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CLASSIFICATION AND REGRESSION TREES
• The process of selecting a specific model, given a new 

input x, can be described by a sequential decision 
making process corresponding to the traversal of a 
binary tree (one that splits into two branches at each 
node). 

• Here we focus on a particular tree-based framework 
called classification and regression trees, or CART 
(Breiman et al., 1984)



CLASSIFICATION AND REGRESSION TREES

Illustration of a two-dimensional 
input space that has been 
partitioned into  five regions 
using axis-aligned boundaries.

Binary tree corresponding 
to the partitioning of input 
space
(eg BSP tree)



CLASSIFICATION AND REGRESSION TREES
• In the example given in previous slide, the first step 

divides the whole of the input space into two regions 
according to whether ଵ ଵ ଵ ଵ where ଵ is a 
parameter of the model.

• This creates two sub regions, each of which can then be 
subdivided independently.

• For instance, the region ଵ ଵ is further subdivided 
according to whether ଶ ଶ ଶ ଶ, giving rise to 
the regions denoted A and B.

• For any new input x, we determine which region it falls 
into by starting at the top of the tree at the root node 
and following a path down to a specific leaf node 
according to the decision criteria at each node.



CLASSIFICATION AND REGRESSION TREES

• Within each region, there is a separate model to predict 
the target variable.

• For instance, in regression we might simply predict a 
constant over each region, or in classification we might 
assign each region to a specific class.

• EXAMPLE: For instance, to predict a patient’s disease, we 
might 

• first ask “is their temperature greater than some threshold?”. If 
the answer is yes, then 

• we might next ask “is their blood pressure less than some 
threshold?”. 

Each leaf of the tree is then associated with a specific 
diagnosis.



CLASSIFICATION AND REGRESSION TREES

• Consider first a regression problem in which the goal is 
to predict a single target variable from a D-dimensional 
vector ଵ  ் of input variables.

• The training data consists of input vectors ଵ ே along with the corresponding continuous 
labels ଵ ே

• If the partitioning of the input space is given, and we 
minimize the sum-of-squares error function, then the 
optimal value of the predictive variable within any given 
region is just given by the average of the values of  for 
those data points that fall in that region.



Hastie Sec. 9.2 – Also Murphy Sec. 16.2



Regression Trees – popular method for tree-based
regression and classification called CART











Tree size is a tuning parameter governing the model’s complexity, 
and the optimal tree size should be adaptively chosen from the data. One 
approach would be to split tree nodes only if the decrease in sum-of-
squares due to the split exceeds some threshold. This strategy is too 
short-sighted, however, since a seemingly worthless split might lead to a 
very good split below it.

The preferred strategy is to grow a large tree T0, stopping the 
splitting process only when some minimum node size (say 5) is reached. 
Then this large tree is pruned using cost-complexity pruning, which we 
describe later





PLOT THEM



Node – Pointer to Root of sub-tree;

D – Tree











Gini impurity = 1 – Gini

∆ = 𝟎.𝟓 − 𝟎.𝟒𝟕𝟓;    𝟎.𝟓 − 𝟎.𝟑𝟐



Criteria for Splitting nodes - revisited





The lower the Gini 
Impurity, the higher 
the homogeneity of 
the node. The Gini 
Impurity of a pure 
node is zero.Steps to split a decision tree using Gini Impurity:

1. Similar to what we did in information gain. For each split, 
individually calculate the Gini Impurity of each child node
2. Calculate the Gini Impurity of each split as the weighted 
average Gini Impurity of child nodes
3. Select the split with the lowest value of Gini Impurity
4. Until you achieve homogeneous nodes, repeat steps 1-3





WHEN TO STOP ADDING NODES
• A simple approach would be to stop when the reduction in 

residual error falls below some threshold.
• The most common stopping procedure is to use a minimum 

count on the number of training instances assigned to each leaf 
node. If the count is less than some minimum then the split is not 
accepted and the node is taken as a final leaf node.

• However, it is found empirically that often none of the available 
splits produces a significant reduction in error, and yet after 
several more splits a substantial error reduction is found.

• For this reason, it is common practice to grow a large tree, using 
a stopping criterion based on the number of data points 
associated with the leaf nodes, and then prune back the 
resulting tree.

• The pruning is based on a criterion that balances residual error 
against a measure of model complexity.



• If we denote the starting tree for pruning by , then we 
define  to be a subtree of  if it can be obtained 
by pruning nodes from  (in other words, by collapsing 
internal nodes by combining the corresponding regions).

• Suppose the leaf nodes are indexed by 
with leaf node representing a region ఛ

of input space having ఛ data points, and denoting 
the total number of leaf nodes.

• The optimal prediction for region ఛ is then given by

WHEN TO STOP ADDING NODES



• and the corresponding contribution to the residual sum-
of-squares is then

• The pruning criterion is then given by

• The regularization parameter determines the trade-off 
between the overall residual sum-of-squares error and 
the complexity of the model as measured by the number 

of leaf nodes, and its value is chosen by cross-
validation.

WHEN TO STOP ADDING NODES



• For classification problems, the process of growing and 
pruning the tree is similar, except that the sum-of-squares 
error is replaced by a more appropriate measure of 
performance.

• If we define ఛ to be the proportion of data points in region ఛ assigned to class , where then two 
commonly used choices are the cross-entropy

• and,  the Gini index

• These both vanish for     ఛ and ఛ and have a 
maximum at   ఛ .

WHEN TO STOP ADDING NODES



Advantages
• The cross entropy and the Gini index are better measures 

than the misclassification rate for growing the tree 
because they are more sensitive to the node probabilities.

• Also, unlike misclassification rate, they are differentiable 
and hence better suited to gradient based optimization 
methods.

• The human interpretability of a tree model such as CART 
is often seen as its major strength.

Disadvantages
• In practice it is found that the particular tree structure 

that is learned is very sensitive to the details of the data 
set, so that a small change to the training data can result 
in a very different set of splits.



Decision Tree Pruning
Analytics

And 
An Example





Either the Gini index or cross-entropy should be used when 
growing the tree. 

To guide cost-complexity pruning, any of the three measures can be 
used, but typically it is the misclassification rate.



A decision tree with two classes A and B 
(with node numbers and class labels)

An example pruning set

B



• The idea is to hold out some of the available 
instances—the “pruning set”—when the tree is built, 
and prune the tree until the classification error on 
these independent instances starts to increase. 

• Because the instances in the pruning set are not 
used for building the decision tree, they provide a 
less biased estimate of its error rate on future 
instances than the training data.



B



• In each tree, the number of instances in the pruning data that 
are misclassified by the individual nodes are given in 
parentheses.

• Assuming that the tree is traversed left-to-right, the pruning 
procedure first considers for removal the subtree attached to 
node 3.

• Because the subtree’s error on the pruning data (1 error) 
exceeds the error of node 3 itself (0 errors), node 3 is 
converted to a leaf.

• Next, node 6 is replaced by a leaf for the same reason.
• Having processed both of its successors, the pruning 

procedure then considers node 2 for deletion. However, 
because the subtree attached to node 2 makes fewer 
mistakes (0 errors) than node 2 itself (1 error), the subtree 
remains in place. Next, the subtree extending from node 9 is 
considered for pruning, resulting in a leaf.

• In the last step, node 1 is considered for pruning, leaving the 
tree unchanged.









ANN

or

MLP



Feed-forward Network Functions
• The linear models for regression and classification are 

based on linear combinations of fixed nonlinear basis 
functions  and take the form

• where ・ is a nonlinear activation function in the case 
of classification and is the identity in the case of 
regression.

• Our goal is to extend this model by making the basis 
functions  depend on parameters and then to allow 
these parameters to be adjusted, along with the 
coefficients  , during training.













Network diagram for the two layer neural network. The input, 
hidden, and output variables are represented by nodes, and the weight 
parameters are represented by links between the nodes, in which the 
bias parameters are denoted by links coming from additional input and 
hidden variables 𝒙𝟎 and 𝒛𝟎. 

Arrows denote the direction of information flow through the 
network during forward propagation.



Feed-forward Network Functions
• The basic neural network model can be described a 

series of functional transformations. First we construct M 
linear combinations of the input variables ଵ  in 
the form

• where , and the superscript (1) indicates that 
the corresponding parameters are in the first ‘layer’ of 
the network.

• We shall refer to the parameters ଵ as weights and the 
parameters ଵ as biases.

• The quantities  are known as activations.



Let’s go thru only the sequence of equations 
(just the maths, in compact form)

For the derivation of weight update rule,
without much of text-based explanations.

Trailing slides will have the explanations
- “Directly from the Book” 

Pl. help yourself, if needed, 
as per input from class earlier.
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0  𝑦 𝐱,𝐰  1

𝒚𝒌ሺ𝐱,𝐰ሻ = 𝑝ሺ𝒕𝒌 = 𝟏|𝐱ሻ, 

MLE == Min of SSD-EF

NLL & Cross-entropy function;
Better Convergence than the
SSD-EF

For K binary Classifiers
Using one-hot vector
Representation;

General cross-entropy
expression



Softmax: 



• From equation 5.51 which is

•డாడೖ can be written as    i.e., డாడೖ  ----- (1)

• According to chain rule,     ೖೕ ೖೕ ೕೕ
• From equations 5.48 and 5.49,  we have:

•డೖడ௭ೕ  and             
డ௭ೕడೕ ᇱ  ----- (2)

• Substituting (1) and (2) in Eqn 5.55 we get 







Skip the next 
few slides,
with material  
directly from 
book, piece-
wise 
explanations of 
the Bank of 
Eqns. given in 
previous few 
slides.



Feed-forward Network Functions
• Each of them is then transformed using a differentiable, 

nonlinear activation function ・ to give

• These quantities, in the context of neural networks, are called 
hidden units.

• The nonlinear functions ・ are generally chosen to be 
sigmoidal functions such as the logistic sigmoid or the ‘tanh’. 

• These values are again linearly combined to give output unit 
activations

where is the total number of outputs.
• This transformation corresponds to the second layer of the 

network, and again the ଶ are bias parameters.



Feed-forward Network Functions
• Finally, the output unit activations are transformed using 

an appropriate activation function to give a set of 
network outputs .

• The choice of activation function is determined by the 
nature of the data and the assumed distribution of target 
variables and follows the same considerations as for 
linear models.

• Thus for standard regression problems, the activation 
function is the identity so that  .

• Similarly, for multiple binary classification problems, each 
output unit activation is transformed using a logistic 
sigmoid function so that

where



Feed-forward Network Functions
• Finally, for multiclass problems, a softmax activation 

function is used.
• We can combine these various stages to give the overall 

network function that, for sigmoidal output unit 
activation functions, takes the form

where the set of all weight and bias parameters have been 
grouped together into a vector w.
• Thus the neural network model is simply a nonlinear 

function from a set of input variables  to a set of 
output variables  controlled by a vector w of 
adjustable parameters.



Network diagram for the two layer neural network. The input, hidden, and output 
variables are represented by nodes, and the weight parameters are represented by 
links between the nodes, in which the bias parameters are denoted by links coming 
from additional input and hidden variables 𝑥and 𝑧. 
Arrows denote the direction of information flow through the network during forward 
propagation.



Feed-forward Network Functions
• The process of evaluating

can be interpreted as a forward propagation of 
information through the network.
• The bias parameters can be absorbed into the set of 

weight parameters by defining an additional input 
variable  whose value is clamped at  , so that :



Feed-forward Network Functions
• We can similarly absorb the second-layer biases into the 

second-layer weights, so that the overall network 
function becomes

• If the activation functions of all the hidden units in a 
network are taken to be linear, then for any such network 
we can always find an equivalent network without 
hidden units.

• Neural networks are said to be universal approximators. 
For example, a two-layer network with linear outputs can 
uniformly approximate any continuous function on a 
compact input domain to arbitrary accuracy provided the 
network has a sufficiently large number of hidden units.



Illustration of the capability of a multilayer perceptron to approximate four different 
functions comprising (a) 𝑓(𝑥) = 𝑥ଶ, (b) 𝑓(𝑥) = sin (𝑥), (c), 𝑓(𝑥) = |𝑥|, and 
(d) 𝑓(𝑥) = 𝐻(𝑥) where 𝐻(𝑥) is the Heaviside step function. In each case, 𝑁 = 50 data 
points, shown as blue dots, have been sampled uniformly in 𝑥 over the interval (−1, 1) 
and the corresponding values of 𝑓(𝑥) evaluated. These data points are then used to 
train a two layer network having 3 hidden units with ‘tanh’ activation functions and linear
output units. The resulting network functions are shown by the red curves, and the 
outputs of the three hidden units are shown by the three dashed curves.



Network training
• Given a training set comprising a set of input vectors  where , together with a corresponding 

set of target vectors  for regression, we minimize the 
error function

• Now consider the case of binary classification in which 
we have a single target variable such that 
denotes class ଵ and denotes class ଶ.

• Consider a network having a single output whose 
activation function is a logistic sigmoid

so that .



Network training
• We can interpret as the conditional probability ଵ , with ଶ given by 
• The conditional distribution of targets given inputs is 

then a Bernoulli distribution of the form

• If we consider a training set of independent 
observations, then the error function, which is given by 
the negative log likelihood, is then a cross-entropy error 
function of the form

where  denotes  .



Network training
• Using the cross-entropy error function instead of the 

sum-of-squares for a classification problem leads to 
faster training as well as improved generalization.

• If we have separate binary classifications to perform, 
then we can use a network having outputs each of 
which has a logistic sigmoid activation function.

• Associated with each output is a binary class label  , where .
• If we assume that the class labels are independent, given 

the input vector, then the conditional distribution of the 
targets is



Network training
• Taking the negative logarithm of the corresponding 

likelihood function then gives the following error 
function

where  denotes   .
• Finally, we consider the standard multiclass classification 

problem in which each input is assigned to one of 
mutually exclusive classes.

• The binary target variables  have a 1-of-
coding scheme indicating the class, and the network 
outputs are interpreted as  
leading to the following error  function



Network training

Geometrical view of the error function 𝐸(𝐰)
as a surface sitting over weight space. 
Point 𝐰 is a local minimum and 𝐰 is the 
global minimum. At any point 𝐰, the local 
gradient of the error surface is given by the 
vector 𝛻𝐸.



Network training
• The output unit activation function is given by the 

softmax function

• which satisfies  and  .



Gradient descent optimization
• The simplest approach to using gradient information is to 

choose the weight update to comprise a small step in the 
direction of the negative gradient, so that

where the parameter is known as the learning rate.
• After each such update, the gradient is re-evaluated for 

the new weight vector and the process repeated.
• Note that the error function is defined with respect to a 

training set, and so each step requires that the entire 
training set be processed in order to evaluate .

• At each step the weight vector is moved in the direction 
of the greatest rate of decrease of the error function, and 
so this approach is known as gradient descent or steepest 
descent.



Gradient descent optimization
• On-line gradient descent, also known as sequential 

gradient descent or stochastic gradient descent, makes 
an update to the weight vector based on one data point 
at a time, so that



Error Backpropagation
• Our goal in this section is to find an efficient technique for 

evaluating the gradient of an error function for a feed-
forward neural network.

• We shall see that this can be achieved using a local message 
passing scheme in which information is sent alternately 
forwards and backwards through the network and is known 
as error backpropagation, or sometimes simply as backprop.

• We now derive the backpropagation algorithm for a general 
network having arbitrary feed-forward topology, arbitrary 
differentiable nonlinear activation functions, and a broad 
class of error function.

• The resulting formulae will then be illustrated using a simple 
layered network structure having a single layer of sigmoidal 
hidden units together with a sum-of-squares error.



Error Backpropagation
• Many error functions of practical interest, for instance 

those defined by maximum likelihood for a set of i.i.d. 
data, comprise a sum of terms, one for each data point in 
the training set, so that

• Here we shall consider the problem of evaluating  for one such term in the error function.
• This may be used directly for sequential optimization, or 

the results can be accumulated over the training set in 
the case of batch methods.



Error Backpropagation
• Consider first a simple linear model in which the outputs  are linear combinations of the input variables  so 

that

together with an error function that, for a particular input 
pattern , takes the form

where,   
The gradient of this error function with respect to a 

weight  is given by



Error Backpropagation
• In a general feed-forward network, each unit computes a 

weighted sum of its inputs of the form

• where  is the activation of a unit, or input, that sends a 
connection to unit , and  is the weight associated 
with that connection.

• This sum is transformed by a nonlinear activation 
function ・ to give the activation  of unit in the 
form

• Now consider the evaluation of the derivative of  with 
respect to a weight .



Error Backpropagation
• First we note that  depends on the weight  only via 

the summed input  to unit . We can therefore apply 
the chain rule for partial derivatives to give

• We now introduce a useful notation

where the ’s are often referred to as errors.
• Using we can write 



Error Backpropagation
• We thus obtain

• For the output units, we have

Illustration of the calculation of 𝛿 for hidden 
unit 𝑗 by backpropagation of the 𝛿’s from 
those units 𝑘 to which unit 𝑗 sends 
connections. The blue arrow denotes the 
direction of information flow during forward 
propagation, and the red arrows indicate 
the backward propagation of error  
information.



Error Backpropagation
• To evaluate the ’s for hidden units, we again make use 

of the chain rule for partial derivatives,

where the sum runs over all units to which unit sends 
connections.
• If we now substitute the definition of we obtain the 

following backpropagation formula



• From equation 5.51 which is

• డாడೖ can be written as    i.e., డாడೖ  ----- (1)

• According to chain rule,     
డೖడೕ డೖడ௭ೕ డ௭ೕడೕ

• From equations 5.48 and 5.49 we have:

• డೖడ௭ೕ  and 
డ௭ೕడೕ ᇱ  ----- (2)

• Substituting (1) and (2) in eqn 5.55 we get 
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after skipping
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Error Backpropagation: Summary
The backpropagation procedure can therefore be 
summarized as follows:
• Apply an input vector  to the network and forward 

propagate through the network to find the activations of 
all the hidden and output units.

• Evaluate the  for all the output units.
• Backpropagate the ’s to obtain  for each hidden unit 

in the network.
• Evaluate the required derivatives.

For batch methods, the derivative of the total 
error can then be obtained by repeating the above steps 
for each pattern in the training set and then summing over 
all patterns:



Backpropagation Algorithm: Definitions
• Each training example is a pair of the form , where 

is the vector of network input values, and is the vector 
of target network output values. 

• is the learning rate (e.g., 0.05). , is the number of 
network inputs, the number of units in the hidden 
layer, and the number of output units. The input from 
unit into unit is denoted , and the weight from 
unit to unit is denoted .



Backpropagation Algorithm
• Create a feed-forward network with inputs, hidden 

units, and output units. 
• Initialize all network weights to small random numbers.
• Until the termination condition is met, Do

• For each in training examples, Do 
• Propagate the input forward through the network: 

1. Input the instance to the network and compute 
the output , of every unit in the network.

• Propagate the errors backward through the 
network:



Backpropagation Algorithm
1. Propagate the errors backward through the 

network:
2. For each network output unit , calculate its   

error term  𝒌 𝒌 𝒌 𝒌 𝒌
3.   For each hidden unit , calculate its error term ௭

𝒛 𝒋 𝒋 𝒌𝒋 𝒌𝒌∈𝒐𝒖𝒕𝒑𝒖𝒕𝒔
4.   Update each network weight 𝒒𝒑 𝒒𝒑 𝒒𝒑
where, 𝒒𝒑 𝒒 𝒒𝒑
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Jacobian Appears here









Various types of ANN Architectures:

- Boltzmann Machine, 

- Hopfield Network

- CAM  (Content Addressable memories);

- BAM  (Bidirectional associative memory)

- SOM  (self-organizing maps)

- Deep Belief Networks

- RBM, RBF

- CNN, Relu; RESNET, YOLO, SOLO, VGG, INCEPTION, Segnet, AlexNet, 

Unet,  ConvNet, RCNN, ..  

- GAN

- Auto-encoders (AE), VAE

- LSTM

-




