
Principal Component Analysis 
& SVD + COVAR

 Eigen analysis, Karhunen-Loeve transform 

 Eigenvectors: derived from Eigen decomposition of the 
scatter matrix 

 A projection set that best explains the distribution of 
the representative features of an object of interest.

 PCA techniques choose a dimensionality-reducing 
linear projection that maximizes the scatter of all 
projected samples.



Principal Component Analysis Contd.

• Let us consider a set of N sample images {x1, x2, ……., xN} 
taking values in n-dimensional image space.

• Each image belongs to one of c classes {X1, X2,..…, Xc}.

• Let us consider a linear transformation, mapping the 
original n-dimensional image space to m-dimensional 
feature space, where    m < n.

• The new feature vectors  yk є Rm are defined by the linear 
transformation –

k = 1, 2,……, N

where,  W є Rnxm is a matrix with orthogonal columns 
representing the basis in feature space.



Principal Component Analysis Contd..
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• Total scatter matrix ST is defined as 

where, N is the number of samples , and μ € Rn is the mean 
image of all samples .

• The scatter of transformed feature vectors {y1,y2,….yN} is 
WTSTW.

• In PCA, Wopt is chosen to maximize the determinant of the 
total scatter matrix of projected samples, i.e.,

WSWW T
T

W
opt maxarg=

where {wi | i= 1,2,….,m} is the set of n dimensional 
eigenvectors of ST corresponding to m largest eigenvalues 
(check proof).
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For a data matrix, XT, with zero empirical mean (the 
empirical mean of the distribution has been subtracted from 
the data set), where each column is made up of results for a 
different subject, and each row the results from a different 
probe. This will mean that the PCA for our data matrix X will 
be given by:
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Unlike other linear transforms (DCT, DFT, DWT etc.), 
PCA does not have a fixed set of basis vectors. Its basis 
vectors depend on the data set. 

Goal of PCA:
Find some orthonormal matrix WT, where Y = WTX; 

such that 
COV(Y) ≡ (1/(n−1))YYT is diagonalized.

The rows of W are the principal components of X, 
which are also the eigenvectors of COV(X).



Singular Value Decomposition

𝐴 =  𝑈Σ𝑉் is known as the “SVD” or the singular value decomposition.

The SVD is closely associated with the eigenvalue-eigenvector factorization 𝑄Λ𝑄்
of a positive definite matrix.

Any 𝑚 ×  𝑛 matrix 𝐴 can be factored into

The columns of 𝑈 (𝑚 ×  𝑚) are eigenvectors of 𝑨𝑨𝑻 , and the columns of 𝑉 (𝑛 × 𝑛) are eigenvectors of 𝑨𝑻𝑨. 
The 𝑟 singular values on the diagonal of Σ (𝑚 ×  𝑛) are the square roots of the 
nonzero eigenvalues of both 𝐴𝐴் and 𝐴்𝐴.

See next few slides for variants 



Strang - Sec. 6.3 – PP 367

Hastie - Sec. 18.3.5 – PP 659



Sec. 14.5 – PP 535



Singular Value Decomposition
Remark 1. 
• For positive definite matrices, Σ is Λ and 𝑈Σ𝑉் is identical to 𝑄Λ𝑄்.
• For other symmetric matrices, any negative eigenvalues in Λ

become positive in Σ.
• For complex matrices, Σ remains real but 𝑈 and 𝑉 become unitary

(the complex version of orthogonal).

Remark 2.
U and V give orthonormal bases for all four fundamental subspaces:



Singular Value Decomposition

Remark 3. 
Eigenvectors of 𝐴𝐴் and 𝐴்𝐴 must go into the columns of 𝑈 and 𝑉:

• U must be the eigenvector matrix for 𝐴𝐴் . 
• The eigenvalue matrix in the middle is ΣΣ்— which is 𝑚 ×  𝑚 with 𝜎ଵଶ , … ,𝜎ଶ on the diagonal.

• From the 𝐴்𝐴 =  𝑉Σ்Σ𝑉் , the 𝑉 matrix must be the eigenvector 
matrix for 𝐴்𝐴.



SVD – the theorem (Src; WIKI ++)
Suppose M is an m-by-n matrix whose entries come from the field K, 

which is either the field of real numbers or the field of complex numbers. Then 
there exists a factorization of the form

M = UΣV*

where,  U is an m-by-m unitary matrix,  the matrix Σ is m-by-n
with nonnegative numbers on the diagonal and zeros off the diagonal, and V* 
denotes the conjugate transpose of V, an n-by-n unitary matrix over K. 
Such a factorization is called a (Full) singular-value decomposition of M.

The matrix V thus contains a set of orthonormal "input" or "analysing" 
basis vector directions for M. 

The matrix U contains a set of orthonormal "output" basis vector 
directions for M. The matrix Σ contains the singular values, which can be thought 
of as scalar "gain controls" by which each corresponding input is multiplied to 
give a corresponding output. 

A common convention is to order the values Σi,i in non-increasing 
fashion. In this case, the diagonal matrix Σ is uniquely determined by M (though 
the matrices U and V are not).

For p = min(m,n)      - U is m-by-p, Σ is p-by-p, and V is n-by-p.



Erichson, N. B., Voronin, S., Brunton, S. L., & Kutz, J. N. (2019). Randomized Matrix 
Decompositions Using R. Journal of Statistical Software, 89(11), 1–48. 
https://doi.org/10.18637/jss.v089.i11;

https://www.eigensteve.com/people

The columns of 𝑈 (𝑚 ×  𝑚) are eigenvectors of 𝑨𝑨𝑻 , and the columns of 𝑉
(𝑛 ×  𝑛) are eigenvectors of 𝑨𝑻𝑨



If the number of right singular vectors is small (i.e.  n << m), 
this is a more compact factorization than the full SVD.



Low-rank matrices feature a rank (r) that is smaller than the 
dimension of A i.e., r is smaller than the number of columns and 
rows. 

Hence, the singular values {σi : i >= (r + 1)} are zero (0), 
and the corresponding singular vectors span the left and right null 
spaces.





In practical applications matrices are often contaminated by 
errors, and the effective rank of a matrix can be smaller than its exact 
rank r. 

In this case, the matrix can be well approximated by including 
only those singular vectors which correspond to singular values of a 
significant magnitude. Hence, it is often desirable to compute a 
reduced version of the SVD, as:

For massive datasets, however, the truncated/reduced SVD is 
costly to compute. The cost to compute the full SVD of an m × n 
matrix is of the order O(mn2), from which the first k components 
can then be extracted to form Ak.

k should be chosen close to the effective rank – data 
representation Applcn.;    while, chosen much smaller ( << r) for 
dimension reduction (PCA).



B.Tech, CSE_ IIT Madras
(1997); 
Ph.D., MIT (2001); 

Miller Research Fellow, 
UC Berkeley (2001-02);
CMU; Berkeley

A=UΣVT and AT=VΣUT

ATA = VΣUTUΣVT = VΣ2VT

ATAV = VΣ2;  VTATAV = Σ2;

A.AT = ??

UTU =   Ir*r <> UUT

VVT <> Ir*r =  VTV





1: Full SVD, 

2: Thin SVD (remove 
columns of U not 
corresponding to rows of 
V*), 

3: Compact SVD (remove 
vanishing singular values 
and corresponding 
columns/rows in U and V*), 

4: Truncated SVD (keep only 
largest t singular values and 
corresponding 
columns/rows in U and V*)





Singular Value Decomposition

Example 1.
This A has only one column: rank 𝑟 = 1. Then Σ has only 𝜎ଵ  =  3:



Singular Value Decomposition

Example 2.

Now A has rank 2, and 𝐴𝐴் = 2 −1−1 2 with 𝜆 =  3 and 1:

Notice √ 3 and √ 1. The columns of U are left singular vectors (unit 
eigenvectors of 𝑨𝑨𝑻 ). 
The columns of V are right singular vectors (unit eigenvectors of 𝑨𝑻𝑨).













VTΣUX:
[[-0.           -0.4472    -0.8944]
[-0.5976     -0.7171    0.3586]
[ 0.8018     -0.5345    0.2673]]

[3.7417     0.       0.]

[ 0.       3.7417       0.]

[ 0.           0.         0.]  

[-0.5976     0.            0.8018]
[-0.7171     0.4472    -0.5345]
[ 0.3586     0.8944     0.2673]

[ 0  1  2]

[-1  0  3]

[-2 -3  0]

[0.0945    0.6713     0.7352]
[-0.6394   -0.5251    0.5616]
[ 0.763     -0.5232    0.3796]]

[4.1449      0.           0.]

[ 0.        3.4265        0.]

[ 0.            0.    0.2816]

[ 0.5167     0.1746   0.8382]
[ 0.6713     0.5251   -0.5232]
[-0.5314     0.833      0.1541]

[ 0  1  2]

[-1  1  3]

[-2 -3  0]

[-0.2897    -0.7397    -0.6074]
[ 0.5227    0.4093     -0.7478]
[-0.8018    0.5341     -0.268 ]]

[3.7455    0.          0.]

[ 0.      3.7405       0.]

[ 0.         0.    0.0043]

[-0.5238  -0.2893    0.8012]
[-0.4091   -0.7395    -0.5345]
[ 0.7472     -0.6078     0.269 ]

[0  1.01  2]

[-1    0    3]

[-2   -3    0]

[ 0.     -0.4472   -0.8944]
[-0.      0.8944   -0.4472]
[ 1.         0.              0.    ]

[ 4.0311     0.       0.]

[ 0.            0.       0.]

[ 0.           0.       0.]

[-0.5547     0.8321       0.    ]
[-0.8321     -0.5547      0.    ]
[ 0.                  0.            1.    
]

[ 0  1   2 ]

[0  1.5  3]

[0   0    0]



VTΣUX:

[-0.3405     0.0851    -0.9364]
[-0.9379     0.0396    0.3447]
[-0.0664    -0.9956   -0.0664]

[439.5452   0.      0.]

[ 0.            0.       0.]

[ 0.             0.      0.]

[-0.2673     0.9561     0.1204]
[-0.5345    -0.0431  -0.8441]
[-0.8018    -0.29         0.5226]

[40 -10 110]

80  -20  220]

120 -30 330]

[-0.2673   -0.5345   -0.8018]
[ 0.            -0.8321   0.5547]
[ 0.9636   -0.1482   -0.2224]

[8.3666    0.       0.]

[ 0.            0.      0.]

[ 0.            0.      0.]

[ 0.          0.8944  0.4472]
[ 0.4472    -0.4       0.8   ]
[ 0.8944      0.2     -0.4   ]

[ 0    0     0]

[-1   -2   -3]

[-2   -4   -6]

VTΣUX:



Applications of Singular Value Decomposition

Image Processing.
• Suppose a satellite takes a picture, and wants to send it to Earth. 
• The picture may contain 1000 ×  1000 “pixels”—a million little 

squares, each with a definite color. 
• We can code the colors, and send back 1,000,000 numbers. 
• It is better to find the essential information inside the 𝟏𝟎𝟎𝟎 × 𝟏𝟎𝟎𝟎 matrix, and send only that.

In SVD some 𝜎’s are significant and others are extremely small.
If we keep 20 and throw away 980, then we send only the 
corresponding 20 columns of 𝑈 and 𝑉.
The other 980 columns are multiplied in 𝑈Σ𝑉் by the small 𝜎’s that 
are being ignored. If only 20 terms are kept, we send 20 times 2000 
numbers instead of a million (25 to 1 compression).











The conjugate transpose, also known as the Hermitian transpose, of an m × n  
complex matrix A is an n × m matrix obtained by transposing A and applying complex conjugate 
on each entry (the complex conjugate of a + ib being a − i b, for real numbers a and b )

A matrix is full row rank when each of the rows of the matrix are linearly independent and full 
column rank when each of the columns of the matrix are linearly independent. 

For a square matrix these two concepts are equivalent and we say the matrix is full rank if all 
rows and columns are linearly independent. A square matrix is full rank if and only if its 
determinant is nonzero. 

For a non-square matrix with m rows and n columns, it will always be the case that either the 
rows or columns (whichever is larger in number) are linearly dependent. Hence when we say that a 
non-square matrix is full rank, we mean that the row and column rank are as high as possible, given 
the shape of the matrix. So, if there are more rows than columns (m > n), then the matrix is full 
rank if the matrix is full column rank.

The rank of A equals the number of non-zero singular values, which is the same as the 
number of non-zero diagonal elements in Σ in the singular value decomposition A = U Σ V* 





Example 1 



Example 2 
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𝑪𝑶𝑽(𝑿) = 𝑿𝑿𝑻 = 𝑾𝜮𝜮𝑻𝑾𝑻 = 𝑾𝑫𝑾𝑻
COV (Y) = D





A Summary of the PCA Approach 

• Standardize the data.

• Obtain the Eigenvectors and Eigenvalues from the covariance matrix or 
correlation matrix, or perform Singular Value Decomposition.

• Eigenvalues from SVD are sorted in descending order; so choose the k
eigenvectors that correspond to the k largest eigenvalues where k is the 
number of dimensions of the new feature subspace (k≤d).

• Construct the projection matrix W from the selected k eigenvectors.

• Transform the original dataset X via W to obtain a k-dimensional feature 
subspace Y.



The Karhunen-Loève transform is therefore equivalent 
to finding the singular value decomposition of the data matrix 
X, and then obtaining the reduced-space data matrix Y by 
projecting X down into the reduced space defined by only the 
first L singular vectors, WL:

The matrix W of singular vectors of X is equivalently 
the matrix W of eigenvectors of the matrix of observed 
covariances C = X XT (find out?) =:

The eigenvectors with the largest eigenvalues
correspond to the dimensions that have the strongest 
correlation in the data set. PCA is equivalent to empirical 
orthogonal functions (EOF).

PCA is a popular technique in pattern recognition. But it 
is not optimized for class separability. An alternative is the 
linear discriminant analysis, which does take this into 
account. PCA optimally minimizes reconstruction error under 
the L2 norm.
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PCA by COVARIANCE Method
We need to find a dxd orthonormal transformation matrix WT, such that:

XWY T=with the constraint that:
Cov(Y) is a diagonal matrix, and  W-1 =  WT.
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Can you derive from the above, that:
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Example of PCA
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3-D problem, with N = 3. 

Each column is an observation (sample) and each row a variable (dimension), 

Method – 1 (easiest)

Mean of the samples: 
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Method – 2 (PCA defn.) T
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= xxxC1 =
1.7778    0.4444         0
0.4444    0.1111         0

0         0                 0

C2 =
5.4444   -3.8889    2.3333
-3.8889    2.7778   -1.6667
2.3333   -1.6667    1.0000

C3 =
13.4444   -4.8889    3.6667
-4.8889    1.7778   -1.3333
3.6667   -1.3333    1.0000

SigmaC =
20.6667   -8.3333    6.0000
-8.3333    4.6667   -3.0000
6.0000   -3.0000    2.0000

COVAR =
SigmaC/2 =

10.3333   -4.1667    3.0000
-4.1667    2.3333   -1.5000
3.0000   -1.5000    1.0000

Next do SVD, to get vectors.



For a face image with N samples and dimension d (=w*h, very large), we have:

The array X or Xavg of size d*N (N vertical samples stacked horizontally)

Thus XXT will be of d*d, which will be very large. To perform eigen-
analysis on such large dimension is time consuming and may be erroneous.

Thus often XTX of dimension N*N is considered for eigen-analysis. Will 
it result in the same, after SVD? Lets check:
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XXS Tm

10.3333   -4.1667    3.0000
-4.1667    2.3333   -1.5000
3.0000   -1.5000    1.0000

0.9444    1.2778   -2.2222
1.2778    4.6111   -5.8889
-2.2222   -5.8889    8.1111

Lets do SVD of both:



U =

-0.8846   -0.4554   -0.1010
0.3818   -0.8313    0.4041
-0.2680    0.3189    0.9091

S =

13.0404         0         0
0    0.6263         0
0         0    0.0000

V =

-0.8846   -0.4554    0.1010
0.3818   -0.8313   -0.4041
-0.2680    0.3189   -0.9091

U =

-0.2060    0.7901    0.5774
-0.5812   -0.5735    0.5774
0.7872   -0.2166    0.5774

S =

13.0404         0         0
0    0.6263         0
0         0    0.0000

V =

-0.2060    0.7901    0.5774
-0.5812   -0.5735    0.5774
0.7872   -0.2166    0.5774

==
T

XXS
~

10.3333   -4.1667    3.0000
-4.1667    2.3333   -1.5000
3.0000   -1.5000    1.0000

0.9444    1.2778   -2.2222
1.2778    4.6111   -5.8889
-2.2222   -5.8889    8.1111

==
~~

XXS Tm



Example, where d <> N:Samples:
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2-D problem (d=2), with N = 6. 

Each column is an observation (sample) 
and each row a variable (dimension), 

Mean of the samples: 

;
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=xμ

X =
-3    -2    -1     4     5     6
-3    -2    -1     4     5     7

XM=
-4.5000   -3.5000   -2.5000    2.5000   3.5000  4.5000
-4.6667   -3.6667   -2.6667    2.3333   3.3333  5.3333

COVAR(X) = XM * XMT 

=     77.5000   82.0000
82.0000   87.3333

XMT * XM = 
42.0278   32.8611   23.6944  -22.1389   -31.3056  -45.1389
32.8611   25.6944   18.5278  -17.3056   -24.4722  -35.3056
23.6944   18.5278   13.3611  -12.4722   -17.6389  -25.4722
-22.1389  -17.3056  -12.4722   11.6944    16.5278   23.6944
-31.3056  -24.4722  -17.6389   16.5278    23.3611   33.5278
-45.1389  -35.3056  -25.4722   23.6944    33.5278   48.6944



COVAR(X) = XM * XMT 

=     77.5000   82.0000
82.0000   87.3333

XMT * XM = 
42.0278   32.8611   23.6944  -22.1389   -31.3056  -45.1389
32.8611   25.6944   18.5278  -17.3056   -24.4722  -35.3056
23.6944   18.5278   13.3611  -12.4722   -17.6389  -25.4722
-22.1389  -17.3056  -12.4722   11.6944    16.5278   23.6944
-31.3056  -24.4722  -17.6389   16.5278    23.3611   33.5278
-45.1389  -35.3056  -25.4722   23.6944    33.5278   48.6944

U =

-0.6856   -0.7280
-0.7280    0.6856

S =

164.5639         0
0  0.2694

V =

-0.6856   -0.7280
-0.7280    0.6856

U =
-0.5053   -0.1469   -0.7547    0.3882    0.0214    0.0486
-0.3951   -0.0654    0.3632    0.0984   -0.4091    0.7284
-0.2849    0.0162   -0.0433   -0.3456   -0.7396   -0.5002
0.2660    0.4241   -0.5083   -0.5306   -0.1150    0.4429
0.3762    0.5057   -0.0258    0.6601   -0.4043   -0.0539
0.5432   -0.7337   -0.1938    0.0541   -0.3293    0.1332

S = 
164.5639         0         0         0 0 0

0    0.2694         0         0 0 0
0            0        0.0        0 0 0
0            0         0        0.0 0 0
0            0         0         0 0.0 0
0            0         0         0 0 0.0

V = U ??



Covariance Matrix for X: 

[ 4.917  4.75  -4.083 -4.083 -4.333]
[ 4.75   4.917 -4.083 -4.083 -4.333]
[-4.083 -4.083  3.583  3.583  3.667]
[-4.083 -4.083  3.583  3.583  3.667]
[-4.333 -4.333  3.667  3.667  4.222]

X: 
[5 5 0 0 1]
[4 5 1 1 0]
[5 4 1 1 0]
[0 0 4 4 4]
[0 0 5 5 5]
[1 1 4 4 4]

SVD applied on Covariance Matrix:

U: 
[-0.482  0.076 -0.707 -0.511   0.   ]
[-0.482  0.076  0.707 -0.511   0.   ]
[ 0.413 -0.365 -0.    -0.443   0.707]
[ 0.413 -0.365 -0.    -0.443  -0.707]
[ 0.44      0.85    -0.    -0.289     0.   ]

D: 
[20.611  0.308  0.167  0.137  0.   ]

VT: 
[-0.482 -0.482  0.413  0.413    0.44 ]
[ 0.076  0.076 -0.365 -0.365    0.85 ]
[-0.707  0.707    -0.       -0.        -0.   ]
[-0.511 -0.511 -0.443 -0.443  -0.289]
[    0.       -0.      0.707  -0.707    -0.   ]



Covariance Matrix for XT: 

[ 5.36  4.16  4.16 -4.48 -5.6  -3.36]
[ 4.16  3.76  3.56 -3.68 -4.6  -2.76]
[ 4.16  3.56  3.76 -3.68 -4.6  -2.76]
[-4.48 -3.68 -3.68  3.84  4.8   2.88]
[-5.60  -4.60  -4.6   4.8   6.0    3.6 ]
[-3.36 -2.76 -2.76  2.88  3.6   2.16]

X: 
[5 5 0 0 1]
[4 5 1 1 0]
[5 4 1 1 0]
[0 0 4 4 4]
[0 0 5 5 5]
[1 1 4 4 4 ]

SVD applied on Covariance Matrix of XT:

U: 
[-0.462  0.669     -0.    -0.486  0.31    0.087]
[-0.383 -0.518  0.707 -0.243  0.155   0.043]
[-0.383 -0.518 -0.707 -0.243  0.155   0.043]
[ 0.397 -0.071      0.    -0.289  0.492  -0.715]
[ 0.497 -0.088    -0.       -0.72    -0.3    0.37 ]
[ 0.298 -0.053     0.         0.21   0.723  0.584]

D: 
[24.292  0.388  0.2    0.     0.     0.   ]

VT: 
[-0.462 -0.383 -0.383  0.397  0.497  0.298]
[ 0.669 -0.518 -0.518 -0.071 -0.088 -0.053]
[-0.         0.707 -0.707     0.        -0.      0.   ]
[-0.462 -0.231 -0.231 -0.253 -0.74   0.261]
[-0.328 -0.164 -0.164 -0.608  0.298 -0.616]
[-0.135 -0.067 -0.067  0.635 -0.33  -0.679]



Covariance Matrix of X: 

[ 46.222  43.111 -14.222]
[ 43.111  73.556  29.889]
[-14.222  29.889  60.222]

X: 
[-2  8 20]
[14 19 10]
[ 2 -2  1]

SVD applied on Covariance Matrix of X:

U: 
[-0.465  0.568  0.68 ]
[-0.814  0.028 -0.581]
[-0.349 -0.823  0.449]

D: 
[111.  69.   0.]

V transposed: 
[-0.465 -0.814 -0.349]
[ 0.568  0.028 -0.823]
[-0.68   0.581 -0.449]

Q1



Cov(X): 
[ 0.48   0.261 -0.339  0.113]
[ 0.261  2.987  0.277 -0.092]
[-0.339  0.277  1.44   0.12 ]
[ 0.113 -0.092  0.12   0.16 ]

X: 
[ 0.          0.         -3.          0.        ]
[-1.414  2.309      0.          0.        ]
[-1.414 -2.309      0.          0.        ]
[ 0.        2.309      0.          0.        ]
[ 0.          0.          0.          1.        ]

SVD applied on Cov(X):

U: 
[-0.079  0.324 -0.826 -0.455]
[-0.985  0.116  0.092  0.087]
[-0.151 -0.937 -0.241 -0.205]
[ 0.022 -0.063 -0.502  0.862]

D: 
[3.052 1.531 0.421 0.063]

V_transpose: 
[-0.079 -0.985 -0.151  0.022]
[ 0.324  0.116 -0.937 -0.063]
[-0.826  0.092 -0.241 -0.502]
[-0.455  0.087 -0.205  0.862]

Q3



Covariance Matrix for X: 
[ 0.188 -0.25  -0.188  0.     0.375]
[-0.25   3.    -0.75   0.    -0.5  ]
[-0.188 -0.75   1.688  0.    -0.375]
[ 0.     0.     0.     0.     0.   ]
[ 0.375 -0.5   -0.375  0.     0.75 ]

X: 
[1 0 0 0 2]
[0 0 3 0 0]
[0 0 0 0 0]
[0 4 0 0 0]

SVD applied on Covariance Matrix:

U: 
[-0.065 -0.25  -0.365 -0.894  0.   ]
[ 0.918  0.23  -0.323  0.     0.   ]
[-0.368  0.796 -0.48   0.     0.   ]
[ 0.     0.     0.     0.     1.   ]
[-0.131 -0.5   -0.73   0.447  0.   ]

D: 
[3.39  1.765 0.47  0.    0.   ]

V_transpose: 
[-0.065  0.918 -0.368  0.    -0.131]
[-0.25   0.23   0.796  0.    -0.5  ]
[-0.365 -0.323 -0.48   0.    -0.73 ]
[ 0.894  0.    -0.     0.    -0.447]
[ 0.     0.     0.     1.     0.   ]

Q4.1



Covariance Matrix for X 
transposed: 
[ 0.64 -0.36  0.   -0.48]
[-0.36  1.44  0.   -0.48]
[ 0.    0.    0.    0.  ]
[-0.48 -0.48  0.    2.56]

X: 
[1 0 0 0 2]
[0 0 3 0 0]
[0 0 0 0 0]
[0 4 0 0 0]

SVD applied on Covariance Matrix 
of X transposed:

U: 
[ 0.162 -0.457 -0.875  0.   ]
[ 0.292  0.869 -0.4    0.   ]
[ 0.     0.     0.    -1.   ]
[-0.943  0.191 -0.274  0.   ]

D: 
[2.791 1.524 0.325 0.   ]

V_transpose: 
[ 0.162  0.292  0.    -0.943]
[-0.457  0.869  0.     0.191]
[-0.875 -0.4    0.    -0.274]
[ 0.     0.    -1.     0.   ]

Q4.2




