
CLASSIFICATION METHODS:
- CART

and

ANN training
CS5691- PRML

CLASSIFICATION AND REGRESSION TREES
• The process of selecting a specific model, given a new

input x, can be described by a sequential decision
making process corresponding to the traversal of a
binary tree (one that splits into two branches at each
node).

• Here we focus on a particular tree-based framework
called classification and regression trees, or CART
(Breiman et al., 1984)

CLASSIFICATION AND REGRESSION TREES

Illustration of a two-dimensional
input space that has been
partitioned into five regions
using axis-aligned boundaries.

Binary tree corresponding
to the partitioning of input
space
(eg BSP tree)

CLASSIFICATION AND REGRESSION TREES
• In the example given in previous slide, the first step

divides the whole of the input space into two regions
according to whether ଵ ଵ ଵ ଵ where ଵ is a
parameter of the model.

• This creates two sub regions, each of which can then be
subdivided independently.

• For instance, the region ଵ ଵ is further subdivided
according to whether ଶ ଶ ଶ ଶ, giving rise to
the regions denoted A and B.

• For any new input x, we determine which region it falls
into by starting at the top of the tree at the root node
and following a path down to a specific leaf node
according to the decision criteria at each node.

CLASSIFICATION AND REGRESSION TREES

• Within each region, there is a separate model to predict
the target variable.

• For instance, in regression we might simply predict a
constant over each region, or in classification we might
assign each region to a specific class.

• EXAMPLE: For instance, to predict a patient’s disease, we
might

• first ask “is their temperature greater than some threshold?”. If
the answer is yes, then

• we might next ask “is their blood pressure less than some
threshold?”.

Each leaf of the tree is then associated with a specific
diagnosis.

CLASSIFICATION AND REGRESSION TREES

• Consider first a regression problem in which the goal is
to predict a single target variable from a D-dimensional
vector ଵ ் of input variables.

• The training data consists of input vectors ଵ ே along with the corresponding continuous
labels ଵ ே

• If the partitioning of the input space is given, and we
minimize the sum-of-squares error function, then the
optimal value of the predictive variable within any given
region is just given by the average of the values of for
those data points that fall in that region.

Hastie Sec. 9.2 – Also Murphy Sec. 16.2

Regression Trees – popular method for tree-based
regression and classification called CART

Tree size is a tuning parameter governing the model’s complexity,
and the optimal tree size should be adaptively chosen from the data. One
approach would be to split tree nodes only if the decrease in sum-of-
squares due to the split exceeds some threshold. This strategy is too
short-sighted, however, since a seemingly worthless split might lead to a
very good split below it.

The preferred strategy is to grow a large tree T0, stopping the
splitting process only when some minimum node size (say 5) is reached.
Then this large tree is pruned using cost-complexity pruning, which we
describe later

PLOT THEM

Node – Pointer to Root of sub-tree;

D – Tree

Gini impurity = 1 – Gini

∆ = 𝟎.𝟓 − 𝟎.𝟒𝟕𝟓; 𝟎.𝟓 − 𝟎.𝟑𝟐

Criteria for Splitting nodes - revisited

The lower the Gini
Impurity, the higher
the homogeneity of
the node. The Gini
Impurity of a pure
node is zero.Steps to split a decision tree using Gini Impurity:

1. Similar to what we did in information gain. For each split,
individually calculate the Gini Impurity of each child node
2. Calculate the Gini Impurity of each split as the weighted
average Gini Impurity of child nodes
3. Select the split with the lowest value of Gini Impurity
4. Until you achieve homogeneous nodes, repeat steps 1-3

WHEN TO STOP ADDING NODES
• A simple approach would be to stop when the reduction in

residual error falls below some threshold.
• The most common stopping procedure is to use a minimum

count on the number of training instances assigned to each leaf
node. If the count is less than some minimum then the split is not
accepted and the node is taken as a final leaf node.

• However, it is found empirically that often none of the available
splits produces a significant reduction in error, and yet after
several more splits a substantial error reduction is found.

• For this reason, it is common practice to grow a large tree, using
a stopping criterion based on the number of data points
associated with the leaf nodes, and then prune back the
resulting tree.

• The pruning is based on a criterion that balances residual error
against a measure of model complexity.

• If we denote the starting tree for pruning by , then we
define to be a subtree of if it can be obtained
by pruning nodes from (in other words, by collapsing
internal nodes by combining the corresponding regions).

• Suppose the leaf nodes are indexed by
with leaf node representing a region ఛ

of input space having ఛ data points, and denoting
the total number of leaf nodes.

• The optimal prediction for region ఛ is then given by

WHEN TO STOP ADDING NODES

• and the corresponding contribution to the residual sum-
of-squares is then

• The pruning criterion is then given by

• The regularization parameter determines the trade-off
between the overall residual sum-of-squares error and
the complexity of the model as measured by the number

of leaf nodes, and its value is chosen by cross-
validation.

WHEN TO STOP ADDING NODES

• For classification problems, the process of growing and
pruning the tree is similar, except that the sum-of-squares
error is replaced by a more appropriate measure of
performance.

• If we define ఛ to be the proportion of data points in region ఛ assigned to class , where then two
commonly used choices are the cross-entropy

• and, the Gini index

• These both vanish for ఛ and ఛ and have a
maximum at ఛ .

WHEN TO STOP ADDING NODES

Advantages
• The cross entropy and the Gini index are better measures

than the misclassification rate for growing the tree
because they are more sensitive to the node probabilities.

• Also, unlike misclassification rate, they are differentiable
and hence better suited to gradient based optimization
methods.

• The human interpretability of a tree model such as CART
is often seen as its major strength.

Disadvantages
• In practice it is found that the particular tree structure

that is learned is very sensitive to the details of the data
set, so that a small change to the training data can result
in a very different set of splits.

Decision Tree Pruning
Analytics

And
An Example

Either the Gini index or cross-entropy should be used when
growing the tree.

To guide cost-complexity pruning, any of the three measures can be
used, but typically it is the misclassification rate.

A decision tree with two classes A and B
(with node numbers and class labels)

An example pruning set

B

• The idea is to hold out some of the available
instances—the “pruning set”—when the tree is built,
and prune the tree until the classification error on
these independent instances starts to increase.

• Because the instances in the pruning set are not
used for building the decision tree, they provide a
less biased estimate of its error rate on future
instances than the training data.

B

• In each tree, the number of instances in the pruning data that
are misclassified by the individual nodes are given in
parentheses.

• Assuming that the tree is traversed left-to-right, the pruning
procedure first considers for removal the subtree attached to
node 3.

• Because the subtree’s error on the pruning data (1 error)
exceeds the error of node 3 itself (0 errors), node 3 is
converted to a leaf.

• Next, node 6 is replaced by a leaf for the same reason.
• Having processed both of its successors, the pruning

procedure then considers node 2 for deletion. However,
because the subtree attached to node 2 makes fewer
mistakes (0 errors) than node 2 itself (1 error), the subtree
remains in place. Next, the subtree extending from node 9 is
considered for pruning, resulting in a leaf.

• In the last step, node 1 is considered for pruning, leaving the
tree unchanged.

ANN

or

MLP

Feed-forward Network Functions
• The linear models for regression and classification are

based on linear combinations of fixed nonlinear basis
functions and take the form

• where ・ is a nonlinear activation function in the case
of classification and is the identity in the case of
regression.

• Our goal is to extend this model by making the basis
functions depend on parameters and then to allow
these parameters to be adjusted, along with the
coefficients , during training.

Network diagram for the two layer neural network. The input,
hidden, and output variables are represented by nodes, and the weight
parameters are represented by links between the nodes, in which the
bias parameters are denoted by links coming from additional input and
hidden variables 𝒙𝟎 and 𝒛𝟎.

Arrows denote the direction of information flow through the
network during forward propagation.

Feed-forward Network Functions
• The basic neural network model can be described a

series of functional transformations. First we construct M
linear combinations of the input variables ଵ in
the form

• where , and the superscript (1) indicates that
the corresponding parameters are in the first ‘layer’ of
the network.

• We shall refer to the parameters ଵ as weights and the
parameters ଵ as biases.

• The quantities are known as activations.

Let’s go thru only the sequence of equations
(just the maths, in compact form)

For the derivation of weight update rule,
without much of text-based explanations.

Trailing slides will have the explanations
- “Directly from the Book”

Pl. help yourself, if needed,
as per input from class earlier.

APR ‘23

0 𝑦 𝐱,𝐰 1

𝒚𝒌ሺ𝐱,𝐰ሻ = 𝑝ሺ𝒕𝒌 = 𝟏|𝐱ሻ,

MLE == Min of SSD-EF

NLL & Cross-entropy function;
Better Convergence than the
SSD-EF

For K binary Classifiers
Using one-hot vector
Representation;

General cross-entropy
expression

Softmax:

• From equation 5.51 which is

•డாడೖ can be written as i.e., డாడೖ ----- (1)

• According to chain rule, ೖೕ ೖೕ ೕೕ
• From equations 5.48 and 5.49, we have:

•డೖడ௭ೕ and
డ௭ೕడೕ ᇱ ----- (2)

• Substituting (1) and (2) in Eqn 5.55 we get

Skip the next
few slides,
with material
directly from
book, piece-
wise
explanations of
the Bank of
Eqns. given in
previous few
slides.

Feed-forward Network Functions
• Each of them is then transformed using a differentiable,

nonlinear activation function ・ to give

• These quantities, in the context of neural networks, are called
hidden units.

• The nonlinear functions ・ are generally chosen to be
sigmoidal functions such as the logistic sigmoid or the ‘tanh’.

• These values are again linearly combined to give output unit
activations

where is the total number of outputs.
• This transformation corresponds to the second layer of the

network, and again the ଶ are bias parameters.

Feed-forward Network Functions
• Finally, the output unit activations are transformed using

an appropriate activation function to give a set of
network outputs .

• The choice of activation function is determined by the
nature of the data and the assumed distribution of target
variables and follows the same considerations as for
linear models.

• Thus for standard regression problems, the activation
function is the identity so that .

• Similarly, for multiple binary classification problems, each
output unit activation is transformed using a logistic
sigmoid function so that

where

Feed-forward Network Functions
• Finally, for multiclass problems, a softmax activation

function is used.
• We can combine these various stages to give the overall

network function that, for sigmoidal output unit
activation functions, takes the form

where the set of all weight and bias parameters have been
grouped together into a vector w.
• Thus the neural network model is simply a nonlinear

function from a set of input variables to a set of
output variables controlled by a vector w of
adjustable parameters.

Network diagram for the two layer neural network. The input, hidden, and output
variables are represented by nodes, and the weight parameters are represented by
links between the nodes, in which the bias parameters are denoted by links coming
from additional input and hidden variables 𝑥and 𝑧.
Arrows denote the direction of information flow through the network during forward
propagation.

Feed-forward Network Functions
• The process of evaluating

can be interpreted as a forward propagation of
information through the network.
• The bias parameters can be absorbed into the set of

weight parameters by defining an additional input
variable whose value is clamped at , so that :

Feed-forward Network Functions
• We can similarly absorb the second-layer biases into the

second-layer weights, so that the overall network
function becomes

• If the activation functions of all the hidden units in a
network are taken to be linear, then for any such network
we can always find an equivalent network without
hidden units.

• Neural networks are said to be universal approximators.
For example, a two-layer network with linear outputs can
uniformly approximate any continuous function on a
compact input domain to arbitrary accuracy provided the
network has a sufficiently large number of hidden units.

Illustration of the capability of a multilayer perceptron to approximate four different
functions comprising (a) 𝑓(𝑥) = 𝑥ଶ, (b) 𝑓(𝑥) = sin (𝑥), (c), 𝑓(𝑥) = |𝑥|, and
(d) 𝑓(𝑥) = 𝐻(𝑥) where 𝐻(𝑥) is the Heaviside step function. In each case, 𝑁 = 50 data
points, shown as blue dots, have been sampled uniformly in 𝑥 over the interval (−1, 1)
and the corresponding values of 𝑓(𝑥) evaluated. These data points are then used to
train a two layer network having 3 hidden units with ‘tanh’ activation functions and linear
output units. The resulting network functions are shown by the red curves, and the
outputs of the three hidden units are shown by the three dashed curves.

Network training
• Given a training set comprising a set of input vectors where , together with a corresponding

set of target vectors for regression, we minimize the
error function

• Now consider the case of binary classification in which
we have a single target variable such that
denotes class ଵ and denotes class ଶ.

• Consider a network having a single output whose
activation function is a logistic sigmoid

so that .

Network training
• We can interpret as the conditional probability ଵ , with ଶ given by
• The conditional distribution of targets given inputs is

then a Bernoulli distribution of the form

• If we consider a training set of independent
observations, then the error function, which is given by
the negative log likelihood, is then a cross-entropy error
function of the form

where denotes .

Network training
• Using the cross-entropy error function instead of the

sum-of-squares for a classification problem leads to
faster training as well as improved generalization.

• If we have separate binary classifications to perform,
then we can use a network having outputs each of
which has a logistic sigmoid activation function.

• Associated with each output is a binary class label , where .
• If we assume that the class labels are independent, given

the input vector, then the conditional distribution of the
targets is

Network training
• Taking the negative logarithm of the corresponding

likelihood function then gives the following error
function

where denotes .
• Finally, we consider the standard multiclass classification

problem in which each input is assigned to one of
mutually exclusive classes.

• The binary target variables have a 1-of-
coding scheme indicating the class, and the network
outputs are interpreted as
leading to the following error function

Network training

Geometrical view of the error function 𝐸(𝐰)
as a surface sitting over weight space.
Point 𝐰 is a local minimum and 𝐰 is the
global minimum. At any point 𝐰, the local
gradient of the error surface is given by the
vector 𝛻𝐸.

Network training
• The output unit activation function is given by the

softmax function

• which satisfies and .

Gradient descent optimization
• The simplest approach to using gradient information is to

choose the weight update to comprise a small step in the
direction of the negative gradient, so that

where the parameter is known as the learning rate.
• After each such update, the gradient is re-evaluated for

the new weight vector and the process repeated.
• Note that the error function is defined with respect to a

training set, and so each step requires that the entire
training set be processed in order to evaluate .

• At each step the weight vector is moved in the direction
of the greatest rate of decrease of the error function, and
so this approach is known as gradient descent or steepest
descent.

Gradient descent optimization
• On-line gradient descent, also known as sequential

gradient descent or stochastic gradient descent, makes
an update to the weight vector based on one data point
at a time, so that

Error Backpropagation
• Our goal in this section is to find an efficient technique for

evaluating the gradient of an error function for a feed-
forward neural network.

• We shall see that this can be achieved using a local message
passing scheme in which information is sent alternately
forwards and backwards through the network and is known
as error backpropagation, or sometimes simply as backprop.

• We now derive the backpropagation algorithm for a general
network having arbitrary feed-forward topology, arbitrary
differentiable nonlinear activation functions, and a broad
class of error function.

• The resulting formulae will then be illustrated using a simple
layered network structure having a single layer of sigmoidal
hidden units together with a sum-of-squares error.

Error Backpropagation
• Many error functions of practical interest, for instance

those defined by maximum likelihood for a set of i.i.d.
data, comprise a sum of terms, one for each data point in
the training set, so that

• Here we shall consider the problem of evaluating for one such term in the error function.
• This may be used directly for sequential optimization, or

the results can be accumulated over the training set in
the case of batch methods.

Error Backpropagation
• Consider first a simple linear model in which the outputs are linear combinations of the input variables so

that

together with an error function that, for a particular input
pattern , takes the form

where,
The gradient of this error function with respect to a

weight is given by

Error Backpropagation
• In a general feed-forward network, each unit computes a

weighted sum of its inputs of the form

• where is the activation of a unit, or input, that sends a
connection to unit , and is the weight associated
with that connection.

• This sum is transformed by a nonlinear activation
function ・ to give the activation of unit in the
form

• Now consider the evaluation of the derivative of with
respect to a weight .

Error Backpropagation
• First we note that depends on the weight only via

the summed input to unit . We can therefore apply
the chain rule for partial derivatives to give

• We now introduce a useful notation

where the ’s are often referred to as errors.
• Using we can write

Error Backpropagation
• We thus obtain

• For the output units, we have

Illustration of the calculation of 𝛿 for hidden
unit 𝑗 by backpropagation of the 𝛿’s from
those units 𝑘 to which unit 𝑗 sends
connections. The blue arrow denotes the
direction of information flow during forward
propagation, and the red arrows indicate
the backward propagation of error
information.

Error Backpropagation
• To evaluate the ’s for hidden units, we again make use

of the chain rule for partial derivatives,

where the sum runs over all units to which unit sends
connections.
• If we now substitute the definition of we obtain the

following backpropagation formula

• From equation 5.51 which is

• డாడೖ can be written as i.e., డாడೖ ----- (1)

• According to chain rule,
డೖడೕ డೖడ௭ೕ డ௭ೕడೕ

• From equations 5.48 and 5.49 we have:

• డೖడ௭ೕ and
డ௭ೕడೕ ᇱ ----- (2)

• Substituting (1) and (2) in eqn 5.55 we get

Marker slide –

for continuity only,

after skipping
Descriptions of the analytics

Error Backpropagation: Summary
The backpropagation procedure can therefore be
summarized as follows:
• Apply an input vector to the network and forward

propagate through the network to find the activations of
all the hidden and output units.

• Evaluate the for all the output units.
• Backpropagate the ’s to obtain for each hidden unit

in the network.
• Evaluate the required derivatives.

For batch methods, the derivative of the total
error can then be obtained by repeating the above steps
for each pattern in the training set and then summing over
all patterns:

Backpropagation Algorithm: Definitions
• Each training example is a pair of the form , where

is the vector of network input values, and is the vector
of target network output values.

• is the learning rate (e.g., 0.05). , is the number of
network inputs, the number of units in the hidden
layer, and the number of output units. The input from
unit into unit is denoted , and the weight from
unit to unit is denoted .

Backpropagation Algorithm
• Create a feed-forward network with inputs, hidden

units, and output units.
• Initialize all network weights to small random numbers.
• Until the termination condition is met, Do

• For each in training examples, Do
• Propagate the input forward through the network:

1. Input the instance to the network and compute
the output , of every unit in the network.

• Propagate the errors backward through the
network:

Backpropagation Algorithm
1. Propagate the errors backward through the

network:
2. For each network output unit , calculate its

error term 𝒌 𝒌 𝒌 𝒌 𝒌
3. For each hidden unit , calculate its error term ௭

𝒛 𝒋 𝒋 𝒌𝒋 𝒌𝒌∈𝒐𝒖𝒕𝒑𝒖𝒕𝒔
4. Update each network weight 𝒒𝒑 𝒒𝒑 𝒒𝒑
where, 𝒒𝒑 𝒒 𝒒𝒑

∈

Jacobian Appears here

Various types of ANN Architectures:

- Boltzmann Machine,

- Hopfield Network

- CAM (Content Addressable memories);

- BAM (Bidirectional associative memory)

- SOM (self-organizing maps)

- Deep Belief Networks

- RBM, RBF

- CNN, Relu; RESNET, YOLO, SOLO, VGG, INCEPTION, Segnet, AlexNet,

Unet, ConvNet, RCNN, ..

- GAN

- Auto-encoders (AE), VAE

- LSTM

-

