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Goals of ADMM

 Solve problems with very large number of features or 
training examples

 ADMM suitable for distributed convex optimization 
problems or large scale ML problems

 ADMM : decomposition-coordination procedure

 Blend benefits of dual decomposition and augmented 
lagrangian methods (method of multipliers) for 
constrained optimization problem 











Dual problem
 Consider a convex equality constrained optimization 

problem

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 𝑥
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 = 𝑏

 Lagrangian function: 𝐿 𝑥, 𝑦 = 𝑓 𝑥 + 𝑦𝑇 𝐴𝑥 − 𝑏

where x:  primal variable

y: the lagrangian variable/dual variable

 Dual function : 𝑔 𝑦 = 𝑖𝑛𝑓𝑥 𝐿 𝑥, 𝑦

 Dual problem :  𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑔 𝑦

 recover 𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝐿 𝑥, 𝑦∗

y* is the optimal dual variable



DUAL ASCENT 

 Gradient ascent for the dual problem :

𝑦𝑘+1 = 𝑦𝑘 + 𝛼𝑘Δ𝑔(𝑦𝑘)

k : iteration no,   α :step size 

 Δ𝑔 𝑦𝑘 = 𝐴 𝑥 − 𝑏, where  𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝐿(𝑥, 𝑦𝑘)

 i.e, the dual ascent method consists of the following steps

𝑥𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝐿 𝑥, 𝑦𝑘 // x-minimization step

𝑦𝑘+1 = 𝑦𝑘 + 𝛼𝑘 𝐴𝑥𝑘+1 − 𝑏 //dual update step



DUAL DECOMPOSITION 

 If 𝑓 is separable to N subfunctions, 

𝑓 𝑥 =  

𝑖=1

𝑁

𝑓𝑖(𝑥𝑖)

where 𝑥 = (𝑥1, … , 𝑥𝑁 ) and the variables 𝑥𝑖 ∈ 𝑅𝑛𝑖 are subvectors

of x. 

Partitioning the matrix A, of size M x K (K= 𝑖=1
𝑁 𝑛𝑖), conformably 

as 𝐴 = 𝐴1 ··· 𝐴𝑁 , where each 𝐴𝑖 is a matrix of size M x 𝑛𝑖. So 

𝐴𝑥 =  𝑖=1
𝑁 𝐴𝑖𝑥𝑖,

 then L is separable :

𝐿 𝑥, 𝑦 =  𝑖=1
𝑁 (𝑓𝑖 𝑥𝑖 +𝑦𝑇(𝐴𝑖𝑥𝑖 −

𝑏

𝑁
))

 Dual decomposition has 𝑁 x-minimization steps for each 
iteration



Dual Decomposition
 Dual descent is applied to N sub-functions and N separate 

x-minimizations will result

𝑥𝑖
𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝑖

𝐿 𝑥𝑖 , 𝑦
𝑘 i=1,2.. N  

// x-minimization step

𝑦𝑘+1 = 𝑦𝑘 + 𝛼𝑘  𝑖=1
𝑁 𝐴𝑖𝑥𝑖

𝑘+1 − 𝑏 //dual update step

 scatter, update in parallel, gather

 solve a large problem by iteratively solving smaller 
subproblems in parallel.

 Dual variable update step provides coordination

 Works with a lot of assumptions and often slow 



Augmented Lagrangian & 
Method of Multipliers 

 A method to make dual ascent more robust

 Augmented Lagrangian:

𝐿𝜌 𝑥, 𝑦 = 𝑓 𝑥 + 𝑦𝑇 𝐴𝑥 − 𝑏 + 𝜌/2||𝐴𝑥 − 𝑏||2
2

𝜌 is the penalty coefficient

 Method of Multipliers

𝑥𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝐿𝜌 𝑥, 𝑦𝑘 // x-minimization step

𝑦𝑘+1= 𝑦𝑘 + 𝜌 𝐴𝑥𝑘+1 − 𝑏 //dual update step, 

// step length 𝜌

 Disadvantage: Can’t do decomposition in x-minimization 
term because of the quadratic penalty term



Alternating direction method of 
multipliers (ADMM)

 A method with

- good robustness of method of multipliers

- which can support decomposition

 ADMM problem form

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 𝑥 + 𝑔 𝑧
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 + 𝐵𝑧 = 𝑐

 Augmented Lagrangian form:

𝐿𝜌 𝑥, 𝑧, 𝑦 = 𝑓 𝑥 + 𝑔 𝑧 + 𝑦𝑇 𝐴𝑥 + 𝐵𝑧 − 𝑐 +
𝜌

2
𝐴𝑥 + 𝐵𝑧 − 𝑐

2

2



ADMM updates

 𝑥𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝐿𝜌 𝑥, 𝑧𝑘 , 𝑦𝑘

// x-minimization step

𝑧𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑧 𝐿𝜌 𝑥𝑘+1, 𝑧, 𝑦𝑘

//z-minimization step

𝑦𝑘+1 = 𝑦𝑘 + 𝜌 𝐴𝑥𝑘+1 + 𝐵𝑧𝑘+1 − 𝑐

//dual update step



Example 

 Consider the optimization problem 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 𝑥 =  𝑖=1
𝑛 𝑓𝑖(𝑥)

 The problem is not separable because x is shared among 
all convex and closed functions 𝑓𝑖(𝑥)

 To make the problem separable, introduce a set of 
local variables 𝑥𝑖 and a global variable 𝑧 such that the 
constraint becomes that all local variables should agree

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  
𝑖=1

𝑛

𝑓𝑖(𝑥𝑖)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥𝑖 − 𝑧 = 0, 𝑖 = 1,… . . 𝑛



Augmented Lagrangian and 
ADMM updates

 Augmented Lagrangian:

𝐿𝜌 𝑥1, … 𝑥𝑛, 𝑧, 𝑦1, … 𝑦𝑛 =  

𝑖=1

𝑛

𝑓𝑖 𝑥𝑖 + 𝑦𝑖 𝑥𝑖 − 𝑧 + 𝜌/2||𝑥𝑖 − 𝑧||2
2

 ADMM updates

𝑥𝑖
𝑘+1 ≔ 𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝑖

𝑓𝑖 𝑥𝑖 + 𝑦𝑖
𝑘 . 𝑥𝑖 − 𝑧𝑘 +

𝜌

2
𝑥𝑖 − 𝑧𝑘

2

2
, ∀𝑖

𝑧𝑘+1 ≔
1

𝑛
 𝑖=1

𝑛 𝑥𝑖
𝑘+1 +

1

𝜌
𝑦𝑖

𝑘

𝑦𝑖
𝑘+1 ≔ 𝑦𝑖

𝑘 + 𝜌 𝑥𝑖
𝑘+1 − 𝑧𝑘+1

𝑦𝑖: Lagrange variable

k: iteration number

𝜌: step size
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