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Shrinkage Methods
• By retaining a subset of the predictors and discarding the 

rest, subset selection produces a model that is interpretable 
and has possibly lower prediction error than the full model. 
However, because it is a discrete process—variables are 
either retained or discarded—it often exhibits high variance, 
and so doesn’t reduce the prediction error of the full model. 
Shrinkage methods are more continuous, and don’t suffer as 
much from high variability.

Ridge Regression

• Ridge regression shrinks the regression coefficients by 
imposing a penalty on their size. 



FIGURE 3.7. Estimated 
prediction error curves and 
their standard errors for the 

various selection and 
shrinkage methods. Each 

curve is plotted as a function 
of the corresponding 

complexity parameter for that 
method. The horizontal axis 
has been chosen so that the 

model complexity increases as 
we move from left to right. 
The estimates of prediction 

error and their standard errors 
were obtained by tenfold 

cross-validation; full details 
are given in Section 7.10. The 

least complex model within 
one standard error of the best 

is chosen, indicated by the 
purple vertical broken lines.



• The ridge coefficients minimize a penalized residual sum of 
squares,

ௗ ఉ  0 𝑖𝑗 𝑗 ଶ ଶୀଵୀଵேୀଵ .

• Here 𝜆 ≥ 0 is a complexity parameter that controls the 
amount of shrinkage: the larger the value of 𝜆, the greater 
the amount of shrinkage. The coefficients are shrunk toward 
zero (and each other). 

• An equivalent way to write the ridge problem isௗ ఉ  0 𝑖𝑗 𝑗 ଶୀଵேୀଵ
ଶୀଵ



• Which makes explicit the size constraint on the parameters. 
There is a one to-one correspondence between the 
parameters 𝜆 in (3.41) and 𝑡 in (3.42). When there are many 
correlated variables in a linear regression model, their 
coefficients can become poorly determined and exhibit high 
variance. A wildly large positive coefficient on one variable 
can be canceled by a similarly large negative coefficient on 
its correlated cousin. By imposing a size constraint on the 
coefficients, as in (3.42), this problem is alleviated.

• The ridge solutions are not equivariant under scaling of the 
inputs, and so one normally standardizes the inputs before 
solving (3.41). The solution to (3.41) can be separated into 
two parts, after reparametrization using centered inputs: 
each 𝑥𝑖𝑗 gets replaced by 𝑥𝑖𝑗 −  𝑥𝑗 . We estimate 𝜷𝟎 by 𝑦ത =ଵே  ∑ 𝑦𝑖ேଵ . 

• Read about the process of whitening



• The remaining coefficients get estimated by a ridge 
regression without intercept, using the centered 𝑥𝑖𝑗 . 
Henceforth we assume that this centering has been done, so 
that the input matrix 𝐗 has 𝑝 (rather than 𝑝 +  1) columns.

• Writing the criterion in (3.41) in matrix form,் ்
• The ridge regression solutions are easily seen to beௗ ் ିଵ ்

where, 𝐈 is the 𝑝 × 𝑝 identity matrix. Notice that with the 
choice of quadratic penalty 𝛽்𝛽, the ridge regression solution is 
again a linear function of 𝑦. The solution adds a positive 
constant to the diagonal of 𝑿்𝑿 before inversion. 



• This makes the problem nonsingular, even if 𝑿்𝑿 is not of full 
rank, and was the main motivation for ridge regression when 
it was first introduced in statistics                                        
(Hoerl and Kennard, 1970).

• Traditional descriptions of ridge regression start with 
definition (3.44). We choose to motivate it via (3.41) and (3.42), as these provide insight into how it works.



• Ridge regression can also be derived as the mean or mode 
of a posterior distribution, with a suitably chosen prior 
distribution. In detail, suppose 𝑦𝑖 ~ 𝑁(𝛽0 + 𝑥் 𝛽,𝜎ଶ), and the 
parameters 𝛽𝑗 are each distributed as 𝑁(0, 𝜏ଶ), independently 
of one another. Then the (negative) log-posterior density of 𝛽, with  ଶ and ଶ assumed known, is equal to the 
expression in curly braces in (3.41), with 𝜆 = 𝜎ଶ/𝜏ଶ Thus the 
ridge estimate is the mode of the posterior distribution; 
since the distribution is Gaussian, it is also the posterior 
mean (Ex – 3.6 - Hastie).

• The 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑆𝑉𝐷) of the centered input 
matrix 𝐗 gives us some additional insight into the nature of 
ridge regression. The 𝑆𝑉𝐷 of the 𝑁 ×  𝑝 matrix 𝐗 has the form

்
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• Using the singular value decomposition we can write the least 
squares fitted vector as௦ ் ିଵ ்

்
• Note that ் are the coordinates of with respect to 

the orthonormal basis . 

Now the ridge solutions are

ௗ ் ିଵ ்
ଶ ିଵ ்
𝑗 ௗೕమௗೕమାఒୀଵ ்



• Where the 𝒖𝑗 are the columns of 𝐔. Note that since 𝜆 ≥  0, we 
have 𝑑ଶ/(𝑑ଶ + 𝜆)  ≤ 1. Like linear regression, ridge regression 
computes the coordinates of y with respect to the 
orthonormal basis 𝐔. It then shrinks these coordinates by 
the factors 𝑑ଶ/(𝑑ଶ + 𝜆) .This means that a greater amount of 
shrinkage is applied to the coordinates of basis vectors with 
smaller 𝑑ଶ.

• What does a small value of 𝑑ଶ mean? The 𝑆𝑉𝐷 of the 
centered 𝐗 is another way of expressing the 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 of the variables in 𝐗. The sample 
covariance matrix is given by  𝑺 =  𝑿்𝑿/𝑁, and from (3.45) we 
have ் ଶ ்,  



• Which is the 𝑒𝑖𝑔𝑒𝑛 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 of 𝑿்𝑿  (and of 𝑺, up to a 
factor 𝑁).The eigenvectors 𝑣𝑗 (columns of 𝑽) are also called 
the 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 (or Karhunen–Loeve) directions of 𝐗.

• The first principal component direction v1 has the property 
that z1 = Xv1 has the largest sample variance amongst all 
normalized linear combinations of the columns of X. Sample 
variance is easily seen to be1 1 ௗభమே

and in fact               1 1 1 1
• Subsequent principal components 𝒛𝑗 have maximum variance 𝑑ଶ/𝑁, subject to being orthogonal to the earlier ones. 

Conversely the last principal component has minimum 
variance. Hence the small singular values 𝑑𝑗 correspond to 
directions in the column space of 𝐗 having small variance, 
and ridge regression shrinks these directions the most.



• In Figure 3.7 we have plotted the estimated prediction error 
versus the quantity (DoF):𝑑𝑓 𝜆 =  𝑡𝑟 𝑿 𝑿்𝑿 + 𝜆𝑰 ିଵ𝑿் ,

ఒ
ௗೕమௗೕమାఒୀଵ

• This monotone decreasing function of 𝜆 is the 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 of the ridge regression fit. 
Usually in a linear-regression fit with 𝑝 variables, the 
degrees-of-freedom of the fit is 𝑝, the number of free 
parameters. The idea is that although all 𝑝 coefficients in a 
ridge fit will be non-zero, they are fit in a restricted fashion 
controlled by 𝜆 . Note that 𝑑𝑓(𝜆)  =  𝑝 when 𝜆 =  0 (no 
regularization) and 𝑑𝑓(𝜆)  →  0 as 𝜆 → ∞.



The Lasso

• The lasso is a shrinkage method like ridge, with subtle but 
important differences. The lasso estimate is defined by௦௦ ఉ  0 𝑖𝑗 𝑗 ଶୀଵேୀଵ

𝑗ୀଵ
• Write the lasso problem in the equivalent Lagrangian form

௦௦ ఉ 𝑖 0 𝑖𝑗 𝑗 ଶ
ୀଵ

ேୀଵ 𝑗
ୀଵ



• Notice the similarity to the ridge regression problem (3.42) or (3.41): the 𝐿2 ridge penalty ∑ 𝛽ଵ ଶ is replaced by the 𝐿1 lasso 

penalty 𝑗ଵ .Thus the lasso does a kind of continuous 
subset selection. If 𝑡 is chosen larger than 𝑡0 = ∑ |𝛽መ𝑗|ଵ (where 𝛽መ𝑗 =  𝛽መ௦, the least squares estimates), then the lasso 
estimates are the 𝛽መ𝑗’s. On the other hand, for 𝑡 =  𝑡0/2 say, 
then the least squares coefficients are shrunk by about 50%
on average.



Discussion: Subset Selection, 
Ridge Regression and the Lasso

• In the case of an orthonormal input matrix 𝐗 the three 
procedures have explicit solutions. Each method applies a 
simple transformation to the least squares estimate 𝛽መ𝑗, as 
detailed in Table 3.4.

• Ridge regression does a proportional shrinkage. Lasso 
translates each coefficient by a constant factor 𝜆, truncating 
at zero. This is called “soft thresholding,”. Best-subset 
selection drops all variables with coefficients smaller than 
the 𝑀୲୦ largest; this is a form of “hard-thresholding.”

• Back to the no orthogonal case; some pictures help 
understand their relationship. Figure 3.11 depicts the lasso (𝑙𝑒𝑓𝑡) and ridge regression (𝑟𝑖𝑔ℎ𝑡) when there are only two 
parameters. The residual sum of squares has elliptical 
contours, centered at the full least squares estimate.





FIGURE 3.11. Estimation picture for the lasso (left) and ridge 
regression (right). Shown are contours of the error and constraint 

functions. The solid blue areas are the constraint regions           |𝛽1|  +  |𝛽2|  ≤  𝑡 and 𝛽ଵଶ + 𝛽ଶଶ ≤ 𝑡ଶ, respectively, while the red ellipses 
are the contours of the least squares error function.



• Region for ridge regression is the disk ଵଶ ଶଶ , while 
that for lasso is the diamond 1 2 . Both methods 
find the first point where the elliptical contours hit the 
constraint region. Unlike the disk, the diamond has corners; 
if the solution occurs at a corner, then it has one parameter 𝛽𝑗 equal to zero. When 𝑝 > 2, the diamond becomes a 
rhomboid, and has many corners, flat edges and faces; there 
are many more opportunities for the estimated parameters 
to be zero. 

• Consider the criterion

• ఉ 0 𝑖𝑗 𝑗 ଶ  ୀଵ  ୀଵேୀଵ
for 𝑞 ≥ 0. The contours of constant value of ∑ 𝑗 |𝛽| are 

shown in Figure 3.12, for the case of two inputs.



• Thinking of 𝛽𝑗  as the log-prior density. The case                  𝑞 =  1 (𝑙𝑎𝑠𝑠𝑜) is the smallest 𝑞 such that the constraint region 
is convex; non-convex constraint regions make the 
optimization problem more difficult. In this view, the lasso, 
ridge regression and best subset selection are Bayes 
estimates with different priors. They are derived as posterior 
modes, that is, maximizers of the posterior. 

FIGURE 3.12. Contours of constant value of ∑ 𝑗 𝛽𝑗  for given 
values of 𝑞.



• FIGURE 3.13. Contours of constant value of ∑ 𝑗 𝛽𝑗  for      𝑞 =  1.2 (𝑙𝑒𝑓𝑡 𝑝𝑙𝑜𝑡), and the elastic-net penalty             ∑ 𝑗 (𝛼𝛽ଶ + (1 − 𝛼)|𝛽𝑗|) for 𝛼 =  0.2 (𝑟𝑖𝑔ℎ𝑡 𝑝𝑙𝑜𝑡). Although visually 
very similar, the elastic

• Zou and Hastie (2005) introduced the 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡 penalty

ଶ 𝑗ୀଵ



The Grouped Lasso

• In some problems, the predictors belong to pre-defined 
groups; In this situation it may be desirable to shrink and 
select the members of a group together. The 𝑔𝑟𝑜𝑢𝑝𝑒𝑑 𝑙𝑎𝑠𝑠𝑜 is 
one way to achieve this. Suppose that the p predictors are 
divided into 𝐿 groups, with p` the number in group ℓ. For 
ease of notation, we use a matrix 𝑋ℓ to represent the 
predictors corresponding to the ℓ𝑡ℎ group, with 
corresponding coefficient vector 𝛽ℓ.The grouped-lasso 
minimizes the convex criterion

• ఉ∈ோ 0 ℓ ℓ ଶ2ℓୀଵ ℓ ℓ 2ℓୀଵ ,     

where the 𝑝ℓ terms accounts for the varying group sizes, 
and ||  ·  ||2 is the Euclidean norm (not squared).



• Since the Euclidean norm of a vector 𝛽ℓ is zero only if all of 
its components are zero, this procedure encourages sparsity 
at both the group and individual levels. That is, for some 
values of 𝜆, an entire group of predictors may drop out of the 
model. This procedure was proposed by Bakin (1999) and Lin 
and Zhang (2006), and studied and generalized by Yuan and 
Lin (2007). 
Further Properties of the Lasso

• A number of authors have studied the ability of the lasso 
and related procedures to recover the correct model, as 𝑁
and 𝑝 grow. Examples of this work include Knight and Fu 
(2000), Greenshtein and Ritov (2004), Tropp (2004), Donoho (2006𝑏), Meinshausen (2007), Meinshausen and B¨uhlmann (2006), Tropp (2006), Zhao and Yu (2006), Wainwright (2006), and Bunea et al. (2007).





Other Competing methods:

LAR

PLS

PCR

FSW

FS0



Computational Considerations

• Least squares fitting is usually done via the Cholesky 
decomposition of the matrix 𝑿்𝑿 or a 𝑸𝑹 decomposition of 𝑿. 
With 𝑁 observations and 𝑝 features, the Cholesky 
decomposition requires 𝑝ଷ + 𝑁𝑝ଶ/2 operations, while the 𝑸𝑹
decomposition requires 𝑁𝑝ଶ operations. Depending on the 
relative size of 𝑁 and 𝑝, the Cholesky can sometimes be 
faster; on the other hand, it can be less numerically stable 
(Lawson and Hansen, 1974). Computation of the lasso via the 𝑳𝑨𝑹 algorithm has the same order of computation as a least 
squares fit.



Discussion: A Comparison of the 
Selection and  Shrinkage Methods

• To summarize, 𝑷𝑳𝑺, 𝑷𝑪𝑹 and ridge regression tend to 
behave similarly. 

• Ridge regression may be preferred because it shrinks 
smoothly, rather than in discrete steps. Lasso falls 
somewhere between ridge regression and best subset 
regression, and enjoys some of the properties of each.


