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Shrinkage Methods
• By retaining a subset of the predictors and discarding the 

rest, subset selection produces a model that is interpretable 
and has possibly lower prediction error than the full model. 
However, because it is a discrete process—variables are 
either retained or discarded—it often exhibits high variance, 
and so doesn’t reduce the prediction error of the full model. 
Shrinkage methods are more continuous, and don’t suffer as 
much from high variability.

Ridge Regression

• Ridge regression shrinks the regression coefficients by 
imposing a penalty on their size. 



FIGURE 3.7. Estimated 
prediction error curves and 
their standard errors for the 

various selection and 
shrinkage methods. Each 

curve is plotted as a function 
of the corresponding 

complexity parameter for that 
method. The horizontal axis 
has been chosen so that the 

model complexity increases as 
we move from left to right. 
The estimates of prediction 

error and their standard errors 
were obtained by tenfold 

cross-validation; full details 
are given in Section 7.10. The 

least complex model within 
one standard error of the best 

is chosen, indicated by the 
purple vertical broken lines.



• The ridge coefficients minimize a penalized residual sum of 
squares,

�̂�𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝛽𝛽 ∑𝑟𝑟=1𝑁𝑁 (𝑦𝑦𝑟𝑟 − 𝛽𝛽0 −∑𝑗𝑗=1
𝑝𝑝 𝑥𝑥𝑎𝑎𝑖𝑖𝛽𝛽𝑖𝑖)2 + 𝜆𝜆∑𝑗𝑗=1

𝑝𝑝 𝛽𝛽𝑗𝑗2 . (3.41)

• Here 𝜆𝜆 ≥ 0 is a complexity parameter that controls the 
amount of shrinkage: the larger the value of 𝜆𝜆, the greater 
the amount of shrinkage. The coefficients are shrunk toward 
zero (and each other). 

• An equivalent way to write the ridge problem is

�̂�𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝛽𝛽 ∑𝑟𝑟=1𝑁𝑁 (𝑦𝑦𝑟𝑟 − 𝛽𝛽0 − ∑𝑗𝑗=1
𝑝𝑝 𝑥𝑥𝑎𝑎𝑖𝑖𝛽𝛽𝑖𝑖)2,

3.42
𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 ∑𝑗𝑗=1

𝑝𝑝 𝛽𝛽𝑗𝑗2 ≤ 𝑠𝑠,



• Which makes explicit the size constraint on the parameters. 
There is a one to-one correspondence between the 
parameters 𝜆𝜆 in (3.41) and 𝑠𝑠 in (3.42). When there are many 
correlated variables in a linear regression model, their 
coefficients can become poorly determined and exhibit high 
variance. A wildly large positive coefficient on one variable 
can be canceled by a similarly large negative coefficient on 
its correlated cousin. By imposing a size constraint on the 
coefficients, as in (3.42), this problem is alleviated.

• The ridge solutions are not equivariant under scaling of the 
inputs, and so one normally standardizes the inputs before 
solving (3.41). The solution to (3.41) can be separated into 
two parts, after reparametrization using centered inputs: 
each 𝑥𝑥𝑎𝑎𝑖𝑖 gets replaced by 𝑥𝑥𝑎𝑎𝑖𝑖 − �̅�𝑥𝑖𝑖 . We estimate 𝜷𝜷𝟎𝟎 by �𝑦𝑦 =
1
𝑁𝑁
∑1𝑁𝑁 𝑦𝑦𝑎𝑎. 

• Read about the process of whitening



• The remaining coefficients get estimated by a ridge 
regression without intercept, using the centered 𝑥𝑥𝑎𝑎𝑖𝑖 . 
Henceforth we assume that this centering has been done, so 
that the input matrix 𝐗𝐗 has 𝑝𝑝 (rather than 𝑝𝑝 + 1) columns.

• Writing the criterion in (3.41) in matrix form,

𝑅𝑅𝑅𝑅𝑅𝑅 𝜆𝜆 = 𝒚𝒚 − 𝐗𝐗𝛽𝛽 𝑇𝑇 𝒚𝒚 − 𝐗𝐗𝛽𝛽 + 𝜆𝜆𝛽𝛽𝑇𝑇𝛽𝛽, (3.43)

• The ridge regression solutions are easily seen to be

�̂�𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐗𝐗𝑇𝑇𝐗𝐗 + 𝜆𝜆 𝐈𝐈 −1𝐗𝐗𝑇𝑇𝒚𝒚, (3.44)

where, 𝐈𝐈 is the 𝑝𝑝 × 𝑝𝑝 identity matrix. Notice that with the 
choice of quadratic penalty 𝛽𝛽𝑇𝑇𝛽𝛽, the ridge regression solution is 
again a linear function of 𝑦𝑦. The solution adds a positive 
constant to the diagonal of 𝑿𝑿𝑇𝑇𝑿𝑿 before inversion. 



• This makes the problem nonsingular, even if 𝑿𝑿𝑇𝑇𝑿𝑿 is not of full 
rank, and was the main motivation for ridge regression when 
it was first introduced in statistics                                        
(Hoerl and Kennard, 1970).

• Traditional descriptions of ridge regression start with 
definition (3.44). We choose to motivate it via (3.41) and 
(3.42), as these provide insight into how it works.



• Ridge regression can also be derived as the mean or mode 
of a posterior distribution, with a suitably chosen prior 
distribution. In detail, suppose 𝑦𝑦𝑎𝑎 ~ 𝑁𝑁(𝛽𝛽0 + 𝑥𝑥𝑟𝑟𝑇𝑇𝛽𝛽,𝜎𝜎2), and the 
parameters 𝛽𝛽𝑖𝑖 are each distributed as 𝑁𝑁(0, 𝜏𝜏2), independently 
of one another. Then the (negative) log-posterior density of 
𝛽𝛽, with  𝜏𝜏2 and 𝜎𝜎2 assumed known, is equal to the 
expression in curly braces in (3.41), with 𝜆𝜆 = 𝜎𝜎2/𝜏𝜏2 Thus the 
ridge estimate is the mode of the posterior distribution; 
since the distribution is Gaussian, it is also the posterior 
mean (Ex – 3.6 - Hastie).

• The 𝑠𝑠𝑎𝑎𝑛𝑛𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝑣𝑣𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑠𝑠𝑠𝑠𝑡𝑡𝑎𝑎𝑝𝑝𝑡𝑡𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎𝑡𝑡𝑛𝑛 (𝑅𝑅𝑆𝑆𝑆𝑆) of the centered input 
matrix 𝐗𝐗 gives us some additional insight into the nature of 
ridge regression. The 𝑅𝑅𝑆𝑆𝑆𝑆 of the 𝑁𝑁 × 𝑝𝑝matrix 𝐗𝐗 has the form

𝐗𝐗 = 𝐔𝐔𝐔𝐔𝐕𝐕𝑇𝑇 (3.45)



Sec. 18.3.5 – PP 659
Sec. 14.5 – PP 535



• Using the singular value decomposition we can write the least 
squares fitted vector as

𝑿𝑿�̂�𝛽𝑙𝑙𝑙𝑙 = 𝑿𝑿 𝑿𝑿𝑇𝑇 𝑿𝑿 −1𝑿𝑿𝑇𝑇𝒚𝒚,
(3.46)

= 𝑼𝑼𝑼𝑼𝑇𝑇𝒚𝒚,
• Note that 𝐔𝐔𝑇𝑇𝒚𝒚 are the coordinates of 𝒚𝒚with respect to 

the orthonormal basis 𝐔𝐔. 

Now the ridge solutions are

𝑋𝑋�̂�𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑿𝑿 𝑿𝑿𝑇𝑇𝑿𝑿 + 𝜆𝜆𝑰𝑰 −1𝑿𝑿𝑇𝑇𝒚𝒚
(3.47)

= 𝑼𝑼𝑫𝑫 𝑫𝑫2 + 𝜆𝜆𝑰𝑰 −1𝑫𝑫 𝑼𝑼𝑇𝑇𝒚𝒚

= ∑𝑗𝑗=1
𝑝𝑝 𝒖𝒖𝑖𝑖

𝑟𝑟𝑗𝑗
2

𝑟𝑟𝑗𝑗
2+𝜆𝜆

𝒖𝒖𝑗𝑗𝑇𝑇y,



• Where the 𝒖𝒖𝑖𝑖 are the columns of 𝐔𝐔. Note that since 𝜆𝜆 ≥ 0, we 
have 𝑑𝑑𝑗𝑗2/(𝑑𝑑𝑗𝑗2 + 𝜆𝜆) ≤ 1. Like linear regression, ridge regression 
computes the coordinates of y with respect to the 
orthonormal basis 𝐔𝐔. It then shrinks these coordinates by 
the factors 𝑑𝑑𝑗𝑗2/(𝑑𝑑𝑗𝑗2 + 𝜆𝜆) .This means that a greater amount of 
shrinkage is applied to the coordinates of basis vectors with 
smaller 𝑑𝑑𝑗𝑗2.

• What does a small value of 𝑑𝑑𝑗𝑗2 mean? The 𝑅𝑅𝑆𝑆𝑆𝑆 of the 
centered 𝐗𝐗 is another way of expressing the 
𝑝𝑝𝑎𝑎𝑎𝑎𝑛𝑛𝑠𝑠𝑎𝑎𝑝𝑝𝑎𝑎𝑠𝑠 𝑠𝑠𝑡𝑡𝑎𝑎𝑝𝑝𝑡𝑡𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 of the variables in 𝐗𝐗. The sample 
covariance matrix is given by  𝑺𝑺 = 𝑿𝑿𝑇𝑇𝑿𝑿/𝑁𝑁, and from (3.45) we 
have

𝑿𝑿𝑇𝑇𝑿𝑿 = 𝑽𝑽𝑫𝑫2𝑽𝑽𝑇𝑇, (3.48)



• Which is the 𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑛𝑛 𝑑𝑑𝑠𝑠𝑠𝑠𝑡𝑡𝑎𝑎𝑝𝑝𝑡𝑡𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎𝑡𝑡𝑛𝑛 of 𝑿𝑿𝑇𝑇𝑿𝑿 (and of 𝑺𝑺, up to a 
factor 𝑁𝑁).The eigenvectors 𝑣𝑣𝑖𝑖 (columns of 𝑽𝑽) are also called 
the 𝑝𝑝𝑎𝑎𝑎𝑎𝑛𝑛𝑠𝑠𝑎𝑎𝑝𝑝𝑎𝑎𝑠𝑠 𝑠𝑠𝑡𝑡𝑎𝑎𝑝𝑝𝑡𝑡𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 (or Karhunen–Loeve) directions of 𝐗𝐗.

• The first principal component direction v1 has the property 
that z1 = Xv1 has the largest sample variance amongst all 
normalized linear combinations of the columns of X. Sample 
variance is easily seen to be

𝑆𝑆𝑎𝑎𝑎𝑎 𝒛𝒛1 = 𝑆𝑆𝑎𝑎𝑎𝑎 𝑿𝑿𝑣𝑣1 = 𝑟𝑟12

𝑁𝑁
, (3.49)

and in fact               
𝒛𝒛1 = 𝑿𝑿𝑣𝑣1 = 𝒖𝒖1𝑑𝑑1

• Subsequent principal components 𝒛𝒛𝑖𝑖 have maximum variance 
𝑑𝑑𝑗𝑗2/𝑁𝑁, subject to being orthogonal to the earlier ones. 
Conversely the last principal component has minimum 
variance. Hence the small singular values 𝑑𝑑𝑖𝑖 correspond to 
directions in the column space of 𝐗𝐗 having small variance, 
and ridge regression shrinks these directions the most.



• In Figure 3.7 we have plotted the estimated prediction error 
versus the quantity (DoF):

𝑑𝑑𝑑𝑑 𝜆𝜆 = 𝑠𝑠𝑎𝑎 𝑿𝑿 𝑿𝑿𝑇𝑇𝑿𝑿 + 𝜆𝜆𝑰𝑰 −1𝑿𝑿𝑇𝑇 ,

= 𝑠𝑠𝑎𝑎 𝐇𝐇𝜆𝜆

= ∑𝑗𝑗=1
𝑝𝑝 𝑟𝑟𝑗𝑗

2

𝑟𝑟𝑗𝑗
2+𝜆𝜆

. (3.50)

• This monotone decreasing function of 𝜆𝜆 is the 
𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑣𝑣𝑠𝑠 𝑑𝑑𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑑𝑑 𝑑𝑑𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑡𝑡𝑎𝑎 of the ridge regression fit. 
Usually in a linear-regression fit with 𝑝𝑝 variables, the 
degrees-of-freedom of the fit is 𝑝𝑝, the number of free 
parameters. The idea is that although all 𝑝𝑝 coefficients in a 
ridge fit will be non-zero, they are fit in a restricted fashion 
controlled by 𝜆𝜆 . Note that 𝑑𝑑𝑑𝑑(𝜆𝜆) = 𝑝𝑝when 𝜆𝜆 = 0 (no 
regularization) and 𝑑𝑑𝑑𝑑(𝜆𝜆) → 0 as 𝜆𝜆 → ∞.



The Lasso

• The lasso is a shrinkage method like ridge, with subtle but 
important differences. The lasso estimate is defined by

�̂�𝛽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝛽𝛽 ∑𝑟𝑟=1𝑁𝑁 (𝑦𝑦𝑟𝑟 − 𝛽𝛽0 − ∑𝑗𝑗=1
𝑝𝑝 𝑥𝑥𝑎𝑎𝑖𝑖𝛽𝛽𝑖𝑖)2

𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 ∑𝑗𝑗=1
𝑝𝑝 |𝛽𝛽𝑖𝑖| . (3.51)

• Write the lasso problem in the equivalent Lagrangian form

�̂�𝛽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝛽𝛽
1
2
�

𝑟𝑟=1

𝑁𝑁
(𝑦𝑦𝑎𝑎 − 𝛽𝛽0 −�

𝑗𝑗=1

𝑝𝑝

𝑥𝑥𝑎𝑎𝑖𝑖𝛽𝛽𝑖𝑖)2 + 𝜆𝜆�
𝑗𝑗=1

𝑝𝑝

|𝛽𝛽𝑖𝑖| .

(3.52)



• Notice the similarity to the ridge regression problem (3.42) or 
(3.41): the 𝐿𝐿2 ridge penalty ∑1

𝑝𝑝 𝛽𝛽𝑗𝑗
2 is replaced by the 𝐿𝐿1 lasso 

penalty ∑1
𝑝𝑝 |𝛽𝛽𝑖𝑖| .Thus the lasso does a kind of continuous 

subset selection. If 𝑠𝑠 is chosen larger than 𝑠𝑠0 = ∑1
𝑝𝑝 |�̂�𝛽𝑖𝑖| (where 

�̂�𝛽𝑖𝑖 = �̂�𝛽𝑗𝑗𝑙𝑙𝑙𝑙, the least squares estimates), then the lasso 
estimates are the �̂�𝛽𝑖𝑖’s. On the other hand, for 𝑠𝑠 = 𝑠𝑠0/2 say, 
then the least squares coefficients are shrunk by about 50%
on average.



Discussion: Subset Selection, 
Ridge Regression and the Lasso

• In the case of an orthonormal input matrix 𝐗𝐗 the three 
procedures have explicit solutions. Each method applies a 
simple transformation to the least squares estimate �̂�𝛽𝑖𝑖, as 
detailed in Table 3.4.

• Ridge regression does a proportional shrinkage. Lasso 
translates each coefficient by a constant factor 𝜆𝜆, truncating 
at zero. This is called “soft thresholding,”. Best-subset 
selection drops all variables with coefficients smaller than 
the 𝑀𝑀th largest; this is a form of “hard-thresholding.”

• Back to the no orthogonal case; some pictures help 
understand their relationship. Figure 3.11 depicts the lasso 
(𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠) and ridge regression (𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑠𝑠) when there are only two 
parameters. The residual sum of squares has elliptical 
contours, centered at the full least squares estimate.





FIGURE 3.11. Estimation picture for the lasso (left) and ridge 
regression (right). Shown are contours of the error and constraint 

functions. The solid blue areas are the constraint regions             
|𝛽𝛽1| + |𝛽𝛽2| ≤ 𝑠𝑠 and 𝛽𝛽12 + 𝛽𝛽22 ≤ 𝑠𝑠2, respectively, while the red ellipses 

are the contours of the least squares error function.



• Region for ridge regression is the disk 𝛽𝛽12 + 𝛽𝛽22 ≤ 𝑠𝑠, while 
that for lasso is the diamond |𝛽𝛽1| + |𝛽𝛽2| ≤ 𝑠𝑠. Both methods 
find the first point where the elliptical contours hit the 
constraint region. Unlike the disk, the diamond has corners; 
if the solution occurs at a corner, then it has one parameter 
𝛽𝛽𝑖𝑖equal to zero. When 𝑝𝑝 > 2, the diamond becomes a 
rhomboid, and has many corners, flat edges and faces; there 
are many more opportunities for the estimated parameters 
to be zero. 

• Consider the criterion

• �𝛽𝛽 =
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝛽𝛽 ∑𝑟𝑟=1𝑁𝑁 (𝑦𝑦𝑎𝑎 − 𝛽𝛽0 − ∑𝑗𝑗=1

𝑝𝑝 𝑥𝑥𝑎𝑎𝑖𝑖𝛽𝛽𝑖𝑖)2 + 𝜆𝜆∑𝑗𝑗=1
𝑝𝑝 |𝛽𝛽𝑗𝑗|𝑞𝑞 (3.53)

for 𝑞𝑞 ≥ 0. The contours of constant value of ∑ 𝑖𝑖 |𝛽𝛽𝑗𝑗|𝑞𝑞 are 
shown in Figure 3.12, for the case of two inputs.



• Thinking of 𝛽𝛽𝑖𝑖 𝑞𝑞 as the log-prior density. The case                     
𝑞𝑞 = 1 (𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑡𝑡) is the smallest 𝑞𝑞 such that the constraint region 
is convex; non-convex constraint regions make the 
optimization problem more difficult. In this view, the lasso, 
ridge regression and best subset selection are Bayes 
estimates with different priors. They are derived as posterior 
modes, that is, maximizers of the posterior. 

FIGURE 3.12. Contours of constant value of ∑ 𝑖𝑖 𝛽𝛽𝑖𝑖 𝑞𝑞 for given 
values of 𝑞𝑞.



• FIGURE 3.13. Contours of constant value of ∑ 𝑖𝑖 𝛽𝛽𝑖𝑖 𝑞𝑞 for                    
𝑞𝑞 = 1.2 (𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠 𝑝𝑝𝑠𝑠𝑡𝑡𝑠𝑠), and the elastic-net penalty                        

∑ 𝑖𝑖 (𝛼𝛼𝛽𝛽𝑗𝑗2 + (1 − 𝛼𝛼)|𝛽𝛽𝑖𝑖|) for 𝛼𝛼 = 0.2 (𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑠𝑠 𝑝𝑝𝑠𝑠𝑡𝑡𝑠𝑠). Although visually 
very similar, the elastic

• Zou and Hastie (2005) introduced the 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠 𝑛𝑛𝑠𝑠𝑠𝑠 penalty

𝜆𝜆 ∑𝑗𝑗=1
𝑝𝑝 (𝛼𝛼𝛽𝛽𝑗𝑗2 + (1 − 𝛼𝛼)|𝛽𝛽𝑖𝑖|) , (3.54)



The Grouped Lasso

• In some problems, the predictors belong to pre-defined 
groups; In this situation it may be desirable to shrink and 
select the members of a group together. The 𝑎𝑎𝑎𝑎𝑡𝑡𝑠𝑠𝑝𝑝𝑠𝑠𝑑𝑑 𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑡𝑡 is 
one way to achieve this. Suppose that the p predictors are 
divided into 𝐿𝐿 groups, with p` the number in group ℓ. For 
ease of notation, we use a matrix 𝑋𝑋ℓ to represent the 
predictors corresponding to the ℓ𝑠𝑠𝑟 group, with 
corresponding coefficient vector 𝛽𝛽ℓ.The grouped-lasso 
minimizes the convex criterion

• min
𝛽𝛽∈𝑅𝑅𝑝𝑝

||𝑦𝑦 − 𝛽𝛽0𝟏𝟏 − ∑ℓ=1𝐿𝐿 𝑿𝑿ℓ𝛽𝛽ℓ||22 + 𝜆𝜆 ∑
ℓ=1
𝐿𝐿 𝑝𝑝ℓ| 𝛽𝛽ℓ |2 ,     (3.80)

where the 𝑝𝑝ℓ terms accounts for the varying group sizes, 
and || · ||2 is the Euclidean norm (not squared).



• Since the Euclidean norm of a vector 𝛽𝛽ℓ is zero only if all of 
its components are zero, this procedure encourages sparsity 
at both the group and individual levels. That is, for some 
values of 𝜆𝜆, an entire group of predictors may drop out of the 
model. This procedure was proposed by Bakin (1999) and Lin 
and Zhang (2006), and studied and generalized by Yuan and 
Lin (2007).

Further Properties of the Lasso
• A number of authors have studied the ability of the lasso 

and related procedures to recover the correct model, as 𝑁𝑁
and 𝑝𝑝 grow. Examples of this work include Knight and Fu 
(2000), Greenshtein and Ritov (2004), Tropp (2004), Donoho 
(2006𝑠𝑠), Meinshausen (2007), Meinshausen and B¨uhlmann 
(2006), Tropp (2006), Zhao and Yu (2006), Wainwright 
(2006), and Bunea et al. (2007).





Other Competing methods:

LAR

PLS

PCR

FSW

FS0



Computational Considerations

• Least squares fitting is usually done via the Cholesky 
decomposition of the matrix 𝑿𝑿𝑇𝑇𝑿𝑿 or a 𝑸𝑸𝑸𝑸 decomposition of 𝑿𝑿. 
With 𝑁𝑁 observations and 𝑝𝑝 features, the Cholesky 
decomposition requires 𝑝𝑝3 + 𝑁𝑁𝑝𝑝2/2 operations, while the 𝑸𝑸𝑸𝑸
decomposition requires 𝑁𝑁𝑝𝑝2 operations. Depending on the 
relative size of 𝑁𝑁 and 𝑝𝑝, the Cholesky can sometimes be 
faster; on the other hand, it can be less numerically stable 
(Lawson and Hansen, 1974). Computation of the lasso via the 
𝑳𝑳𝑳𝑳𝑸𝑸 algorithm has the same order of computation as a least 
squares fit.



Discussion: A Comparison of the 
Selection and  Shrinkage Methods

• To summarize, 𝑷𝑷𝑳𝑳𝑺𝑺, 𝑷𝑷𝑪𝑪𝑸𝑸 and ridge regression tend to 
behave similarly. 

• Ridge regression may be preferred because it shrinks 
smoothly, rather than in discrete steps. Lasso falls 
somewhere between ridge regression and best subset 
regression, and enjoys some of the properties of each.







Least Angle Regression
• Least angle regression (𝐿𝐿𝐿𝐿𝑅𝑅) is a relative newcomer                 

(𝐸𝐸𝑑𝑑𝑎𝑎𝑡𝑡𝑛𝑛 𝑠𝑠𝑠𝑠 𝑎𝑎𝑠𝑠. , 2004), and can be viewed as a kind of 
“𝑑𝑑𝑠𝑠𝑎𝑎𝑡𝑡𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑑 version of forward stepwise regression

• Figure 3.10. Forward stepwise regression builds a model 
sequentially, adding one variable at a time. At each step, it 
identifies the best variable to include in the active set, and 
then updates the least squares fit to include all the active 
variables.

• Least angle regression uses a similar strategy, but only 
enters “as much” of a predictor as it deserves. At the first 
step it identifies the variable most correlated with the 
response. Rather than fit this variable completely, 𝐿𝐿𝐿𝐿𝑅𝑅
moves the coefficient of this variable continuously toward its 
leastsquares value (causing its correlation with the evolving 
residual to decrease in absolute value). 



• As soon as another variable “catches up” in terms of 
correlation with the residual, the process is paused. The 
second variable then joins the active set, and their 
coefficients are moved together in a way that keeps their 
correlations tied and decreasing. This process is continued 
until all the variables are in the model, and ends at the full 
least-squares fit. Algorithm 3.2 provides the details.



Algorithm 3.2 Least Angle Regression.

1. Standardize the predictors to have mean zero and unit 
norm. Start with the residual 𝒓𝒓 = 𝒚𝒚 − �𝒚𝒚,𝛽𝛽1,𝛽𝛽2, . . . ,𝛽𝛽𝑝𝑝 = 0.

2. Find the predictor 𝐱𝐱𝑖𝑖 most correlated with 𝒓𝒓.

3. Move 𝛽𝛽𝑖𝑖 from 0 towards its least-squares coefficient ⟨𝐱𝐱j,r⟩, 
until some other competitor 𝐱𝐱𝑘𝑘 has as much correlation with 
the current residual as does 𝐱𝐱𝑖𝑖 .

4. Move 𝛽𝛽𝑖𝑖 and 𝑘𝑘 in the direction defined by their joint least 
squares coefficient of the current residual on (𝐱𝐱𝑖𝑖 , 𝐱𝐱𝑘𝑘), until 
some other competitor 𝐱𝐱𝑠𝑠 has as much correlation with the 
current residual.

5. Continue in this way until all 𝑝𝑝 predictors have been 
entered. After min (𝑁𝑁 − 1,𝑝𝑝) steps, we arrive at the full 
least-squares solution.



• Suppose 𝐿𝐿𝑘𝑘 is the active set of variables at the beginning of 
the 𝑘𝑘thstep, and let  𝛽𝛽𝐴𝐴𝑘𝑘 be the coefficient vector for these 
variables at this step; there will be 𝑘𝑘 − 1 nonzero values, 
and the one just entered will be zero. If 𝒓𝒓𝑘𝑘 = 𝒚𝒚 − 𝑿𝑿𝐴𝐴𝑘𝑘𝛽𝛽𝐴𝐴𝑘𝑘 is 
the current residual, then the direction for this step is

𝛿𝛿𝑘𝑘 = 𝑿𝑿𝐴𝐴𝑘𝑘
𝑇𝑇 𝑿𝑿 −1𝑋𝑋𝐴𝐴𝐴𝐴𝑇𝑇 𝑎𝑎𝑘𝑘. (3.35)

• The coefficient profile then evolves as 𝛽𝛽𝐴𝐴𝑘𝑘 (𝛼𝛼) = 𝛽𝛽𝐴𝐴𝑘𝑘 + 𝛼𝛼 · 𝛿𝛿𝑘𝑘. 

• By construction the coefficients in 𝐿𝐿𝐿𝐿𝑅𝑅 change in a piecewise 
linear fashion.



Algorithm 3.2a Least Angle Regression: Lasso Modification.

• The 𝐿𝐿𝐿𝐿𝑅𝑅(lasso) algorithm is extremely efficient, requiring the 
same order of computation as that of a single least squares 
fit using the 𝑝𝑝 predictors. Least angle regression always 
takes 𝑝𝑝 steps to get to the full least squares estimates. The 
lasso path can have more than 𝑝𝑝 steps, although the two are 
often quite similar. Algorithm 3.2 with the lasso modification 
3.2a is an efficient way of computing the solution to any 
lasso problem, especially when 𝑝𝑝 ≫ 𝑁𝑁

4𝑎𝑎. If a non-zero coefficient hits zero, drop its variable 
from the active set of variables and recompute the 
current joint least squares direction.



Methods Using Derived Input 
Directions

• In many situations we have a large number of inputs, often 
very correlated. The methods in this section produce a small 
number of linear combinations 𝑍𝑍𝑎𝑎,𝑎𝑎 = 1, . . . ,𝑀𝑀 of the original 
inputs X𝑖𝑖 , and the 𝑍𝑍𝑎𝑎 are then used in place of the X𝑖𝑖 as 
inputs in the regression. The methods differ in how the
linear combinations are constructed.

Principal Components 
Regression

• In this approach the linear combinations 𝑍𝑍𝑎𝑎 used



Partial Least Squares
• This technique also constructs a set of linear combinations of 

the inputs for regression, but unlike principal components 
regression it uses 𝒚𝒚 (in addition to 𝐗𝐗) for this construction. 
Like principal component regression, partial least squares 
(𝑃𝑃𝐿𝐿𝑅𝑅) is not scale invariant, so we assume that each 𝐱𝐱𝑖𝑖 is 
standardized to have mean 0 and variance 1. 𝑃𝑃𝐿𝐿𝑅𝑅 begins by 
computing �𝜑𝜑1𝑖𝑖 = ⟨𝐱𝐱𝑖𝑖,𝒚𝒚⟩ for each 𝑖𝑖. From this we construct the 
derived input 𝒛𝒛1 = ∑ 𝑖𝑖 �𝜑𝜑1𝑖𝑖 𝐱𝐱𝑖𝑖, which is the first partial least 
squares direction. The outcome 𝒚𝒚 is regressed on 𝒛𝒛1 giving 
coefficient �𝜃𝜃1, and then we orthogonalize 𝐱𝐱1, . . . , 𝐱𝐱𝑝𝑝 with respect 
to 𝒛𝒛1. We continue this process, until M ≤ 𝑝𝑝 directions have 
been obtained. In this manner, partial least squares produces 
a sequence of derived, orthogonal inputs or directions 
𝒛𝒛1, 𝒛𝒛2, . . . , 𝒛𝒛𝑀𝑀. As with principal-component regression, if we 
were to construct all M = p directions, we would get back a 
solution equivalent to the usual least squares estimates; 
using M < p directions produces a reduced regression. 





• What optimization problem is partial least squares solving? 
Since it uses the response 𝒚𝒚 to construct its directions, its 
solution path is a nonlinear function of 𝒚𝒚. It can be shown 
(𝐸𝐸𝑥𝑥𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠 3.15) that partial least squares seeks directions that 
have high variance and have high correlation with the 
response, in contrast to principal components regression 
which keys only on high variance the 𝑎𝑎𝑡𝑡𝑡principal 
component direction 𝑣𝑣𝑎𝑎 solves:

max
𝛼𝛼

𝑆𝑆𝑎𝑎𝑎𝑎 𝑿𝑿𝜶𝜶
(3.63)

𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 ||𝛼𝛼|| = 1,𝛼𝛼𝑇𝑇𝑺𝑺𝑣𝑣ℓ = 0, ℓ = 1, . . . ,𝑎𝑎 − 1,

• here 𝑺𝑺 is the sample covariance matrix of the 𝐱𝐱𝑖𝑖 . 



• The 𝑎𝑎𝑠𝑠𝑟 𝑃𝑃𝐿𝐿𝑅𝑅 direction �𝜑𝜑𝑎𝑎 solves:

max
𝛼𝛼

𝐶𝐶𝑡𝑡𝑎𝑎𝑎𝑎2 𝒚𝒚,𝑿𝑿𝛼𝛼 𝑆𝑆𝑎𝑎𝑎𝑎 𝑿𝑿𝛼𝛼 (3.64)

𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 ||𝛼𝛼|| = 1,𝛼𝛼𝑇𝑇𝑺𝑺 �𝜑𝜑ℓ = 0, ℓ = 1, . . . ,𝑎𝑎 − 1,

• If the input matrix 𝑿𝑿 is orthogonal, then partial least squares 
finds the least squares estimates after 𝑎𝑎 = 1 steps.



Incremental Forward Stagewise 
Regression





FIGURE 3.16. Comparison of 𝐿𝐿𝐿𝐿𝑅𝑅 and lasso with forward stepwise, 
forward stagewise (𝐹𝐹𝑅𝑅) and incremental forward stagewise 

(𝐹𝐹𝑅𝑅0) regression. The setup is the same as in Figure 3.6, except 𝑁𝑁 =
100 here rather than 300. Here the slower FS regression ultimately 

outperforms forward stepwise. LAR and lasso show similar behavior 
to 𝐹𝐹𝑅𝑅 and 𝐹𝐹𝑅𝑅0. Since the procedures take different numbers of steps 
(across simulation replicates and methods), we plot the MSE as a 

function of the fraction of total L1 arc-length toward the least-
squares fit. 
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