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What is an Markov Chain Model?

• A stochastic model that describe the probabilities of 
transition among the states of a system.

• It is a random process that undergoes transitions from 
one state to another on a state space.

• Change of states depends probabilistically only on the 
current state of the system.

• It is required to possess a property that is usually 
characterized as "memoryless": the probability 
distribution of the next state depends only on the current 
state and not on the sequence of events that preceded it.



Markov Assumptions

● The probabilities of moving from a state to all others 
sum to one.

● The probabilities apply to all system participants.
● The probabilities are constant over time.

Configuration of the Markov-Chain Model

● Markov systems deal with stochastic environments 
in which possible "outcomes occur at the end of a 
well-defined, usually first period".



● This situation further involves a multi-period time frame, 
during which the occurring consumer's transient behavior, 
for example, affects the stability of the firm's 
performance.

● This transient behavior, whose future outcome is 
unknown but needs to be predicated, creates inter-period 
transitional probabilities. - Such a stochastic process, 
known as the Markov process, contains a special case, 
where the transitional probabilities from one time period 
to another remains stationary, in which case the process is 
referred to as the Markov-Chain.





What is an HMM?

• Graphical Model
• Circles indicate states
• Arrows indicate probabilistic dependencies 

between states



What is an HMM?

• Green circles are hidden states
• Dependent only on the previous state
• “The past is independent of the future given the 

present.”



What is an HMM?

• Purple nodes are observed states
• Dependent only on their corresponding hidden 

state



HMM Formalism

• {S, K, Π, Α, Β} 
• S : {s1…sN } are the values for the hidden states
• K : {k1…kM } are the values for the observations
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HMM Formalism

• {S, K, Π, Α, Β} 
•  Π = {πι} are the initial state probabilities
• A = {aij} are the state transition probabilities
• B = {bik} are the observation state probabilities

A

B

AAA

BB

SSS

KKK

S

K

S

K



Inference in an HMM

• Compute the probability of a given observation 
sequence

• Given an observation sequence, compute the most 
likely hidden state sequence

• Given an observation sequence and set of possible 
models, which model most closely fits the data?
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Given an observation sequence and a model, 
compute the probability of the observation sequence

Decoding



Decoding

oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1



Decoding

oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1



Decoding

oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1



Decoding

oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1



Decoding

oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1



Forward Procedure
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• Special structure gives us an efficient solution 
using dynamic programming.

• Intuition: Probability of the first t observations is 
the same for all possible t+1 length state 
sequences. 

• Define:
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Backward Procedure

Probability of the rest 
of the states given the 
first state
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Decoding Solution

Forward Procedure

Backward Procedure

Combination
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Best State Sequence

• Find the state sequence that best explains the observations

• Viterbi algorithm

•  
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Viterbi Algorithm

The state sequence which maximizes the 
probability of seeing the observations to time 
t-1, landing in state j, and seeing the 
observation at time t

x1 xt-1 j
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Viterbi Algorithm

Recursive 
Computation

x1 xt-1 xt xt+1
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Viterbi Algorithm

Compute the most 
likely state sequence 
by working 
backwards

x1 xt-1 xt xt+1 xT
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Parameter Estimation

• Given an observation sequence, find the model 
that is most likely to produce that sequence.

• No analytic method
• Given a model and observation sequence, update 

the model parameters to better fit the observations.
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Parameter Estimation
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Probability of 
traversing an arc

Probability of 
being in state i
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Parameter Estimation
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Now we can 
compute the new 
estimates of the 
model parameters.



HMM Applications

• Generating parameters for n-gram models
• Tagging speech
• Speech recognition
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The Most Important Thing
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We can use the special structure of this 
model to do a lot of neat math and solve 
problems that are otherwise not solvable.
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