What 1s Statistics?

Definition of Statistics

— Statistics is the science of collecting, organizing, analyzing,
and interpreting data in order to make a decision.

¢ Branches of Statistics

— The study of statistics has two major branches -
descriptive(exploratory) statistics and inferential statistics.

e Descriptive statistics is the branch of statistics that
involves the organization, summarization, and display of
data.

e Inferential statistics is the branch of statistics that
involves using a sample to draw conclusions about
population. A basic tool in the study of inferential statistics
is probability.



Scatterplots and Correlation



Displaying relationships: Scatterplots

Interpreting scatterplots

Adding categorical variables to scatterplots

Measuring linear association: correlation r

Facts about correlation



Response variable measures an outcome of a
study.

An explanatory variable explains, influences or
cause changes in a response variable.

Independent variable and dependent variable.

WARNING: The relationship between two
variables can be strongly influenced by other
variables that are lurking in the background.

Note: There is not necessary to have a cause-and-effect
relationship between explanatory and response
variables.

Example. Sales of personal computers and athletic shoes
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Definitions

Sample space: the set of all possible outcomes.
We denote S

Event: an outcome or a set of outcomes of a
random phenomenon. An event is a subset of the
sample space.

Probability is the proportion of success of an
event.

Probability model: a mathematical description
of a random phenomenon consisting of two
parts: S and a way of assigning probabilities to
events.



Probability distributions

* Probability distribution of a

random variable X: it tells what values
X can take and how to assign probabilities to
those values.

— Probability of discrete random variable: list
of the possible value of X and their
probabilities

— Probability of continuous random variable:
density curve.



Measuring linear association: correlation r

(The Pearson Product-Moment Correlation Coefficient or Correlation Coefficient)

 The correlation r measures the strength and
direction of the linear association between two
guantitative variables, usually labeled X and Y.
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Facts about correlation

« What kind of variables do we use?
— 1. No distinction between explanatory and response variables.
— 2. Both variables should be quantitative
* Numerical properties
R e ey |
— 2. r>0: positive association between variables
— 3. r<0: negative association between variables
— 4. Ifr=1orr = -1, it indicates perfect linear relationship
— 5. As |r| is getting close to 1, much stronger relationship

< —negative relationship— >< —positive relationship—>
—1 0 1

————stronger stronger ————1D

— 6. Effected by a few outliers > not resistant.
— 7. It doesn’t describe curved relationships

— 8. Not easy to guess the value of r from the appearance of a
scatter plot
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Some necessary elements of

Probability theory and Statistics




The NORMAL DISTRIBUTION

The normal (or Gaussian) distribution, is a very
commonly used (occurring) function in the fields of
probability theory, and has wide applications in the
fields of:

- Pattern Recognition;

- Machine Learning;

- Artificial Neural Networks and Soft computing;

- Digital Signal (image, sound, video etc.) processing
- Vibrations, Graphics etc.



Its also called a BELL function/curve.

The formula for the normal distribution is:

ol Bl 7 L
p(X)—m/EeXp[ 75 ) )]

The parameter M is called the mean or expectation (or
median or mode) of the distribution.

The parameter O is the standard deviation;
and variance is thus 02.



P(x) 2>

https://en.wikipedia.orq/wiki/File:Normal Distribution PDF.svqg

(2013)



The normal distribution p(x), with any mean g and
any positive deviation o0, has the following properties:

e Itis symmetric around the mean (u) of the distribution.

e It is unimodal: its first derivative is positive for x < yu,
negative for x > uy, and zero only at x = p.

e It has two inflection points (where the second
derivative of fis zero and changes signh), located one
standard deviation away from the mean, x =y — oand x =

U + o.
e Itis log-concave.

o It is infinitely differentiable, indeed supersmooth of
order 2.



Also, the standard normal distribution
p (with y = 0 and o = 1) also has the following properties:

o Its first derivative p’(x) is: —x.p(x).
o Its second derivative p’’'(x) is: (x2 — 1).p(x)
e More generally, its n-th derivative :

p"(x) is: (-1)"H,(x)p(x),

where, H, is the Hermite polynomial of order n.



The 68 — 95 - 99.7% Rule:
All normal density curves satisfy the following property
which is often referred to as the Empirical Rule:

- 68% of the observations fall within
1 standard deviation of the mean,

that is, between (,Ll—G) and (,LH-U)

- 959 of the observations fall within
2 standard deviations of the mean,

that is, between (y—ZO‘) and (g+20‘)

- 99.7% of the observations fall within
3 standard deviations of the mean,
that is, between

(u—30)and (u+30)




1]
i
!

1
i

|:I:2|:r |
! ‘

k’—ﬁﬂ.ilﬂ%—J
05 4407,
00. 745,




A normal distribution:

1. is symmetrical (both halves are identical);

2. 1s asymptotic (its tails never touch the
underlying x-axis; the curve reaches to — «
and + « and thus must be truncated);

3. has fixed and known areas under the curve
(these fixed areas are marked off by units
along the x-axis called z-scores; imposing
truncation, the normal curve ends at + 3.00
z on the right and - 3.00 z on the left).



Areas Under the Normal Curve for Various Z Scores
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Example of the Probability of Observing an OQOutcome in a Standar
Distribution

n(Z)




Conditional Distribution

The conditional probability mass fimetion of Y given X1s:

plyjz)=P(Y =yX=2)= =

PX=2) s
For contiwous randor vartables, we can define the conditional probability densily fimetion:
Conditional probability: P(4|B) = AN ) f(z,)
P(B) flyle) = o)
Multiplication rule: P(AN B) =P(A|B)P(B) =P(B | A)P(A).

Rewriting the above equation yields:

fle,y) = flz) - flyle).

The marginal density of Y can then be obtawned from:




conditional probability wnich 1s

P(AN B)
P(B)

P(A|B) = , When P(B) > 0.

Any other formula regarding conditional probability can be derived from the above formula.
Specifically, if you have two random variables X and Y, you can write

P(Xe(C,Y e D)

PXeClYeD)= , where C,D C R.

the conditional PMF. Specifically, the conditional PMF of X given event A, is defined

Pa(es) = P(X = 2i|4)

P(X =z;and A)
P(4)

Similarly, we define the conditional CDF of X given A as




Two discrete random variables X and Y are independent if

Pxy(z,y) = Px(z)Pr(y), forallz,y.

Equivalently, X and Y are independent if

F}{}-"(ﬂf, y] — FX{E]FF(y]J for Elr]l;l?? Y-

For discrete random variables X and Y, the conditional PMFs of X given Y and
vice versa are defined as

Pxy (zi,y;)
Py(y;)

Pxy (z:,y;)
Px(ﬂ:i)

Pxiy(x:|y;) =

Py x (y;l|z:) =

for any z; € Rx and y; € Ry.




So, if X and Y are independent, we have
Pyiy(z;|y;) = P(X = z;|Y = y;)
B R&’F(-‘l‘nyj}
Py (y;)

_ Px(z:) Py (y;)
Py (y;)
= Px(z;).

As we expect, for independent random variables, the conditional PMF is equal to the marginal PMF.
In other words, knowing the value of ¥ does not provide any information about X.




Expected Value of Random Variables

The expected value of a random variable is the weighted average of all
possible values of the variable. The weight here means the probability
of the random variable taking a specific value.

ElX] = Y Xip(xi)

xi = The valuesthat X takes

p(x) = The probabilitythat X takes the value x;
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Example Let X be a continuous random variable with support Ry = [0.=) and probability density
function

Fyx) = { Aexp(-Ax) Ifx € [0, =)

0 otherwise

where 4 > 0. Its expected value is

BLX] - | fito)e

= I: xA exp(—Ax)ex

E[¥] = Z{:H b o x(x) (by the transformation thearem)




Expectation of g(X)

Let g(X) be a function of X. We can imagine a long-term average of g( X') just
as we can imagine a long-term average of X. This average is written as E(g(X)).
Imagine observing X many times (/N times) to give results xy, 70, ..., xx. Apply
the function ¢ to each of these observations, to give g(x1)....,g(xx). The mean
of g(x1), g(x9), ..., g(xx) approaches K(g(X)) as the number of observations N
tends to infinity.

Definition: Let X be a continuous random variable, and let g be a function. The

expected value of g(X) is /m

E(g(X)) = | g(2)fx(z)de.

— 0

Definition: Let X be a discrete random variable, and let ¢ be a function. The
expected value of g(X) is

( ) ZQ ) fx(z Zg




Let X and Y be independent random variables, and ¢, A be functions. Then

E(XY) = E(X)E(Y)
E(g[X]fz(Y)) — E(Q(X))E(h(‘r’)).

Probability as a conditional expectation

1 if event A occurs,
0 otherwise.

Define the indicator random variable: 14 = {

Then E(I4) = P(I4 = 1) = P(A).




Law of Total Probability:

P(X € A) = Z P(X € AlY =y;)Pyv(y;), forany set A.

Law of Total Expectation:

1. If By, Ba, Ba, ... is a partition of the sample space S,

EX — E E[X|B;]P(B;) (5.3)

2. For a random variable X and a discrete random variable Y,

EX = )  E[X|Y = y;]Pr(y;) (5.4)




Conditional Distribution and Conditional Expectation

The conditional probability mass fimction of Y given X is:

Conditional probahility: P(A|B) = P(]? (;)B) , syle) = PY = y|X = 2) = FY =y,X

Multiplication rule: P(AN B) =P(A| B)P(B) =P(B| A)P(A).

For contimwous random variables, we can define the conditional probability density fimetion

[

The conditional expectation of a random variable ¥ 15 the expected value of ¥ given [X=x], and 15 denoted: E[F|X=x] or E[¥]x]. If the
conditional probability density function 1s known, then the conditional expectation can be found using:

Jooy- flylz)dy HY is continuous

2yl p(yle) if ¥ is discrete (38)

ﬂﬂx:ﬂ:{

To obtain the unconditional expectation of ¥, we can take the expectation of E[Y|X]. The result 15 the theorem of total expectation:

BV = [o E[Y|X = 2]f(z)dz I X is continuous
Y= y.r EY|X = g]ple) if X is discrete.

(39)




Conditional Expectation of X :

Xlﬂ Z EEPIH 3-::}

I!_ EHI

EX|[Y =y;]= )  :Pxy(zily;)

iy

Iterated Expectations:

Let us look again at the law of total probability for expectation. Assuming g(Y) = E[X|Y], we
have

= ) E[X|Y = y;]Pr(y;)

= Elg(Y))
= E[E[X]Y]].




Theorem 1 Let X.Y, Z be random variables, a,0 € R, and g : R — R. Assuming all th{
following expectations exist, we have

(i) Ela]Y] =a

(ii) BElaX +bZ|Y| = aE|X|Y] +bE|Z|Y]

(i) EX|Y] >0if X > 0.

(i) E|(X|Y] = E|X] if X and Y are independent.

(v) EELX|Y]| = E|X]

(i) B[Xg(V)|Y] = g(V)E[X|Y]. In porticular, [E[g(¥)|Y] = g(Y).

(vii) EWXTY, g(V)] = BIX]Y]




Theorem 2 For any function h : R — IR,
E[(X — E[X|Y])?] = E[(X — h(Y))’]
and we have equality if and only if h(Y) = E[X|Y].

This follows immediately from the law of total expectation:

E(X) =Ey{E(X|Y)} = > E(X|Y =y)P(Y =y).

Laws of Total Expectation and Variance

If all the expectations below are finite, then for ANY random variables X and
Y, we have:

) E(X)zEY(E(XW)) Law of Total Expectation.

Note that we can pick any .v. Y. to make the expectation as easy as we cail.

i) B(g(X)) = Ey(E(g(X) | Y)) for any function g.




we can give a proof of (1) in the special case where (X, Y, Z) are jointly continuous
with a pdf f(z,y, 2):

* » dz
BX|Y—yZ—d=3 "}"f{fyi)l
J

E[E[X|Y,Z=z]|Z=z]=f ff;f(m ;y;)dm . #(z,v, 2) dz dy

[ ([=-semaes)

ff:r f(z,vy)dzdy

—EX|Z =7

You can give a similar proof in the case where X, Y, Z are jointly discrete, with a joint probability
mass function f(z,9,2) = P(X =z,Y =y, Z = 2), for (2, y, ) ranging over some countable
support set. Basically, you do this by replacing [ with ) in the proof above.

One thing you can say is that

EIEIX|Y,Z]| Z] = BEIX | Z] (1)




EEX|Y;Z|]Y =y|. E[X|Y;Z]is a random variable. Given that Y = y, its possible
values are E|X|Y = y; Z = 2| where z varies over the range of Z. Given that Y =y, the
probability that E|X|Y: Z]| = E|X|Y =y, Z = 2] is just P(Z = z|Y = y). Hence,

EEX|Y;Z)|Y =y] = ZEm:y, =2]P(Z =2|Y =y)

ZZ&?P =z|Y =y, Z=2)P(Z =

_ Z:IIP(X_IFY_%Z_

PY=y,Z =z

Z PX=2Y=y/71=2)
x
” PY =y)

PX=2Y =y
- L P(Y =y)

T

Z tP(X =zY =vy)
ELX]Y =]




This follows immediately from the law of total expectation:

E(X) = Ey{E(X|Y)} = > E(X|Y = y)P(Y =y).

Laws of Total Expectation and Variance

If all the expectations below are finite, then for ANY random variables X and
Y, we have:

) | E(X) :Ey(E{}{ Y]) Law of Total Expectation.

Note that we can pick any r.v. Y. to make the expectation as easy as we cai.

i) E(g(X)) = Ey(E{g(X} | 1«’)) for any function g.

Var(X) = By (wu-(}{ | Y}) + Vary (E{X Y))

Law of Total Variance.




(1) is a special case of (ii), so we just need to prove (ii). Begin at RHS:

RHS = Ey[ (g (}f)w’)} = Ey [Zg(m}ﬂj’{X=f|}"}}

- y: [y: gz)P(X =z|Y = y)] P(Y =y)

(iii) Wish to prove Var(X) = Eyﬁ‘m(}f 1Y) + Vary|[E(X | Y)]. Begin at RHS:

Ey [Var(X |Y)| + Vary [E(X | V)]
r
2
=By { ECC|Y) - (B(X |Y))*} +{ By { [E(X |Y)]*} — [ Ex(E(X|Y)) |
\ E(X) by part (i)
= Ey{E(X°|Y)} —Ey {[E(X |Y)]*} + Ex {[E(X |YV)]*} — (EX)?
“—-v'—"
E(X?) hy part (i)

—E(X?) — (EX)?

— Var(X)=LHS. O




Theorem 2.4: The Partition Theorem (Law of Total Probability)

Let B, ..., B,, form a partition of ). Then for any event A,

> P(ANB) = 3 KA| B)P(B)

Proof of partition formula

SOEX | A)P(A) = 3 [ X(@) Pdw | 4) - P(A)
= X '

— foiwjp{dwm&}

_ ZfX[m]qu (w) P (dew)
- ZE{XIAI :]'5

where IA is the indicator function of the set A;.

IT the partition {A } g |5 finite, then, by linearity, the previous expression becomes

E Z}irﬂi = E(X),




5.2. Expectation and Variance of Standard Normal Distribution. Assume X « A(0,1).
Then

EX:./. ve 1 dg =),

o0

because the function inside the integral is odd. We can also say that X is symmetric with respect
to zero, so EX = 0. Now,

E}'i'?—L +m&:26”“2*’2d$—1
Vo J o I

Why is this? We know that
+00 )
/ e 2 dx = v2r.

Let u=e® /2, y = z. Integrate by parts: note that uv = ze=*"/2 = 0 for £ = +o00. So

+o0 \ +00 +00
f e” ﬁd:ﬂ:f udy = uv|ii§~f v du
—o0 —20 —o

+00 . +00 . +00 o
= —/ rde™ ™2 = —./. a."(—z:)»g_:’:"*‘rg d:n=/ re 12 4.

] =) -0

This is equal to +/2m, which proves EX? = 1. So Var X = EX? — (EX)? = 1. This proves that

X~N(0,1) = EX=0, VaX =1




1 Ji2 6 ,u
N | Density: X)= eXx ]
ormal Density p( ) O_\/— p ( )

Bivariate Normal Density:
1 [(x—,ux )2_2pxy (x_ﬂx)(y_ﬂy)+(y_ﬂy )2
2(1-p3,) O 2505 G

2
270,0,,/(1- p2)
# - Mean; o - S.D.; p,, -Correlation Coefticient

Visualize p as equivalent to the orientation of tilted asymmetric Gaussian
filter.

n
For x as a discrete random variable, o L,
the expected value of x: E()C) Z xiP(xi) lux
E(x) is also called the first moment of the dlstrlbutlon

The kth moment is defined as: E(X ) Z ka(X )

|
e

p(x,y) =

P(x;) is the probability of x = x..



Covariance of x and y, is defined as: ny s E[(x o ,le )(y s ,Lly )]

Covariance indicates how much x and y vary together. The value
depends on how much each variable tends to deviate from its mean, and also
depends on the degree of association between x and y.

O X —
Correlation between x and y: ,Oxy = 2 = [( qu )(

0.0, o o}

Property of correlation coefficient: — 1 < p < 1

ForZ = ax + by ;
97 i e R L) et i)
El(z-u.) |=a"0o, +2abo,,+b°0c
A Zoriin A 9LIES,
If 0,=0, o.=a’0,+b’0C



1.0 0.8 0.4 0.0 -0.4 -0.8 -1.0

/ 'iﬁ{ | % %’? \\\
1.0 1.0 1.0 0.0 -1.0 -1.0 -1.0
0.0 0.0 0.0

\:'2;?'; )'v‘f %f ";-\&3;): \. %‘i} 3%;

P Rt WB

- E(XY) — E(X)E(Y)
VEX?) — E2(X) E(Y?) — B(Y)

The correlation coefficient can also be viewed as the cosine of the angle
between the two vectors (# P) of samples drawn from the two random variables.

PXy

This method only works with centered data, i.e., data which have been
shifted by the sample mean so as to have an average of zero.



Other PDFs: » Poisson e .
P(X)=—'e%; A>0 |
x. ().2;

015 020 025

0.10

0.05

0.00
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LAPLACE: o B e -
| p=-5,b=4
04 F rl1l
1 | — pf
r\pn,b) = —exp| — = [
flalinb) = gpexp (~54)
=) ifx<p
= — ¢

Read about:

_ : * Central Limit Theorem
Double Exponential Density:

* Uniform Distribution
_|x—a
P(X) s 1 e ‘ 4‘ .  Geometric Distribution
o 9
Zb » Quantile-Quantile (QQ) Plot

* Probability-Probability (P-P) Plot



Name of the probability distribution

Probability distribution function

Variance

Binomial distribution

i

Pr{X=F= (k

)p’“{l -

np(l — p)

Geometric distribution

Pr(X=k)=(1-p)*"p

Mormal distribution

f[:m|.'“*:°'2}:

v ot

Uniform distribution {continuous)

fora <z <b,

L
ftm,m:{ﬁ
0

forz <goraz>Dh

Exponential distribution

FPoisson distribution




The variance of a random variable X is the expected value of the squared deviation from the mean of X, ¢ = B{X]:
Var(X) = B|(X - |
Var(X) = B[(X - E[X])]
= E[X% — 2X E[X] + B[X]']
=E[X*] - 2B[X] E[X] + B[X]
— B[X?] - B[X]?

In other words, the variance of X is equal to the mean of the square of X minus the square of the mean of X

A formula for calculating the variance of an enfire population of size N is:

— N w2 (7Y 2t
0.2 _ (3:3) —:EH _ E'i!=1 i {Zq.:l ﬁ%) /N.

N
Using Bessel's correction to calculate an unbiased estimate of the population variance from a finite sample of n obsernvations




Discrete random variable [edit]

If the generator of random variable X is discrete with probability mass function &, — pq. 29 = Pa, ..., Iy — Py, then

Var(X) = iﬁf @ — #]23

or equivalently,

Var(X) = (Zpﬂ"f) — 2,
=1

where g is the expected value. That is,
1t
= Zﬁi$f~
i=1
(When such a discrete weighted variance is specified by weights whose sum is not 1, then one divides by the sum of the weighis.
The variance of a collection of n equally likely values can be writien as

L 1
Var(X)=— ) (& — )’ = - Y 2} -l
=]

7 ) |

where g is the average value. That is,

1 n
b= EEZ:];.T;




If the random variable X has a probability density function f(z}, and F(z) is the corresponding cumulative distribution function, then

Var(X) =¢° = /(:ﬂ — it)* f(z) dz

k

=/F: g;?f{:ﬂ]d:f:—Eg./r;ﬂ;_f(m}dm_l_“zfmﬂm}dm
=/|:;5’32 dF(*‘?}—ZLLL&:dF(m]+ﬁ3[ dF(z)

R

=/ﬁ:2dF($}—2ﬁ-p+ﬂ2 1
%

- [ #dF(@) - 2,
R

or equivalently,

Var(X) = L z’ f(z)dz — 12,

where i is the expected value of X given by

Ju,:jﬁ; a:_f[m}dm:/";:ch{m}.




1able X 15 defined as

Var(X) = '-—f.fr u) flz) de
3. _fr',r'l;f...-dr ?Jx[:f{:.}dr. - ;:1[}'{1}.'11
E(X —u)P = E(X*—2Xpu+ 1) |
_ fff_-jirg.]l COR(X)p + -'r':[ﬂj_] [r. dFlz) p[.rtfflrx s [u'Fll.n]
_ Y2y 9,2 L 4,2
EILX. "‘_” CH f:l dF{z) - 2u- p+ i
= FE(X*) -
= E':;"fj] - E(I]E / r dF(z) - "

1X] = E[(X - E[X])]
- E[X* - 2XE[X] + E[X)}
- 2E[XE[X]) + E[X)" B

gl —EE[E]E[:-:] + E[XT} 2E(X)‘ X + Ez(X)}




Definition [edi]

Throughout this article, boldfaced unsubscripted X and Y are used to refer fo random vectors, and unboldfaced subscripted X and ¥;
are used fo refer to scalar random variables.

i the eniries in the column vecior
T
X=(X,Xs,..., %)
— = =

are random variables, each with finite variance and expecied valug, then I@wanaﬂce Mmairix KK}{\\Tihe mairix whose {i, j} eniry is the
covariancelkp. 177 N =

KXIIJ' = CDV[.XT;,X;,': = E[{X;., - E[.XJ[XE - E[XJ])]

where the operaior E denotes the expecied value (mean) of its argument.

Conilicting nomenclatures and notations [edit]

Nomenclatures difier. Some statisticians, following the probabilist William Feller in his two-volume book An infroduction to Probability
Theory and fts Applications,®! call the mairix Kxx the variance of the random vector X, because it is the natural generalization to higher
dimensions of the 1-dimensional variance. Others call if the covariance matrix, because i is the matrix of covariances between the scalar
components of the vector X.

var(X) = cov(X, X) = B[(X - E[X])(X - B[X])"].

=l =i - = 0

Sample points from a bivariate
(3aussian distribution with a standarg
deviation of 3 in roughly the lower [eft
upper right direction and of 1in the
athogaonal direction. Because the ¥
and y components co-vary, the
variances of z and y do not fully
describe the distribution. A2 x 2
covariance matrix is needed; the
directions ofthe arrows correspaond t
the eigenvectors of this covariance
matrix and their lengths to the square
roots ofthe eigenvalues.

Both forms are quite standard, and there is no ambiguity between them. The mairix K}(X I5 also ofien called the varfance-covariance matriy, since the diagonal terms are in fac

Yarances.

By comparison, the notation for the cross-covariance matrix befiveen two vectors is

cov(X, Y) = Kxy = B[(X - BIX])(Y - E[Y))"].




Basic properties

For Kxx = var(X) = E|(X - E[X]) (X - E[X])" | and yx = B[X], where X = (X, ..., X,)" is an-dimensional rancom variable, the
following basic properties apply1*

T T
1. Kxx = B(XX") - pxux
2 Kyy is positive-semidefiniie, ie.a’ Kyx a >0 forallae B
3. Kxy is symmeiric, ie. Ky = Kxx
4. For any consiant (.. non-random) m. X n mairi A and constantm x 1 vector &, one has var(AX +a) = A var(X) A"

5.11'Y i another random vector wih ihe same dimension as X, then var{X + Y) = var(X) + cov(X,Y) + cov(Y, X) + var(Y)
where cov(X, Y) is the cross-covariance matrix of X and Y.

For random veciors X and Y, each coniaining random elemenis whose expecied
value and variance exisi, ihe cross-covariance matrix of X and Y is defined
D}r[“lj:p.ﬁ-ﬂﬁ

Kxy = cov(X,Y)E B[(X — px)(Y — py)?] (EQ1)

where py = E[X] and pv = E[Y]| are veciors containing the expected values of
X and Y. The vectors X and ¥ need not have the same dimension, and either might be a scalar value

The cross-covariance matrix is the matrix whose (4, 7) entry is the covariance

Kx,v; = cov[X;, ¥;] = B[(X; — E[X;|{{Y; — B[Y;])]




For the cross-covariance marix, the following basic properies apply:l

1.eov(X,Y) = BXY") - pxpy”

2. cov(X,Y) = cov(Y,X)T

3. cov(X; + X, Y) =cov(X;, Y} + cov(X,, Y)

4. cov(AX +a,B7Y +b) = 4 cov(X,Y) B

5.1F X and Y are independent (or somewhat less restrictedly, if every random variable in X is uncorrelated with every random
variable in Y), then cov(X,Y) = O,

where X, X; and X are random p x 1 vectors, Y is a random g x 1 vector, aisag % 1 vecior, bisap x L vecior, 4 and B
are ¢ x pmatrices of constants, and Oy, 15 ap % g mafrix of zeroes.

Given a sample consisting of n independent observations xq,..., X, of a p-dimensional random vector X e Re*! (a px1 column-vector), an unbiased estimator of the (pxp)
covariance matrix

% = B|(X - BIX) (X - B[])"

5 the sample covariance matrix

Q= Z{'T'i z){(z; — -ﬁ

n—1

where x; is the Hh observation of the p-dimensional random vector, and the vecior

s the sample mean. This is frue regardless of the distribution of the random variable X, provided of course that the theoretical means and covariances exist. The reason




Which matrices are covarlance matrices?

let b be a (p x 1) real-valued vector, then
var(b?X) = bT var(X)b,
which must always be nonnegative, since it is the variance of a real-valued random variable, so a covariance matrix is always a positive-semidefinite matrix.

The above argument can be expanded as follows:

" B[(X - BIX])(X - E[X))"]w = E[u" (X - E{X])(X - E[X]}"u]
=B [(u"(X-B{X))"] >0,

where the last inequalit folows from the observation that w” (X — B[X]) is a scalar

Conversely. every symmetric positive semi-definite matrix is a covariance matrix. To see this, suppose M is ap X p symmetric positive-semidefinite mafrix. From

the finite-dimensional case of the speciral theorem. it follows that M has a nonnegative symmetric square root, which can be denoted by M2 Let X be anyp X 1
column vector-valued random variable whose covariance matnx is the p X p identity matrix. Then

vaI(M” 2X) = M2 var(X) MY2 =M.

E[5(X - ELXT)(X - E[X])73]
BE{(X — E[X])(X — B[X])" 167
BVar[ X5




PROB. & STAT. Contd.

A2 n n
Sample mean is defined as: X = Z x.P(x.) g l Z X, where,
l l l
' P(x)) = 1/n.
: : 5, A3
Sample Varianceis: O, = — Z (xl. = )C)
nojo

N3 N4
Higher order moments may also be computed: E(xl. 5 x) . E(xl. ¥ x)

Covariance of a bivariate distribution:

o, =El(x—p)y—-u,)l= Z(x 0)(y—)



Second, third,... moments of the distribution p(x) are the expected values of:
X2, x3,...

The kth central moment is defined as: s
E[(x—u,)" 1= (x— 1) P(x;)
i=1

Thus, the second central moment (also called Variance) of a random variable x is

T o= Elix-E@)Y 1= A(x- )]
o= E[{x—E®P]= El(x— )]
= E(x")=2u; +p; = E(x*)— i,
Thus

E(x))=0’+u’

If z is a new variable: z= ax + by; Then E(z) = E(ax + by)=aE(x) + bE(y).



E—:ﬂfﬂ

o
Mx(t) = E[et* =/ e dr =
(t) = E[e*] s o
0 (z2-2tzie)/2 42/2 w  o(z-t)/2
f € € dr = et'/? € dz
I——00 4 2?1' T——0 a1l 2?1'

But this last integrand is a normal density with mean # and variance 1, thus integrates to 1. Henese

Mx(£) = et

Now we recall that

BIX* = [%] ,

so let's ealeulate suceessive derivatives:

MY (t) = tet /2
MY(t) = e 2 + 2682 = (1 +£2)et' 2

MY (£) = 2tet 12 + (1 + £2)tet' 2 = (3t + %)t 2

M () = (3+32)e"/2 + (382 + 1982 = (3 + 662 + 1)/,

and it is fairly easy to continue this. Now simply evalnate all of these at £ = 0 to get

E[X]| =0
E[X% =1
E[X* =0

E[XY] =3.



MAXIMUM LIKELIHOOD ESTIMATE (MLE)

The ML estimate (MLE) of a parameter is that value which, when substituted
into the probability distribution (or density), produces that distribution for which
the probability of obtaining the entire observed set of samples is maximized.

Problem: Find the maximum likelihood estimate for u in a normal distribution.
1 1 N ,Ll 2

p(x) = exXplr— (=)o

O~N27 2

Assuming all random samples to be independent:

Normal Density:

= : nl2 eXp[— 1 Zn:(x_lu)z]

o (27) o oo
Taking derivative (w.r.t. L) Setting this term = 0, we get:
of the LOG of the above: ¥
Jin 2 (o 1 S
QZ(xi_;u)-zz_z[zxi_nlu] ,U:—Z)Cl- =X
200 o (=" n .,

Also read about MAP estimate - Baye’s is an example.






