Markov Models

&

Hidden Markov Models



What is an Markov Chain Model?

* A stochastic model that describe the probabilities of
transition among the states of a system.

* It 1s a random process that undergoes transitions from
one state to another on a state space.

* Change of states depends probabilistically only on the
current state of the system.

* It 1s required to possess a property that i1s usually
characterized as '"memoryless": the probability
distribution of the next state depends only on the current
state and not on the sequence of events that preceded 1it.



Markov Assumptions

. The probabilities of moving from a state to all others
sum to one.

I'he probabilities apply to all system participants.

I'he probabilities are constant over time.

Configuration of the Markov-Chain Model

. Markov systems deal with stochastic environments
in which possible "outcomes occur at the end of a
well-defined, usually first period".



. This situation further involves a multi-period time frame,
during which the occurring consumer's transient behavior,
for example, affects the stability of the firm's
performance.

. This transient behavior, whose future outcome 1s
unknown but needs to be predicated, creates inter-period
transitional probabilities. - Such a stochastic process,
known as the Markov process, contains a special case,
where the transitional probabilities from one time period
to another remains stationary, in which case the process 1s
referred to as the Markov-Chain.



Lets try to understand Markov chain
from very simple example

Weather:

* raining today =) 60% rain tomorrow
40% no rain tomorrow

* not raining today === 20% rain tomorrow

80% no rain tomorrow
Stochastic Finite State Machine:

0.6 m 0.8

o/



What is an HMM?
 Graphical Model

e (Circles indicate states

« Arrows indicate probabilistic dependencies
between states



What is an HMM?

* (oreen circles are hidden states

* Dependent only on the previous state

* “The past 1s independent of the future given the
present.”



What is an HMM?
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* Purple nodes are observed states

* Dependent only on their corresponding hidden
state



HMM Formalism

« {S, K, 11, A, B}
* §:{s,...8  are the values for the hidden states
* K: {k,...k,, } are the values for the observations



HMM Formalism

« {§, K, 11, 4, B}

* IT={xn} are the initial state probabilities

e A= {aij} are the state transition probabilities

* B={b,} are the observation state probabilities



Inference in an HMM
« Compute the probability of a given observation

sSCquence

* (G1ven an observation sequence, compute the most
likely hidden state sequence

* G1iven an observation sequence and set of possible
models, which model most closely fits the data?



Decoding

(G1iven an observation sequence and a model,
compute the probability of the observation sequence

O =(o,...0;), u =(A4, B,IT)
Compute P(O| 1)



Decoding




Decoding
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P(O|X,u)=b,,b,,
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Decoding
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Decoding
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P(X|u)=rm,a,  a,,.a._.
P(O,X | u) = P(OIX HP(X | 1)

PO| )= PO| X, 1)P(X | p)




Decoding
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Forward Procedure

* Special structure gives us an efficient solution
using dynamic programming.

e Intuition: Probability of the first 7 observations 1s
the same for all possible #+1 length state
sequences.

e Define: ai(t) = P(Ol...Ot,Xt =i|u)




Forward Procedure

o (1+1)

— P(01°"Oz‘+19 xt+1 — ])

= P(o,..0, | x, = J)P(x._, =J)
— P(Ol“'ot | xt+1 = j)P(OtH | xt+1 = j)P(le = J)
= P(0,.-0,, %1, = )P0 | X, = J)

12V t+1



Forward Procedure

o (1+1)

— P(01°"Ot+19xz+l — ])

— P(01°"Ot+1 | X1 = j)P(xz+1 — J)

— P(Ol“'ot |xt+1 = j)P(OtH |xt+1 = j)P(le = J)
= P(0,..0,,%,,, = /)P(0.,; | X,., = J)

12V t+1



Forward Procedure

o (1+1)

— P(01°"Ot+19xz+l = ])

= P(0,..0,,, | x,,, = DP(x,, = J)

— P(01°"Ot | xt+1 — j)P(Ot+l | xl+1 — ].)P(xtﬂ - ])

= P(0,0,,%,, = ))P(0 | X, = J)

12V t+1



Forward Procedure

o (1+1)

— P(01°"Ot+19xz+l = ])
= P(01°°°Ot+1 | X = j)P(xtH = ])
— P(Ol“'ot |xz+1 — j)P(OtH |xt+1 — j)P(le = J)

:P(OI”'O X :j)P(Ot+1 |xt+1 — J)

12 Vt+1




Forward Procedure

- ZP(OI 0,5 X, =1 o Xpt] = ])P(01+1| . ])

i=l.N

— ZP(OI t—l—l ]|X —Z)P(.X _Z)P(O l|'xt+l:j)
i=l..N
- ZP(01°"OI"XI = i)P('xtH | )C — Z)P(OHI | ‘xt—l—l — ])

i=l.N

= 2o(ab,,

i=l..N




Forward Procedure

= ZP(OP“ON'XI = i,x,+1 — j)P(OzH |'xt+l - ])

i=l..N

= ZP(OP“OID‘XHI — j|xz — Z)P(.Xt — i)P(Ot+1 |‘xt+1 — ])
i=l.N

— ZP(Olmoz?xt — i)P('xt+l — ] | x: — i)P(0z+1 |xt+1 — ])
i=l.N

- Zai ()a;b,,

i=1..N




Forward Procedure

= ZP(OI O, X, _laxz+1 j)P(01+1|x1+1:j)

i=l..N

- ZP(Olm X =J 1%, =0DP(x, =0)P(0,,, | X, = J)
i=l1..N

= ZP(O1 0,, X, —l)P(-le |.7C _l)P(OH—l |‘xt+1 :J)
i=l..N

= Za (Ha,b,,
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Forward Procedure

= ZP(OP“ON'XI = i,x,+1 — j)P(OzH |'xt+l - ])

i=l..N

— ZP(OI'”ONXHI — ] | 'xt — Z)P('xt — i)P(Ot+1 |'xt+l — ])
i=l.N

— ZP(Olmoz?xt — i)P('xt+l — ] | x: — i)P(0z+1 |xt+1 — ])
i=l.N

= Z ai (t)alj bjot+1

i=l.N




Backward Procedure

o ols

B.(T+1)=1
B.(1) = P(o,..0, | x, = i)
B()= Y ab, B,(t+1)

j=1..N

Probability of the rest
of the states given the
first state




Decoding Solution




Best State Sequence

* Find the state sequence that best explains the observations

 Viterbi algorithm

* arg max P(X |0)



Viterbi Algorithm

5(0 maXP(xl X, 1,0,...0,_1,X, = J,0,)

Xy

The state sequence which maximizes the
probability of seeing the observations to time
t-1, landing 1n state j, and seeing the
observation at time t




Viterbi Algorithm

%
D GO O O
0,(f)= max P(x,...

P 2 |

X, 15,0y...0, 1, X, = J,0,)

o,(t+1)= max5 (t)a.b

Y I Recursive
Computation

W (t+1)=arg max5 (t)a.b

= JOmq




Viterbi Algorithm

¢ soe

Xr= argmaxo,(7T)

Compute the most

A likely state sequence
A, = l//;(t | (t+1) by working
backwards

P()A() =argmaxo,(7T)




Parameter Estimation

« G1iven an observation sequence, find the model
that 1s most likely to produce that sequence.

* No analytic method

* Given a model and observation sequence, update
the model parameters to better fit the observations.



Parameter Estimation

B
p.(i, )= i (t)aifbﬂ)m p;+1) Probability of
Z o (t)B, () traversing an arc
m=1...N

v.()= > p,,))

j=1..N

Probability of
being in state i




Parameter Estimation

Now we can
compute the new
estimates of the
model parameters.




HMM Applications
* Generating parameters for n-gram models

» Tagging speech
* Speech recognition



The Most Important Thing

We can use the special structure of this
model to do a lot of neat math and solve
problems that are otherwise not solvable.
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