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Introduction

• A linear regression model assumes that the regression 
function 𝐸(𝑌 |𝑋) is linear in the inputs 𝑋1, . . . ,𝑋𝑝. 

• They are simple and often provide an adequate and 
interpretable description of how the inputs affect the output. 
For prediction purposes they can sometimes outperform 
fancier nonlinear models, especially in situations with small 
numbers of training cases, low signal-to-noise ratio or 
sparse data.



Linear Regression Models and 
Least Squares

• Purpose: - to predict a real-valued output 𝑌. The linear 
regression model has the form.

0 𝑗 𝑗௣௝ୀଵ .                               

• The linear model either assumes that the regression function 𝐸(𝑌 |𝑋) is linear, or that the linear model is a reasonable 
approximation. Here the 𝛽j ’s are unknown parameters or 
coefficients, and the variables 𝑋𝑗 can come from different 
sources:



• We have a set of training data (𝑥1,𝑦1) . . . (𝑥𝑁,𝑦𝑁) from which to 
estimate the parameters . Each 𝑥𝑖 = 𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑝 ் is a vector 
of feature measurements for the 𝑖௧௛ case. The most popular 
estimation method is 𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒𝑠, in which we pick the 
coefficients  𝛽 =  𝛽0,𝛽1, . . . ,𝛽𝑝 ் to minimize the residual sum 
of squares ௜ 𝑖 ଶே௜ୀଵ

௜ 0 𝑖𝑗 𝑗௣௝ୀଵ ଶே௜ୀଵ .            

• From a statistical point of view, this criterion is reasonable if 
the training observations (𝑥𝑖,𝑦𝑖) represent independent 
random draws from their population. Even if the 𝑥𝑖’𝑠 were 
not drawn randomly, the criterion is still valid if the 𝑦𝑖’𝑠 are 
conditionally independent given the inputs 𝑥𝑖. 



FIGURE 3.1. Linear least squares fitting with 𝑋 ∈ ℝଶ. We seek 
the linear function of 𝑋 that minimizes the sum of squared 

residuals from 𝑌.

Figure 3.1 illustrates the geometry of least-squares fitting in the (p+1)-
dimensional space occupied by the pairs (X, Y ).



• Figure 3.1 illustrates the geometry of least-squares fitting 
in the ℝ௣ାଵ −dimensional space occupied by the pairs (𝑋,𝑌 ). Note that (3.2) makes no assumptions about the 
validity of model (3.1); it simply finds the best linear fit to 
the data. Least squares fitting is intuitively satisfying no 
matter how the data arise; the criterion measures the 
average lack of fit.∑ (𝑦௜ − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗)௣௝ୀଵ ଶே௜ୀଵ

• How do we minimize (3.2)? 
Denote by 𝐗 the  𝑁 ×  (𝑝 +  1) matrix with each row an 

input vector (with a 1 in the first position), and similarly let 𝒚 be the 𝑁-vector of outputs in the training set. Then we 
can write the residual sum-of-squares as்



• This is a quadratic function in the 𝑝 + 1 parameters. 
Differentiating with respect to we obtain

డோௌௌడఉ ்
డమோௌௌడఉడఉ೅ ்

• Assuming (for the moment) that 𝑿 has full column rank, and 
hence 𝑿்𝑿 is positive definite, we set the first derivative to 
zero ்

• To obtain the unique solution் ିଵ ୘



FIGURE 3.2. The N-dimensional geometry of least 
squares regression with two predictors. The outcome vector 𝑦 is 
orthogonally projected onto the hyperplane spanned by the 
input vectors 𝑥1 and 𝑥2. The projection 𝑦ො represents the vector 
of the least squares predictions; x0 = [1];
What is the dimension of y, in fig ?



• The predicted values at an input vector 𝑥0 are given by           𝑓መ 𝑥0 =  1 ∶  𝑥0 ்𝛽መ  ;the fitted values at the training inputs are் ିଵ ்
where 𝑦ො𝑖 =  𝑓መ(𝑥௜) .The matrix 𝐇 =  𝑿 𝑿்𝑿 ିଵ𝑿் appearing 

in equation (3.7) is sometimes called the “hat” matrix because 
it puts the hat on 𝑦.
• The hat matrix 𝐇 computes the orthogonal projection, and 

hence it is also known as a projection matrix. It might 
happen that the columns of 𝑿 are not linearly independent, 
so that 𝐗 is not of full rank. for example, if two of the inputs 
were perfectly correlated, (𝑒.𝑔. , 𝑥ଶ =  3x1) .



• Then 𝑿்𝑿 is singular and the least squares coefficients 𝛽መ are 
not uniquely defined. However, the fitted values 𝑦ො   = 𝑿𝛽መ    are 
still the projection of 𝑦 onto the columns pace of 𝑿; The non-
full-rank case occurs most often when one or more 
qualitative inputs are coded in a redundant fashion.

• There is usually a natural way to resolve the non-unique 
representation, by recoding and/or dropping redundant 
columns in 𝑿.



• Rank deficiencies can also occur in signal and image 
analysis, where the number of inputs 𝑝 can exceed the 
number of training cases 𝑁. In this case, the features are 
typically reduced by filtering or else the fitting is controlled 
by regularization 

• Assume that the observations 𝑦𝑖 are uncorrelated and have 
constant variance 𝜎ଶ, and that the 𝑥𝑖 are fixed (non random). 
The variance–covariance matrix of the least squares 
parameter estimates is easily derived from 3.6

• 𝛽መ =  𝑿்𝑿 ିଵ𝐗୘𝐲. (3.6)
and is given by

் ିଵ ଶ



• Typically one estimates the variance 𝜎ଶ by. 

ଶ ଵே ି ௣ ିଵ ே௜ୀଵ 𝑖 𝑖ଶ .                          

• The 𝑁 − 𝑝 − 1 rather than N in the denominator makes  𝜎ොଶ
an unbiased estimate of ଶ 𝟐 𝟐.



• The conditional expectation of 𝑌 is linear in 𝑋1, . . . ,𝑋𝑝. We also 
assume that the deviations of 𝑌 around its expectation are 
additive and Gaussian. Hence

1 𝑝
0 𝑗 𝑗௣௝ୀଵ

where the error 𝜀 is a Gaussian random variable with 
expectation zero and variance 𝜎ଶ, written ε ~ N(0,𝜎ଶ) .Under (3.9), it is easy to show that் ିଵ ଶ
• This is a multivariate normal distribution with mean vector 

and variance–covariance matrix as shown.



The Gauss–Markov Theorem
• One of the most famous results in statistics asserts that 

the least squares estimates of the parameters 𝜷
have the smallest variance among all linear 
unbiased estimates. 

• This observation will lead us to consider biased estimates 
such as ridge regression later. We focus on estimation of 
any linear combination of the parameters θ =  𝑎்𝛽 ; for 
example, predictions 𝑓 𝑥0 =  𝑥଴் 𝛽  are of this form. 

• The least squares estimate of 𝑎்𝛽 is் ் ் ିଵ ்



• Considering 𝑿 to be fixed, this is a linear function 𝒄଴்𝒚 of the 
response vector 𝒚. If we assume that the linear model is 
correct, 𝛼்𝛽መ is unbiased since் ் ் ିଵ ்

் ் ିଵ ்
்

• The Gauss–Markov theorem states that if we have any 
other linear estimator ் that is unbiased for ்
that is, ் ் , then

் ்



• Consider the mean squared error of an estimator 𝜃 in 
estimating θ:

ଶ ଶ
• The first term is the variance, while the second term is the 

squared bias. The Gauss-Markov theorem implies that the 
least squares estimator has the smallest mean squared error 
of all linear estimators with no bias. 





Subset Selection
• There are two reasons why we are often not satisfied with 

the least squares estimates (3.6).
• 𝛽መ =  𝑿்𝑿 ିଵ𝐗୘𝐲. (3.6)

 The first is 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦: the least squares 
estimates (not just linear) often have low bias but 
large variance. Prediction accuracy can sometimes 
be improved by shrinking or setting some 
coefficients to zero. By doing so we sacrifice a little 
bit of bias to reduce the variance of the predicted 
values, and hence may improve the overall 
prediction accuracy.

 The second reason is 𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛. With a large 
number of predictors, we often would like to 
determine a smaller subset that exhibit the 
strongest effects. In order to get the “big picture,” 
we are willing to sacrifice some of the small details.



• We describe a number of approaches to variable subset 
selection with linear regression. In later sections we 
discuss shrinkage and hybrid approaches for controlling 
variance, as well as other dimension-reduction strategies. 
These all fall under the general heading 𝑚𝑜𝑑𝑒𝑙 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛. 

• With subset selection we retain only a subset of the 
variables, and eliminate the rest from the model. Least 
squares regression is used to estimate the coefficients of 
the inputs that are retained. There are a number of 
different strategies for choosing the subset.



• Best subset regression finds for each 𝑘 ∈  {0, 1, 2, . . . , 𝑝} the 
subset of size 𝑘 that gives smallest residual sum of 
squares (3.2). An efficient algorithm— the leaps and 
bounds procedure (Furnivall and Wilson, 1974)—makes 
this feasible for 𝑝 as large as 30 or 40. 

• The lower boundary represents the models that are 
eligible for selection by the best-subsets approach. The 
best-subset curve (blue lower boundary in Figure 3.5) is 
necessarily decreasing, so cannot be used to select the 
subset size 𝑘. 

• There are a number of criteria that one may use; typically 
we choose the smallest model that minimizes an estimate 
of the expected prediction error. E.g. cross-validation to 
estimate prediction error and select k; the AIC criterion is 
a popular alternative.



FIGURE 3.5. All possible subset models for an (the prostate cancer) 
example. At each subset size is shown the residual sum-of-squares for 
each model of that size.



Contd.  - in part B;




