥, of a p-dimensional random vecior X & R®™1 (a px1 column-vector), an unbiased esfimator of the (pxp)

covariance matrix
% = E|(X - BIX]) (X - B[X])"
is the sample covariance matrix

1 n . o
Q= n—lz{mi_ﬂ{mi_m] )
i=1
where x; is the i-ih observation of the p-dimensional random vector, and the vector

_ 1
T =—

is the sample mean. This is frue regardless of the distribution of the random variable X, provided of course that the theorefical means and covariances exist. The reason




Which matrices are covariance matrices?

let b be a (p x 1) real-valued vector, then

var(bX) = bT var(X)b,

] _

which must always be nonnegative, since it is the variance of a real-valued random variable, so @vanance matrix is always a positive-semidefinite matri

_

_ _4-%

The above argument can be expanded as follows:

" B[(X - E[X))(X - B[X])"]w = E[w" (X - E[X])(X - B[X])"4]
=B [{u"(X-BX))"] >0,

where the last inequality follows from the observation that w (X — E[X]) is a scalar

— a—

Converselg(ery symmetric positive semi-definite matrix is a covariance matmDTo see this, suppose M is ap X p symmetric positive-semidefinite matrix. From

the finite- dlmensmnal case of"ﬁ‘sp‘t‘alTﬁ?re_‘t fofows Tat M has a nonnegative symmetric square root, which can be denoted by M"2 Let X be anyp X 1
column vector-valued random variable whose covariance matnx is the p X p identity matrix. Then

var(MY4X) = MY var(X) MY? = M.

E[b(X - E[XT)(X - E[X])"5"]
DE[(X — BLAD(X - BLAD o7
bVar[ X5




PROB. & STAT. - Revisited/Contd.

~ n n
Sample mean is defined as: 5 = Z X.P(X-) = l Z X.
1 l

4 2
Sample Varianceis: O = — Z (xl. = X)

where,

P(x;) = 1/n.

N3 N4
Higher order moments may also be computed: E(xl. = x) - E(xl. 2 x)

Covariance of a bivariate distribution:

]

o, = El(x— )y —p)] ==Y (x=x)(y =)

n -



Second, third,... moments of the distribution p(x) are the expected values of:
X2, x3,...

The kt" central moment is defined as: 4

kq _ k
E[(x—u,) 1= ) (x—u)" P(x)
=)
Thus, the second central moment (also called Variance) of a random variable x is

T o= El{x-E@} 1= FGx- )
o= El{x—E(®)}]= El(x—4,)]
= E(x*)=2u; +u; = E(x")—u,
Thus

E(xz) =0~ +,u2

If z is a new variable: z= ax + by; Then E(z) = E(ax + by)=aE(x) + bE(y).



The first four standardized moments can be written as:

Comment

;owp v ]
_ E[lﬁ — ) ] T The first standardized moment is zero, because the first

moment about the mean is always zero.

B “- X _ IU"’] The second standardized moment is one, because the
: second moment about the mean is equal to the varianc

(B[(X - )22

: g2,

The third standardized moment is a measure of

skewness.

The fourth standardized moment refers to the kuriosis.
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But this last integrand is a normal density with mean ¢ and variance 1, thus integrates to 1. Henee

Mx(i) = et 2.
We s; x() =e hat

YR o, note tha

E[X*] = [

dE Mx(t)
dtk i
—0

so let's caleulate successive derivatives:

= (1 +)et'/?
+ (14 £2)tet 2 = (3¢t + £3)et /2
— (3432 2 + (32 + 1))t 2 = (34 642 + 1)t 2,

and it is fairly easy to continue this. Now simply evaluate all of these at £ = ) to get

E[X] =0
E[X% =1
E[X% =0
E[X*] =3.




MAXIMUM LIKELTIHOOD ESTIMATE (MLE)

The ML estimate (MLE) of a parameter is that value which, when substituted
into the probability distribution (or density), produces that distribution for which
the probability of obtaining the entire observed set of samples is maximized.

Problem: Find the maximum likelihood estimate for p in a normal distribution.

B8 o
Normal Density: p(x) — —exp Vi ) ]
o2
Assuming all random samples to be independent:
n
p(xl,,,,xn)=p(x1) ..... (x )=Hp(x,-)
| o
= n n/2 eXp lLl
o"(2r)
Taking derivative (w.r.t. i) Setting this term = 0, we get:
of the LOG of the above: 1 4
| | 2
= D =2 = A i p==D % =0
i=1 i=1 n i=1

Also read about MAP estimate — Baye’s is an example.






