What 1s Statistics?

Definition of Statistics

— Statistics is the science of collecting, organizing, analyzing,
and interpreting data in order to make a decision.

¢ Branches of Statistics

— The study of statistics has two major branches -
descriptive(exploratory) statistics and inferential statistics.

e Descriptive statistics is the branch of statistics that
involves the organization, summarization, and display of
data.

e Inferential statistics is the branch of statistics that
involves using a sample to draw conclusions about
population. A basic tool in the study of inferential statistics
is probability.



Scatterplots and Correlation



Displaying relationships: Scatterplots

Interpreting scatterplots

Adding categorical variables to scatterplots

Measuring linear association: correlation r

Facts about correlation



Response variable measures an outcome of a
study.

An explanatory variable explains, influences or
cause changes in a response variable.

Independent variable and dependent variable.

WARNING: The relationship between two
variables can be strongly influenced by other
variables that are lurking in the background.

Note: There is not necessary to have a cause-and-effect
relationship between explanatory and response
variables.

Example. Sales of personal computers and athletic shoes
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Definitions

Sample space: the set of all possible outcomes.
We denote S

Event: an outcome or a set of outcomes of a
random phenomenon. An event is a subset of the
sample space.

Probability is the proportion of success of an
event.

Probability model: a mathematical description
of a random phenomenon consisting of two
parts: S and a way of assigning probabilities to
events.



Probability distributions

* Probability distribution of a

random variable X: it tells what values
X can take and how to assign probabilities to
those values.

— Probability of discrete random variable: list
of the possible value of X and their
probabilities

— Probability of continuous random variable:
density curve.



Measuring linear association: correlation r

(The Pearson Product-Moment Correlation Coefficient or Correlation Coefficient)

 The correlation r measures the strength and
direction of the linear association between two
guantitative variables, usually labeled X and Y.
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Facts about correlation

« What kind of variables do we use?
— 1. No distinction between explanatory and response variables.
— 2. Both variables should be quantitative
* Numerical properties
R e ey |
— 2. r>0: positive association between variables
— 3. r<0: negative association between variables
— 4. Ifr=1orr = -1, it indicates perfect linear relationship
— 5. As |r| is getting close to 1, much stronger relationship

< —negative relationship— >< —positive relationship—>
—1 0 1

————stronger stronger ————1D

— 6. Effected by a few outliers > not resistant.
— 7. It doesn’t describe curved relationships

— 8. Not easy to guess the value of r from the appearance of a
scatter plot
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Some necessary elements of

Probability theory and Statistics




The NORMAL DISTRIBUTION

The normal (or Gaussian) distribution, is a very
commonly used (occurring) function in the fields of
probability theory, and has wide applications in the
fields of:

- Pattern Recognition;

- Machine Learning;

- Artificial Neural Networks and Soft computing;

- Digital Signal (image, sound, video etc.) processing
- Vibrations, Graphics etc.



Its also called a BELL function/curve.

The formula for the normal distribution is:

ol Bl 7 L
p(X)—m/EeXp[ 75 ) )]

The parameter M is called the mean or expectation (or
median or mode) of the distribution.

The parameter O is the standard deviation;
and variance is thus 02.



P(x) 2>

https://en.wikipedia.orq/wiki/File:Normal Distribution PDF.svqg

(2013)



The normal distribution p(x), with any mean g and
any positive deviation o0, has the following properties:

e Itis symmetric around the mean (u) of the distribution.

e It is unimodal: its first derivative is positive for x < yu,
negative for x > uy, and zero only at x = p.

e It has two inflection points (where the second
derivative of fis zero and changes signh), located one
standard deviation away from the mean, x =y — oand x =

U + o.
e Itis log-concave.

o It is infinitely differentiable, indeed supersmooth of
order 2.



Also, the standard normal distribution
p (with y = 0 and o = 1) also has the following properties:

o Its first derivative p’(x) is: —x.p(x).
o Its second derivative p’’'(x) is: (x2 — 1).p(x)
e More generally, its n-th derivative :

p"(x) is: (-1)"H,(x)p(x),

where, H, is the Hermite polynomial of order n.



The 68 — 95 - 99.7% Rule:
All normal density curves satisfy the following property
which is often referred to as the Empirical Rule:

- 68% of the observations fall within
1 standard deviation of the mean,

that is, between (,Ll—G) and (,LH-U)

- 959 of the observations fall within
2 standard deviations of the mean,

that is, between (y—ZO‘) and (g+20‘)

- 99.7% of the observations fall within
3 standard deviations of the mean,
that is, between

(u—30)and (u+30)
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A normal distribution:

1. is symmetrical (both halves are identical);

2. 1s asymptotic (its tails never touch the
underlying x-axis; the curve reaches to — «
and + « and thus must be truncated);

3. has fixed and known areas under the curve
(these fixed areas are marked off by units
along the x-axis called z-scores; imposing
truncation, the normal curve ends at + 3.00
z on the right and - 3.00 z on the left).



Areas Under the Normal Curve for Various Z Scores
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Example of the Probability of Observing an OQOutcome in a Standar
Distribution

n(Z)




Conditional Distribution

The conditional probability mass fimetion of Y given X1s:

plyjz)=P(Y =yX=2)= =

PX=2) s
For contiwous randor vartables, we can define the conditional probability densily fimetion:
Conditional probability: P(4|B) = AN ) f(z,)
P(B) flyle) = o)
Multiplication rule: P(AN B) =P(A|B)P(B) =P(B | A)P(A).

Rewriting the above equation yields:

fle,y) = flz) - flyle).

The marginal density of Y can then be obtawned from:




conditional probability wnich 1s

P(AN B)
P(B)

P(A|B) = , When P(B) > 0.

Any other formula regarding conditional probability can be derived from the above formula.
Specifically, if you have two random variables X and Y, you can write

P(Xe(C,Y e D)

PXeClYeD)= , where C,D C R.

the conditional PMF. Specifically, the conditional PMF of X given event A, is defined

Pa(es) = P(X = 2i|4)

P(X =z;and A)
P(4)

Similarly, we define the conditional CDF of X given A as




Two discrete random variables X and Y are independent if

Pxy(z,y) = Px(z)Pr(y), forallz,y.

Equivalently, X and Y are independent if

F}{}-"(ﬂf, y] — FX{E]FF(y]J for Elr]l;l?? Y-

For discrete random variables X and Y, the conditional PMFs of X given Y and
vice versa are defined as

Pxy (zi,y;)
Py(y;)

Pxy (z:,y;)
Px(ﬂ:i)

Pxiy(x:|y;) =

Py x (y;l|z:) =

for any z; € Rx and y; € Ry.




So, if X and Y are independent, we have
Pyiy(z;|y;) = P(X = z;|Y = y;)
B R&’F(-‘l‘nyj}
Py (y;)

_ Px(z:) Py (y;)
Py (y;)
= Px(z;).

As we expect, for independent random variables, the conditional PMF is equal to the marginal PMF.
In other words, knowing the value of ¥ does not provide any information about X.







Expected Value of Random Variables

The expected value of a random variable is the weighted average of all
possible values of the variable. The weight here means the probability
of the random variable taking a specific value.

ElX] = Y Xip(xi)

xi = The valuesthat X takes

p(x) = The probabilitythat X takes the value x;
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Example Let X be a continuous random variable with support Ry = [0.=) and probability density
function

Fyx) = { Aexp(-Ax) Ifx € [0, =)

0 otherwise

where 4 > 0. Its expected value is

BLX] - | fito)e

= I: xA exp(—Ax)ex

E[¥] = Z{:H b o x(x) (by the transformation thearem)




Expectation of g(X)

Let g(X) be a function of X. We can imagine a long-term average of g( X') just
as we can imagine a long-term average of X. This average is written as E(g(X)).
Imagine observing X many times (/N times) to give results xy, 70, ..., xx. Apply
the function ¢ to each of these observations, to give g(x1)....,g(xx). The mean
of g(x1), g(x9), ..., g(xx) approaches K(g(X)) as the number of observations N
tends to infinity.

Definition: Let X be a continuous random variable, and let g be a function. The

expected value of g(X) is /m

E(g(X)) = | g(2)fx(z)de.

— 0

Definition: Let X be a discrete random variable, and let ¢ be a function. The
expected value of g(X) is

( ) ZQ ) fx(z Zg




Let X and Y be independent random variables, and ¢, A be functions. Then

E(XY) = E(X)E(Y)
E(g[X]fz(Y)) — E(Q(X))E(h(‘r’)).

Probability as a conditional expectation

1 if event A occurs,
0 otherwise.

Define the indicator random variable: 14 = {

Then E(I4) = P(I4 = 1) = P(A).




Law of Total Probability:

P(X € A) = Z P(X € AlY =y;)Pyv(y;), forany set A.

Law of Total Expectation:

1. If By, Ba, Ba, ... is a partition of the sample space S,

EX — E E[X|B;]P(B;) (5.3)

2. For a random variable X and a discrete random variable Y,

EX = )  E[X|Y = y;]Pr(y;) (5.4)




Conditional Distribution and Conditional Expectation

The conditional probability mass fimction of Y given X is:

Conditional probahility: P(A|B) = P(]? (;)B) , syle) = PY = y|X = 2) = FY =y,X

Multiplication rule: P(AN B) =P(A| B)P(B) =P(B| A)P(A).

For contimwous random variables, we can define the conditional probability density fimetion

[

The conditional expectation of a random variable ¥ 15 the expected value of ¥ given [X=x], and 15 denoted: E[F|X=x] or E[¥]x]. If the
conditional probability density function 1s known, then the conditional expectation can be found using:

Jooy- flylz)dy HY is continuous

2yl p(yle) if ¥ is discrete (38)

ﬂﬂx:ﬂ:{

To obtain the unconditional expectation of ¥, we can take the expectation of E[Y|X]. The result 15 the theorem of total expectation:

BV = [o E[Y|X = 2]f(z)dz I X is continuous
Y= y.r EY|X = g]ple) if X is discrete.

(39)




Conditional Expectation of X :

Xlﬂ Z EEPIH 3-::}

I!_ EHI

EX|[Y =y;]= )  :Pxy(zily;)

iy

Iterated Expectations:

Let us look again at the law of total probability for expectation. Assuming g(Y) = E[X|Y], we
have

= ) E[X|Y = y;]Pr(y;)

= Elg(Y))
= E[E[X]Y]].




Theorem 1 Let X.Y, Z be random variables, a,0 € R, and g : R — R. Assuming all th{
following expectations exist, we have

(i) Ela]Y] =a

(ii) BElaX +bZ|Y| = aE|X|Y] +bE|Z|Y]

(i) EX|Y] >0if X > 0.

(i) E|(X|Y] = E|X] if X and Y are independent.

(v) EELX|Y]| = E|X]

(i) B[Xg(V)|Y] = g(V)E[X|Y]. In porticular, [E[g(¥)|Y] = g(Y).

(vii) EWXTY, g(V)] = BIX]Y]




Theorem 2 For any function h : R — IR,
E[(X — E[X|Y])?] = E[(X — h(Y))’]
and we have equality if and only if h(Y) = E[X|Y].

This follows immediately from the law of total expectation:

E(X) =Ey{E(X|Y)} = > E(X|Y =y)P(Y =y).

Laws of Total Expectation and Variance

If all the expectations below are finite, then for ANY random variables X and
Y, we have:

) E(X)zEY(E(XW)) Law of Total Expectation.

Note that we can pick any .v. Y. to make the expectation as easy as we cail.

i) B(g(X)) = Ey(E(g(X) | Y)) for any function g.




we can give a proof of (1) in the special case where (X, Y, Z) are jointly continuous
with a pdf f(z,y, 2):

* » dz
BX|Y—yZ—d=3 "}"f{fyi)l
J

E[E[X|Y,Z=z]|Z=z]=f ff;f(m ;y;)dm . #(z,v, 2) dz dy

[ ([=-semaes)

ff:r f(z,vy)dzdy

—EX|Z =7

You can give a similar proof in the case where X, Y, Z are jointly discrete, with a joint probability
mass function f(z,9,2) = P(X =z,Y =y, Z = 2), for (2, y, ) ranging over some countable
support set. Basically, you do this by replacing [ with ) in the proof above.

One thing you can say is that

EIEIX|Y,Z]| Z] = BEIX | Z] (1)




EEX|Y;Z|]Y =y|. E[X|Y;Z]is a random variable. Given that Y = y, its possible
values are E|X|Y = y; Z = 2| where z varies over the range of Z. Given that Y =y, the
probability that E|X|Y: Z]| = E|X|Y =y, Z = 2] is just P(Z = z|Y = y). Hence,

EEX|Y;Z)|Y =y] = ZEm:y, =2]P(Z =2|Y =y)

ZZ&?P =z|Y =y, Z=2)P(Z =

_ Z:IIP(X_IFY_%Z_

PY=y,Z =z

Z PX=2Y=y/71=2)
x
” PY =y)

PX=2Y =y
- L P(Y =y)

T

Z tP(X =zY =vy)
ELX]Y =]




This follows immediately from the law of total expectation:

E(X) = Ey{E(X|Y)} = > E(X|Y = y)P(Y =y).

Laws of Total Expectation and Variance

If all the expectations below are finite, then for ANY random variables X and
Y, we have:

) | E(X) :Ey(E{}{ Y]) Law of Total Expectation.

Note that we can pick any r.v. Y. to make the expectation as easy as we cai.

i) E(g(X)) = Ey(E{g(X} | 1«’)) for any function g.

Var(X) = By (wu-(}{ | Y}) + Vary (E{X Y))

Law of Total Variance.




(1) is a special case of (ii), so we just need to prove (ii). Begin at RHS:

RHS = Ey[ (g (}f)w’)} = Ey [Zg(m}ﬂj’{X=f|}"}}

- y: [y: gz)P(X =z|Y = y)] P(Y =y)

(iii) Wish to prove Var(X) = Eyﬁ‘m(}f 1Y) + Vary|[E(X | Y)]. Begin at RHS:

Ey [Var(X |Y)| + Vary [E(X | V)]
r
2
=By { ECC|Y) - (B(X |Y))*} +{ By { [E(X |Y)]*} — [ Ex(E(X|Y)) |
\ E(X) by part (i)
= Ey{E(X°|Y)} —Ey {[E(X |Y)]*} + Ex {[E(X |YV)]*} — (EX)?
“—-v'—"
E(X?) hy part (i)

—E(X?) — (EX)?

— Var(X)=LHS. O




Theorem 2.4: The Partition Theorem (Law of Total Probability)

Let B, ..., B,, form a partition of ). Then for any event A,

> P(ANB) = 3 KA| B)P(B)

Proof of partition formula

SOEX | A)P(A) = 3 [ X(@) Pdw | 4) - P(A)
= X '

— foiwjp{dwm&}

_ ZfX[m]qu (w) P (dew)
- ZE{XIAI :]'5

where IA is the indicator function of the set A;.

IT the partition {A } g |5 finite, then, by linearity, the previous expression becomes

E Z}irﬂi = E(X),




5.2. Expectation and Variance of Standard Normal Distribution. Assume X « A(0,1).
Then

EX:./. ve 1 dg =),

o0

because the function inside the integral is odd. We can also say that X is symmetric with respect
to zero, so EX = 0. Now,

E}'i'?—L +m&:26”“2*’2d$—1
Vo J o I

Why is this? We know that
+00 )
/ e 2 dx = v2r.

Let u=e® /2, y = z. Integrate by parts: note that uv = ze=*"/2 = 0 for £ = +o00. So

+o0 \ +00 +00
f e” ﬁd:ﬂ:f udy = uv|ii§~f v du
—o0 —20 —o

+00 . +00 . +00 o
= —/ rde™ ™2 = —./. a."(—z:)»g_:’:"*‘rg d:n=/ re 12 4.

] =) -0

This is equal to +/2m, which proves EX? = 1. So Var X = EX? — (EX)? = 1. This proves that

X~N(0,1) = EX=0, VaX =1




1 Ji2 6 ,u
N | Density: X)= eXx ]
ormal Density p( ) O_\/— p ( )

Bivariate Normal Density:
1 [(x—,ux )2_2pxy (x_ﬂx)(y_ﬂy)+(y_ﬂy )2
2(1-p3,) O 2505 G

2
270,0,,/(1- p2)
# - Mean; o - S.D.; p,, -Correlation Coefticient

Visualize p as equivalent to the orientation of tilted asymmetric Gaussian
filter.

n
For x as a discrete random variable, o L,
the expected value of x: E()C) Z xiP(xi) lux
E(x) is also called the first moment of the dlstrlbutlon

The kth moment is defined as: E(X ) Z ka(X )

|
e

p(x,y) =

P(x;) is the probability of x = x..



Covariance of x and y, is defined as: ny s E[(x o ,le )(y s ,Lly )]

Covariance indicates how much x and y vary together. The value
depends on how much each variable tends to deviate from its mean, and also
depends on the degree of association between x and y.

O X —
Correlation between x and y: ,Oxy = 2 = [( qu )(

0.0, o o}

Property of correlation coefficient: — 1 < p < 1

ForZ = ax + by ;
97 i e R L) et i)
El(z-u.) |=a"0o, +2abo,,+b°0c
A Zoriin A 9LIES,
If 0,=0, o.=a’0,+b’0C



1.0 0.8 0.4 0.0 -0.4 -0.8 -1.0

/ 'iﬁ{ | % %’? \\\
1.0 1.0 1.0 0.0 -1.0 -1.0 -1.0
0.0 0.0 0.0

\:'2;?'; )'v‘f %f ";-\&3;): \. %‘i} 3%;

P Rt WB

- E(XY) — E(X)E(Y)
VEX?) — E2(X) E(Y?) — B(Y)

The correlation coefficient can also be viewed as the cosine of the angle
between the two vectors (# P) of samples drawn from the two random variables.

PXy

This method only works with centered data, i.e., data which have been
shifted by the sample mean so as to have an average of zero.



Other PDFs: » Poisson e .
P(X)=—'e%; A>0 |
x. ().2;

015 020 025

0.10

0.05

0.00
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LAPLACE: o B e -
| p=-5,b=4
04 F rl1l
1 | — pf
r\pn,b) = —exp| — = [
flalinb) = gpexp (~54)
=) ifx<p
= — ¢

Read about:

_ : * Central Limit Theorem
Double Exponential Density:

* Uniform Distribution
_|x—a
P(X) s 1 e ‘ 4‘ .  Geometric Distribution
o 9
Zb » Quantile-Quantile (QQ) Plot

* Probability-Probability (P-P) Plot



Name of the probability distribution

Probability distribution function

Variance

Binomial distribution

i

Pr{X=F= (k

)p’“{l -

np(l — p)

Geometric distribution

Pr(X=k)=(1-p)*"p

Mormal distribution

f[:m|.'“*:°'2}:

v ot

Uniform distribution {continuous)

fora <z <b,

L
ftm,m:{ﬁ
0

forz <goraz>Dh

Exponential distribution

FPoisson distribution







The variance of a random variable X is the expected value of the squared deviation from the mean of X, ¢ = B{X]:
Var(X) = B|(X - |
Var(X) = B[(X - E[X])]
= E[X% — 2X E[X] + B[X]']
=E[X*] - 2B[X] E[X] + B[X]
— B[X?] - B[X]?

In other words, the variance of X is equal to the mean of the square of X minus the square of the mean of X

A formula for calculating the variance of an enfire population of size N is:

— N w2 (7Y 2t
0.2 _ (3:3) —:EH _ E'i!=1 i {Zq.:l ﬁ%) /N.

N
Using Bessel's correction to calculate an unbiased estimate of the population variance from a finite sample of n obsernvations




Discrete random variable [edit]

If the generator of random variable X is discrete with probability mass function &, — pq. 29 = Pa, ..., Iy — Py, then

Var(X) = iﬁf @ — #]23

or equivalently,

Var(X) = (Zpﬂ"f) — 2,
=1

where g is the expected value. That is,
1t
= Zﬁi$f~
i=1
(When such a discrete weighted variance is specified by weights whose sum is not 1, then one divides by the sum of the weighis.
The variance of a collection of n equally likely values can be writien as

L 1
Var(X)=— ) (& — )’ = - Y 2} -l
=]

7 ) |

where g is the average value. That is,

1 n
b= EEZ:];.T;




If the random variable X has a probability density function f(z}, and F(z) is the corresponding cumulative distribution function, then

Var(X) =¢° = /(:ﬂ — it)* f(z) dz

k

=/F: g;?f{:ﬂ]d:f:—Eg./r;ﬂ;_f(m}dm_l_“zfmﬂm}dm
=/|:;5’32 dF(*‘?}—ZLLL&:dF(m]+ﬁ3[ dF(z)

R

=/ﬁ:2dF($}—2ﬁ-p+ﬂ2 1
%

- [ #dF(@) - 2,
R

or equivalently,

Var(X) = L z’ f(z)dz — 12,

where i is the expected value of X given by

Ju,:jﬁ; a:_f[m}dm:/";:ch{m}.




1able X 15 defined as

Var(X) = '-—f.fr u) flz) de
3. _fr',r'l;f...-dr ?Jx[:f{:.}dr. - ;:1[}'{1}.'11
E(X —u)P = E(X*—2Xpu+ 1) |
_ fff_-jirg.]l COR(X)p + -'r':[ﬂj_] [r. dFlz) p[.rtfflrx s [u'Fll.n]
_ Y2y 9,2 L 4,2
EILX. "‘_” CH f:l dF{z) - 2u- p+ i
= FE(X*) -
= E':;"fj] - E(I]E / r dF(z) - "

1X] = E[(X - E[X])]
- E[X* - 2XE[X] + E[X)}
- 2E[XE[X]) + E[X)" B

gl —EE[E]E[:-:] + E[XT} 2E(X)‘ X + Ez(X)}




Definition [edi]

Throughout this article, boldfaced unsubscripted X and Y are used to refer fo random vectors, and unboldfaced subscripted X and ¥;
are used fo refer to scalar random variables.

i the eniries in the column vecior
T
X=(X,Xs,..., %)
— = =

are random variables, each with finite variance and expecied valug, then I@wanaﬂce Mmairix KK}{\\Tihe mairix whose {i, j} eniry is the
covariancelkp. 177 N =

KXIIJ' = CDV[.XT;,X;,': = E[{X;., - E[.XJ[XE - E[XJ])]

where the operaior E denotes the expecied value (mean) of its argument.

Conilicting nomenclatures and notations [edit]

Nomenclatures difier. Some statisticians, following the probabilist William Feller in his two-volume book An infroduction to Probability
Theory and fts Applications,®! call the mairix Kxx the variance of the random vector X, because it is the natural generalization to higher
dimensions of the 1-dimensional variance. Others call if the covariance matrix, because i is the matrix of covariances between the scalar
components of the vector X.

var(X) = cov(X, X) = B[(X - E[X])(X - B[X])"].

=l =i - = 0

Sample points from a bivariate
(3aussian distribution with a standarg
deviation of 3 in roughly the lower [eft
upper right direction and of 1in the
athogaonal direction. Because the ¥
and y components co-vary, the
variances of z and y do not fully
describe the distribution. A2 x 2
covariance matrix is needed; the
directions ofthe arrows correspaond t
the eigenvectors of this covariance
matrix and their lengths to the square
roots ofthe eigenvalues.

Both forms are quite standard, and there is no ambiguity between them. The mairix K}(X I5 also ofien called the varfance-covariance matriy, since the diagonal terms are in fac

Yarances.

By comparison, the notation for the cross-covariance matrix befiveen two vectors is

cov(X, Y) = Kxy = B[(X - BIX])(Y - E[Y))"].




Basic properties

For Kxx = var(X) = E|(X - E[X]) (X - E[X])" | and yx = B[X], where X = (X, ..., X,)" is an-dimensional rancom variable, the
following basic properties apply1*

T T
1. Kxx = B(XX") - pxux
2 Kyy is positive-semidefiniie, ie.a’ Kyx a >0 forallae B
3. Kxy is symmeiric, ie. Ky = Kxx
4. For any consiant (.. non-random) m. X n mairi A and constantm x 1 vector &, one has var(AX +a) = A var(X) A"

5.11'Y i another random vector wih ihe same dimension as X, then var{X + Y) = var(X) + cov(X,Y) + cov(Y, X) + var(Y)
where cov(X, Y) is the cross-covariance matrix of X and Y.

For random veciors X and Y, each coniaining random elemenis whose expecied
value and variance exisi, ihe cross-covariance matrix of X and Y is defined
D}r[“lj:p.ﬁ-ﬂﬁ

Kxy = cov(X,Y)E B[(X — px)(Y — py)?] (EQ1)

where py = E[X] and pv = E[Y]| are veciors containing the expected values of
X and Y. The vectors X and ¥ need not have the same dimension, and either might be a scalar value

The cross-covariance matrix is the matrix whose (4, 7) entry is the covariance

Kx,v; = cov[X;, ¥;] = B[(X; — E[X;|{{Y; — B[Y;])]




For the cross-covariance marix, the following basic properies apply:l

1.eov(X,Y) = BXY") - pxpy”

2. cov(X,Y) = cov(Y,X)T

3. cov(X; + X, Y) =cov(X;, Y} + cov(X,, Y)

4. cov(AX +a,B7Y +b) = 4 cov(X,Y) B

5.1F X and Y are independent (or somewhat less restrictedly, if every random variable in X is uncorrelated with every random
variable in Y), then cov(X,Y) = O,

where X, X; and X are random p x 1 vectors, Y is a random g x 1 vector, aisag % 1 vecior, bisap x L vecior, 4 and B
are ¢ x pmatrices of constants, and Oy, 15 ap % g mafrix of zeroes.

Given a sample consisting of n independent observations xq,..., X, of a p-dimensional random vector X e Re*! (a px1 column-vector), an unbiased estimator of the (pxp)
covariance matrix

% = B|(X - BIX) (X - B[])"

5 the sample covariance matrix

Q= Z{'T'i z){(z; — -ﬁ

n—1

where x; is the Hh observation of the p-dimensional random vector, and the vecior

s the sample mean. This is frue regardless of the distribution of the random variable X, provided of course that the theoretical means and covariances exist. The reason




Which matrices are covarlance matrices?

let b be a (p x 1) real-valued vector, then
var(b?X) = bT var(X)b,
which must always be nonnegative, since it is the variance of a real-valued random variable, so a covariance matrix is always a positive-semidefinite matrix.

The above argument can be expanded as follows:

" B[(X - BIX])(X - E[X))"]w = E[u" (X - E{X])(X - E[X]}"u]
=B [(u"(X-B{X))"] >0,

where the last inequalit folows from the observation that w” (X — B[X]) is a scalar

Conversely. every symmetric positive semi-definite matrix is a covariance matrix. To see this, suppose M is ap X p symmetric positive-semidefinite mafrix. From

the finite-dimensional case of the speciral theorem. it follows that M has a nonnegative symmetric square root, which can be denoted by M2 Let X be anyp X 1
column vector-valued random variable whose covariance matnx is the p X p identity matrix. Then

vaI(M” 2X) = M2 var(X) MY2 =M.

E[5(X - ELXT)(X - E[X])73]
BE{(X — E[X])(X — B[X])" 167
BVar[ X5




PROB. & STAT. Contd.

A2 n n
Sample mean is defined as: X = Z x.P(x.) g l Z X, where,
l l l
' P(x)) = 1/n.
: : 5, A3
Sample Varianceis: O, = — Z (xl. = )C)
nojo

N3 N4
Higher order moments may also be computed: E(xl. 5 x) . E(xl. ¥ x)

Covariance of a bivariate distribution:

o, =El(x—p)y—-u,)l= Z(x 0)(y—)



Second, third,... moments of the distribution p(x) are the expected values of:
X2, x3,...

The kth central moment is defined as: s
E[(x—u,)" 1= (x— 1) P(x;)
i=1

Thus, the second central moment (also called Variance) of a random variable x is

T o= Elix-E@)Y 1= A(x- )]
o= E[{x—E®P]= El(x— )]
= E(x")=2u; +p; = E(x*)— i,
Thus

E(x))=0’+u’

If z is a new variable: z= ax + by; Then E(z) = E(ax + by)=aE(x) + bE(y).



E—:ﬂfﬂ

o
Mx(t) = E[et* =/ e dr =
(t) = E[e*] s o
0 (z2-2tzie)/2 42/2 w  o(z-t)/2
f € € dr = et'/? € dz
I——00 4 2?1' T——0 a1l 2?1'

But this last integrand is a normal density with mean # and variance 1, thus integrates to 1. Henese

Mx(£) = et

Now we recall that

BIX* = [%] ,

so let's ealeulate suceessive derivatives:

MY (t) = tet /2
MY(t) = e 2 + 2682 = (1 +£2)et' 2

MY (£) = 2tet 12 + (1 + £2)tet' 2 = (3t + %)t 2

M () = (3+32)e"/2 + (382 + 1982 = (3 + 662 + 1)/,

and it is fairly easy to continue this. Now simply evalnate all of these at £ = 0 to get

E[X]| =0
E[X% =1
E[X* =0

E[XY] =3.



MAXIMUM LIKELIHOOD ESTIMATE (MLE)

The ML estimate (MLE) of a parameter is that value which, when substituted
into the probability distribution (or density), produces that distribution for which
the probability of obtaining the entire observed set of samples is maximized.

Problem: Find the maximum likelihood estimate for u in a normal distribution.
1 1 N ,Ll 2

p(x) = exXplr— (=)o

O~N27 2

Assuming all random samples to be independent:

Normal Density:

= : nl2 eXp[— 1 Zn:(x_lu)z]

o (27) o oo
Taking derivative (w.r.t. L) Setting this term = 0, we get:
of the LOG of the above: ¥
Jin 2 (o 1 S
QZ(xi_;u)-zz_z[zxi_nlu] ,U:—Z)Cl- =X
200 o (=" n .,

Also read about MAP estimate - Baye’s is an example.






Sampling Distributions

http://grid.cs.gsu.edu/~skarmakar/math1070 slides.html



Sampling Distribution
Introduction

* |n real life calculating parameters of
populations is prohibitive because
populations are very large.

» Rather than investigating the whole
population, we take a sample, calculate a
statistic related to the parameter of interest,
and make an inference.

* The sampling distribution of the statistic is
the tool that tells us how close Is the statistic

to the parameter.



What are the main types of sampling and how is each done?

Simple Random Sampling: A simple random sample (SRS) of size
n is produced by a scheme which ensures that each subgroup of the
population of size n has an equal probability of being chosen as the
sample.

Stratified Random Sampling: Divide the population into "strata".
There can be any number of these. Then choose a simple random
sample from each stratum. Combine those into the overall sample.
That is a stratified random sample. (Example: Church A has 600
women and 400 women as members. One way to get a stratified
random sample of size 30 is to take a SRS of 18 women from the
600 women and another SRS of 12 men from the 400 men.)

Multi-Stage Sampling: Sometimes the population is too large and
scattered for it to be practical to make a list of the entire population
from which to draw a SRS. For instance, when the a polling
organization samples US voters, they do not do a SRS. Since voter
lists are compiled by counties, they might first do a sample of the
counties and then sample within the selected counties. This
illustrates two stages.

<* SRC: WIKI *>



In statistics, a simple random sample is a subset of
individuals (a sample) chosen from a larger set (a population). Each
individual is chosen randomly and entirely by chance, such that
each individual has the same probability of being chosen at any
stage during the sampling process, and each subset of k individuals
has the same probability of being chosen for the sample as any
other subset of k individuals. This process and technique is known
as simple random sampling, and should not be confused with
systematic random sampling. A simple random sample is an
unbiased surveying technique.

Systematic sampling (Sys-S) is a statistical method involving
the selection of elements from an ordered sampling frame. The most
common form of systematic sampling is an equi-probability method. In
this approach, progression through the list 1s treated circularly, with a
return to the top once the end of the list is passed. The sampling starts
by selecting an element from the list at random and then every k-th
element in the frame 1s selected, where £, the sampling interval
(sometimes known as the skip): this 1s calculated as: k&= N/n
where 7 1s the sample size, and N 1s the population size.



Systematic sampling (Sys-S) Example: Suppose a supermarket
wants to study buying habits of their customers, then using systematic
sampling they can choose every 10th or 15th customer entering the
supermarket and conduct the study on this sample.

This 1s random sampling with a system. From the sampling
frame, a starting point is chosen at random, and choices thereafter are at
regular intervals. For example, suppose you want to sample 8 houses
from a street of 120 houses. 120/8=135, so every 15th house 1s chosen
after a random starting point between 1 and 15. If the random starting
point 1s 11, then the houses selected are 11, 26, 41, 56, 71, 86, 101, and

116.



Sampling With Replacement and Sampling Without Replacement

Consider a population of potato sacks, each of which has
either 12, 13, 14, 15, 16, 17, or 18 potatoes, and all the values are
equally likely. Suppose that, in this population, there is exactly one
sack with each number. So the whole population has seven sacks.

Sampling with replacement:

If I sample two with replacement, then I first pick one (say
14). I had a 1/7 probability of choosing that one. Then I replace it.
Then I pick another. Every one of them still has 1/7 probability of
being chosen. And there are exactly 49 different possibilities here.

Sampling without replacement:

If I sample two without replacement, then I first pick one (say
14). I had a 1/7 probability of choosing that one. Then I pick another.
At this point, there are only six possibilities: 12, 13, 15, 16, 17, and
18. So there are only 42 different possibilities here (again assuming
that we distinguish between the first and the second.)



Sampling distribution

* The sampling distribution of a statistic (not
parameter) 1s the distribution of values taken by
the statistic (not parameter) in all possible
samples of the same size from the same
population.




Sample Statistics as Estimators
of Population Parameters

o TN : A
A sample statistic is a A population parameter
numerical measure of a is a numerical measure of
summary characteristic a summary characteristic

of a population.
_ of a sample. ) orapop y

* An estimator of a population parameter is a sample
statistic used to estimate or predict the population
parameter.

* An estimate of a parameter is a particular numerical
value of a sample statistic obtained through
sampling.

* A point estimate is a single value used as an
estimate of a population parameter.




Estimators

The sample mean, x, 1s the most common
estimator of the population mean, .

The sample variance, s°, is the most common
estimator of the population variance, o=.

The sample standard deviation, s, 1s the most
common estimator of the population standard
deviation, O:

The sample proportion, p, 1s the most common
estimator of the population proportion, p.




Sampling Distribution of ¥

* The sampling distribution of X is the
probability distribution of all possible values
the random variable X may assume when a
sample of size n is taken from a specified

population.



Sampling Distribution of the Mean

 An example

— A die is thrown infinitely many times. Let X
represent the number of spots showing on

any throw.
— The probability distribution of X is

E(X)=1(1/6) +
X 11273714576 2(1/6) + 3(1/6)+

p(x) | 1/6|1/6 | 1/6 | 1/6| 1/6| 1/6

V(X) = (1-3.5)2(1/6) +
(2-3.5)2(1/6) +




Throwing a dice twice — sampling
distribution of sample mean

* Suppose we want to estimate u
from the mean x of a sample of
Size n = 2.

« What is the distribution of X ?



Throwing a die twice — sample

mean
Sample Mean |Sample Mean [Sample Mean
1 1,1 1 13 3,1 2 25 5,1 3
2 1,2 1.5 14 3,2 25 26 5,2 3.5
3 1,3 2 15 3,3 3 27 5,3 4
4 1,4 2.5 16 3,4 3.5 28 5,4 4.5
5 1,5 3 17 3,5 4 29 5,5 5
6 1,6 3.5 18 3,6 4.5 30 5,0 9.5
14 2,1 1.5 19 4,1 2.5 31 6,1 3.5
8 2,2 2 20 4,2 3 32 6,2 4
9 2,3 2.5 21 43 3.5 ES 6,3 4.5
10 2,4 3 22 4.4 4 34 6,4 5
11 25 3.5 23 45 45 35 6,5 5.5
12 2,6 4 24 4.6 5 36 6,6 6

-




Sample Mean |[Sample Mean |Sample Mean
1 1 13 31 2 25 5,1 3
m.5 14 32 25 | 26 52 35
3 1,3 / 2 15 33 3 27 53 | 4
¢ 5
o, °
E X .9
Nate U= and O-=-—*7
4
< B 2 5
10 24 3 22 M4/ 4 / 5
11| 25 35 3 5/ 4.5 5.5
12| 26 4 6/ 5 6

6/ Bt / I

1 5(2/36) =35

50, /
\ / V(X) = (1.0-3.5)2(1/36)+

4136 \ / (1.5-3.5)2(2/36)... = 1.46
3/36 .

W
2136 \
1/36 _

1 [15[120] 25| 30| 35 40| 45/ 50 55 60/ X




Sampling Distribution of the

Mean
n=>95 n=10 n=25
i, =3.5 w, =35 i, =3.5

2 2

2 c, o o
oy =.9833 (=) 62 =.2917 (= =) o2 =.1167 (= X)
SR X 10 25




Sampling Distribution of the

Mean
n=>5 n=10 n=25
w, =3.5 Uy =3.9 W, =3.5
2
o2 =.5833 (= G_i) o =.2917 (= =X o: =.1167 (=
o 5 10

Notice that o2 is smaller than o,
The larger the sample size the
smaller o2 . Therefore, X tends
to fall closer to u, as the sample
size increases.



Relationships between Population Parameters and
the Sampling Distribution of the Sample Mean

The expected value of the sample mean is equal to the population mean:

The variance of the sample mean is equal to the population variance divided by
the sample size:

The standard deviation of the sample mean, known as the standard error of
the mean, 1s equal to the population standard deviation divided by the square
root of the sample size:




Law of Large Number

LAW OF LARGE NUMBERS

Draw observations at random from any population with finite mean .
As the number of observations drawn increases, the mean X of the
observed values gets closer and closer to the mean p of the population.




How sample means approach the population mean
(U=25).

Mean of first n observations

1 1 1 1 1 1 1
1 5 10 50 100 500 1000 5000 10,000
Number of observations, n



Example

- what would happen 1n many samples?

The distribution of all
the x's is close to Normal.

Take many SRSs and collect
their means x.

SRS size 10 w

— Xx=2642

SRS size 10

— X =24.28

SRS size 10

—x=25.22

Population,
mean UL =25




Recall Some Features of the Sampling Distribution

e It will approximate a normal curve even 1f the
population you started with does NOT look
normal

« Sampling distribution serves as a bridge between
the sample and the population



Mean of a sample mean x

First Property: The Mean

* The mean of the sampling distribution of
the mean equals the mean of the population




Standard Deviation of a sample mean

Second Property: The Standard
Error

* The standard error of the mean 1s an
approximate measure of the amount by
which sample means deviate from the

population mean

X



Third Property: Sample Size and the
Standard Deviation

» The larger the sample size, the smaller the

standard deviation of the mean X

Or

* As n increases, the standard deviation of the
mean decreases



Example

* Population standard deviation =100
o 100

Forn=10, 0, =—=—==31.62
X =m0
o 100
Forn=100, o, = = =10.00
X n V100

o 100
— = =3.16
~n o +1000

Forn=1000, oy =



Sampling distribution of a sample mean x

e Definition: For a random variable x and a given sample
size n, the distribution of the variable X , that is the
distribution of all possible sample means, 1s called the
sampling distribution of the sample mean.



Sampling distribution of the sample mean

» Case 1. Population follows Normal
distribution
— Draw an SRS of size n from any population.
— Repeat sampling.
— Population follows a Normal distribution with
mean p and standard deviation .

o/ — Sampling distribution of X follows normal
distribution as follows: N(u, 6/\n ).



Example
(The population distribution follow a Normal
distribution, then so does the sample mean)

The distribution of Means x of 10 subjects

sample means is — /

less spread out.




The central limit theorem

CENTRAL LIMIT THEOREM

Draw an SRS of size n from any population with mean & and finite
standard deviation o. When n is large, the sampling distribution of the
sample mean X is approximately Normal:

X is approximately N (u,,

This theorem tells us:

1.

Small samples: Shape of sampling distribution is
less normal

2. Large sample: Shape of sampling distribution is

more normal.



Sampling distribution of the sample mean

* Case 2. Population follows any distribution
(CLT: Central limit theorem)

— Draw an SRS of size n from any population.
— Repeat sampling.

— Population follows a distribution with mean n
and standard deviation o.

— When n is large (n>=30), sampling dist of X
follows approximately Normal distribution as
follows N(u, o/\n ).



The Central Limit Theorem

When sampling from a population
with mean |l and finite standard
deviation ¢, the sampling
distribution of the sample mean will
tend to be a normal distribution };vith
mean |l and standard deviation | as

the sample size becomes large
(n >30).

For “large enough” n: X~M0 /n)

1 §015 T
010 7

00

§01_

00 ~

03 7

01 7
a0 ™




The Central Limit Theorem Applies to
Sampling Distributions from Any Population

Population

Normal

Uniform

Skewed General

A
A

A

A

A

Nl ™Y
N
A

m



Student’s f Distribution

If the population standard deviation, G, 1s unknown, replace ¢ with
the sample standard deviation, s. If the population 1s normal, the
resulting statistic: _X-u

s/~/n

has a t distribution with (n - 1) degrees of freedom.

expected value of tis 0.

ariance of t is greater than 1, b
oaches 1 as the number of deg

lom increases.

t distribution approaches a stan
al as the number of degrees of
Jom increases.




Sampling Distributions

Finite Population Correction Factor

If the sample size is more than 5% of the
population size and the sampling is done
without replacement, then a correction needs
to be made to the standard error of the

Mmeans.

o =2 e N—n
“ Jn VN-=-1




Sampling Distribution of

Standard Deviation of

Finite Population Infinite Population

O'=(O-) N—n O_=£
* VN =1 * n

* A finite population is treated as being
infinite if n/N < .05.

e _/(N-n)/(N-1)is the finite correction factor.

* 0. isreferred to as the standard error of the
mean.




The Sampling Distribution of the Sample
Proportion, p

5 1n # binomial trials. It is th ~
f successes, X, divided by t

[ |
=/
y

. X 0.3
Sample proportion: p=—
n

T T T T T T T T T L

0 1 2 3 4 5 6 7 8 9 10

(X)

oII|

0

]

1 |z
A8

1 |8

]

0

u

|

|

|

on of P approaches a norma |
ion with mean p and standarc |]
a

p(l — p







Statistical inference:
CLT, confidence
intervals, p-values



The process of making
guesses about the truth
from a sample

Sample statistics

%
a=Xx,= T
Truth (not &zzszzgu,-—)?,,)z
observable) e
Sample
(observatlon)

Make guesses about
the whole

population




Statistics vs. Parameters

* Sample Statistic — any summary measure calculated from data; e.g.,
could be a mean, a difference 1n means or proportions, an odds ratlo
or a correlation coefficient

— E.g., the mean Vit-D level in a sample of 100 men is 63 nmol/L

— E.g., the correlation coefficient between vit-D and cognitive function in the
sample of 100 men 1s 0.15

« Population parameter — the true value/true effect in the entire
population of interest

— E.g., the true mean vitamin D in all middle-aged and older European men is
62 nmol/L

— E.g., the true correlation between vitamin D and cognitive function in all
middle-aged and older European men 1s 0.15




Distribution of a statistic...

Statistics follow distributions too...
But the distribution of a statistic is a theoretical construct.

Statisticians ask a thought experiment: how much would
the value of the statistic fluctuate 1f one could repeat a
particular study over and over again with different samples
of the same size?

By answering this question, statisticians are able to
pinpoint exactly how much uncertainty 1s associated with a
given statistic.



Distribution of a statistic

» Two approaches to determine the distribution of a
statistic:

— 1. Computer simulation

* Repeat the experiment over and over again virtually!

« More intuitive; can directly observe the behavior of statistics.
— 2. Mathematical theory

* Proofs and formulas!

* More practical; use formulas to solve problems.



Coin tosses...

2500

Conclusions:

2000

We usually get
between 40 and 60
heads when we flip a
coin 100 times.

1500

1000

It’s extremely
unlikely that we will

500

oct 30 headsor 70
heads (didn’t happen
a0 32 34 3\ 38 40 42 44 46 48 a0 2 &4 a6 %8 RO B2 B4 i3 B8 70 in 309000
Mumber of heads in 100 coin tosses .
experiments!).




Distribution of the sample mean,

computer simulation...

1. Specify the underlying distribution of vitamin D 1n all
European men aged 40 to 79.

Right-skewed

Standard deviation = 33 nmol/L

True mean = 62 nmol/L (this 1s arbitrary; does not affect the
distribution)

2. Select a random sample of 100 virtual men from the
population.

3. Calculate the mean vitamin D for the sample.

4. Repeat steps (2) and (3) a large number of times (say
1000 times).

5. Explore the distribution of the 1000 means.



Mathematical Theory...
The Central Limit Theorem!

If all possible random samples, each of size n, are taken
from any population with a mean W and a standard
deviation o, the sampling distribution of the sample
means (averages) will:

1. have mean: U- = U

2. have standard deviation: O. ——

3. be approximately normally distributed regardless of the shape
of the parent population (normality improves with larger n).



Symbol Check

,Ll X The mean of the sample means.

—  The standard deviation of the sample means. Also
X called “the standard error of the mean.”’



Mathematical Proof (optional!)

If X 1s a random variable from any distribution with known
mean, E(x), and variance, Var(x), then the expected value
and variance of the average of n observations of X 1s:

in ZE(X) _ nE(x)

E(X,)=E(=—)=+— .

= E(x)

Var(X )=Var(’§1x )= ; i _ nVar(x) _ Var(x)
! n n’ n’ n




Computer stmulation of the CLT:

1. Pick any probability distribution and specify a mean and standard
deviation.

2. Tell the computer to randomly generate 1000 observations from that
probability distributions

E.g., the computer 1s more likely to spit out values with high
probabilities

3. Plot the “observed” values in a histogram.

4. Next, tell the computer to randomly generate 1000 averages-of-2
(randomly pick 2 and take their average) from that probability
distribution. Plot “observed” averages in histograms.

5. Repeat for averages-of-10, and averages-of-100.



Uniform on [0,1]: average of 1
(original distribution)

1000 observations of averages of 1 rom a uniform dist

0 0. 10 0.20 0.30 0.40 0.50 D.60 D.70 0D.80 0.90 1.00
ovyg



0 00T

Uniform: 1000 averages of 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.¥ 0.8 0.3 1

avg

1000 ob=zervations of averagez of 2 from a uniform distribution




= B T3 B =

15.

12.

10.

Uniform: 1000 averages of 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

avg

1000 obszervation=s of averaoes of 5 from a vuniform distribution




Uniform: 1000 averages of 100

15.0 7

12.5 7

10.0 7

22000
-q
&R
I

0 | | | | | | | | | | | |
0 0.07 0.14 ©0.21 0.28 0.35 0.42 0.49 0.5 ©0.62 o©O.7 O.77 0.84 0.91 0.98

avg

1000 obzervationzs of averages of 100 from a uniform distribution



The Central Limit Theorem:
(revisited)

If all possible random samples, each of size n, are taken
from any population with a mean W and a standard
deviation o, the sampling distribution of the sample
means (averages) will:

1. have mean: - = U

2. have standard deviation: O- :T
n

3. be approximately normally distributed regardless of the shape
of the parent population (normality improves with larger n)



Distribution of the sample mean

Statistical inference about the population mean 1s of prime practical
importance. Inferences about this parameter are based on the sample
mean and 1ts sampling distribution.

Mean and Standard Deviation of X

The distribution of the sample mean, based on a random sample of size n,

has

E(X) = u ( = Population mean)
_ o’ Population variance
Var (X) = = :
Sample size

— ( Population standard deviation )
sd (X) = =

n
o
Vn \/Sample size




X Is Normal When Sampling from a Normal Population

In random sampling from a normal population with mean w and standard
deviation o, the sample mean X has the normal distribution with mean u
and standard deviation o/ n.

Central Limit Theorem

Whatever the population, the distribution of X is approximately normal
when n is large.

In random sampling from an arbitrary population with mean w and
standard deviation o, when n is large, the distribution of X is approxi-
mately normal with mean u and standard deviation o/\n. Consequently,

X - p
Z = — is approximately N(O, 1)
o/\n




Standardizing in mathematical statistics [ed]

Further information: Normalization (statistics)

In mathematical statistics, a random variable X is standardized by subtracting its expected value E[X] and dividing the difference by its

standard deviation o'(X) = ,/Var(X) :

X -E[X
g=2""1
7(X)

f the random variable under consideration is the sample mean of a random sample X,..., X, of X'

-1 <&
X==Y'X
n 1=1
then the standardized version is

- X - E[X]
o(X)/yn

T-score [edi]

"I-score” redirects here. It is not to be confused with t-statistic.

A T-score is a standard score Z shifted and scaled to have a mean of 50 and a standard deviation of 10.[31415]




Calculation from raw score [ed]

The standard score of a raw score xlis
=

a

Fo—

where:

It measures the sigma distance of actual data from the average.

The Z value provides an assessment of how off-target a process is operating.

Applications [edi]

Main article: /-test

The z-score is often used in the z-test in standardized testing — the analog of the Student's t-test for a population whose parameters are known,
rather than estimated. As it is very unusual to know the entire population, the t-test is much more widely used.

Also, standard score can be used in the calculation of prediction intervals. A prediction interval [L, U], consisting of a lower endpoint designated L
and an upper endpoint designated U, is an interval such that a future observation X will lie in the interval with high probability =y, 1.e.

P(L< X <U)=n,
For the standard score Z of Xit gives:[p-]

L - U-
P( #{Z{ #)='}f.

a a

By determining the quantile z such that

P(-2<Z<2)=1

It follows:




Example on probability calculations
for the sample mean

Consider a population with mean 82 and standard deviation 12.

[f a random sample of size 64 is selected, what is the probability that the sample mean
will lie between 80.8 and 83.27

Solution: We have u = 82 and ¢ = 12. Since n = 64 1s large, the central limit theorem
tells us that the distribution of the sample mean is approximately normal with

o 12
Jn o4
Converting to the standard normal variable:
X-u X-82

o/n 15

E(X)=u=82, sd(X)= 1.5

7 =

Thus,
P[80.8 < X <83.2]

= P[(80.8-82)/1.5< Z < (83.2-82)/1.5] s e
= P[-8<Z <.8]=.7881-.2119 = 5762 L




Table of Standard Normal Probabilities for Negative Z-scores Table of Standard Normal Probabilities for Positive Z-scores

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
3.4 0.0003 00003 00003 0.0003 0.0003 00003  0.0003 0.0003 0.0003  0.0002 0.0 0.5000 0.5040 05080 05120 05160 05199 05239 05279 05319 05359
33 0.0005 0.0005  0.0005 0.0004  0.0004 00004 00004  0.0004  0.0004  0.0003 0.1 0.5398 0.5438 0.5478 0.5517  0.5557 0.5596 0.5636 05675 05714 05733
=32 0.0007 00007  0.0006 0.0006  0.0006 00006  0.0006 0.0005 0.0005  0.0003 0.2 0.5793 0.5832 05871 03910 05948 0.5987 0.6026 06064 06103 D.6141
=54 0.0010  0.0009 00009  0.0009  0.0008 0.0008 00008 0.0008 0.0007  0.0007 0.3 06179 0.6217 0.6255 0.6293  0.6331 0.6368 0.6406  0.6443  0.6480 0.6517
-3.0 0.0013 00013 00013 0.0012  0.0012  0.0011 0.0011 0.0011 0.0010  0.0010 04 06554 0.6591 0.6628 0.6664 06700  0.6736 0.6772  0.6808 06844  0.6879
2.9 0.0019 00018 00018 0.0017 0.0016  0.00le  0.00L5 0.0015 0.0014  0.0014 0.5 0.6915 0.6950  0.6985 07019 07054  0.7088 0.7123 07157  0.7190 0.7224
2.8 00026 00025 00024  0.0023 0.0023 00022  0.0021 0.0021 0.0020  0.0019 0.6 0.7257 0.729] 07324 07357 07389 0.7422 0.7454 07486 0.7517 0.7549
2.1 0.0035 0.0034 00033 0.0032  0.0031 0.0030 00029  0.0028 0.0027  0.0026 0.7 07580 0.7611 07642 07673 07704 04734 07764 07794 07823 0.7852
-2.6 0.0047 00045 00044  0.0043 0.004 1 00040 00039  0.0038 0.0037  0.0036 0.8 07881 0.7910 07939 Q7967  0.7995 0.8023 0.8051 08078 05106 0.8133
2.5 0.0062  0.00e0 00059  0.0057 0.0055 0.0054  0.0052 0.0051 0.0049  0.0048 0.9 08159 08186 08212 08238 0.8264  0.8289  (0.8315 0.8340  0.8365 0.8389
2.4 0.0082 00080 00078 0.0075 0.0073  0.0071 0.0069  0.0068 0.0066  0.0064 1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8354  0Q.8577  0.8399  0.8621
23 0.0107 00104 00102 0.0099  0.0096  0.0094  0.0091 0.0089  0.0087  0.0084 1.1 0.85643 0.8665 05686 08708 0.8Y20 08749  0.8770 0.8790  0.8810 0.8830
2.2 0.0139 00136 00132 0.0129  0.0125 0.0122 00119 00L16 0.0113 00110 1.2 0.8849  0.8869  (.B388 08907  0.8925 0.8944  0.8962  0.8980  0.8997 0.9015
-2.1 0.0179 00174 00170 0.0166 0.0162 00158 00154 00150 00146 00143 1.3 0.9032 0.9049 09066 09082 09099 09115 0.9131 09147 09162 0.9177
2.0 0.0228 00222 00217 0.0212  0.0207 0.0202 00197 0.0192  0.0188  0.0183 1.4 09192 0.9207 09222 09236 09251 0.9265 0.9279 09292 09306 0.9319
-1.9 0.0287  0.0281 00274 0.0268 0.0262 00256  0.0250 0.0244  0.0239  0.0233 1.5 0.9332 0.9345 09357  0.9370 093182 0.9394 09406 09418 09429  0.944]
-1.8 0.0359  0.0351 00344  0.0336 00329 00322 0.0314 0.0307  0.0301 0.0294 1.6 09452 0.9463 09474  0.9484 09495 0.9505 0.9515 09525 09335 0.9545
-1.7 0.0446  0.0436  0.0427 0.0418 0.0409  0.0401 0.0392 0.0384  0.0375 0.0367 1.7 09554 09564  0.9573 0.9582 09591 0.9599  0.9608 09616  D.9625 0.9633
-1.6 0.0548 00537 00526 0.0516  0.0505 00495  0.0485 0.0475 0.0465  0.0455 1.8 0.9641 0.9649  0.9656 09664 09671 0.9678 0.9686 09693 09699  0.9706
-1.5 0.0668 0.0655 00643 0.0630  0.0618 0.0606  0.0594  0.0582  0.0571 0.0559 1.9 09713 0.9719 09726 09732 089738 0.9744 09750 09756 09761 0.9767
-l4 0.0808 00793 00778 0.0764  0.0749 00735 00721 0.0708 0.0694  0.0681 2.0 09772 0.9778 0.9783 0.978% 09793 0.9798 0.9503 09808  0D9812 0.9817
-1.3 0.0968 0.0951 00934  0.0918 0.0901 0.0885 00869  0.0853 0.0838 0.0823 2.1 09821 0.9826 095830 09834 09838 0.9842 0.9546  0.9850 09854  (0.9857
-1.2 0.1151 0.1131 01112 0.1093 0.1075 0.1056  0.1038 0.1020 01003  0.0985 2.2 0.9861 0.9864  (0.9868 0.9871 0.9875 0.9878 0.9581 09884 09887 0.9890
-1.1 0.1357 01335 01314 01292 0.1271 0.1251 0.1230 0.1210 01190 01170 23 0.9893 0.9896 0.9598 0.9901 09904  0.9906 0.9909 09911 09913 0.9916
-1.0 0.1587 01562  0Q.1539  0.1515 0.1492  0.1469  0.1446 0.1423 0.1401 0.1379 24 09918 0.9920 09922 09925  0.9927 0.9929  0.9931 0.9932 09934  0.9936
-0.9 0.1841 0.1814  D.1788 0.1762  0.1736  0.1711 0.1685 0.1660  0.1635 0.1611 25 0.9938 0.9940  0.9941 0.9943 09945 0.9946 0.9948 09949 09951 0.9952
-0.8 02119 02090  0.2061 0.2033 0.2005 0.1977 01949 0.1922  0.01894  0.1867 2.6 0.99353 0.9955 0.9956 09957 09959  0.9960  0.9961 0.9962  0.9963 0.9964
0.7 0.2420 02389 02358 0.2327 0.2296 02266  0.2236 0.2206 02197  0.2148 2.7 0.9965 0.9966 0.9957 09968 09963  0.9970  (0.9971 0.9972 09973 0.9974
-06 02743 02709 02676 0.2643 0.2611 02578 02546 0.2514 02483 0.2451 2.8 09974 0.9975 09976 09977 09977 0.9978 0.9979  0.9979  0.9980 0.9951
-0.5 0.3085 0.3050 03015 0.2951 0.2946 02912 02877 0.2843 0.2810 0.2776 2.9 0.9931 0.9982 09982 09983 09934  0.9984  0.9985 0.9985 09936 0.9986
-0.4 03446 03409 03372 03336 03300 03264 03228 03192 03156 03121 3.0 0D.9987 0.9987 09987  0.998% 09988 0.998¢  0.9989  0.9989  0.9990 0.9990
-0.3 0.3821 0.3783 03745 0.3707 03669 03632 03594 03557 03520 03483 3.1 0.9990 0.999] 0.9991 0.9991 0.9992 0.9992 0.9992 09992 09993 0.9993
-0.2 04207 04168 04129 04090 04052 04013 03974 03936 03897 038359 32 0.9993 0.9993 0.9994 09994 09994  0.9994  0.9994 09995  0.9995 0.9995
0.1 04602 04562 04522 0.44583 0.4443 04404 04364 04325 0.4286 04247 33 0.9995 0.9995 0.9995 09996  0.9996 0.9996 0.9996 09996  0.9996 0.9997
0.0 05000 04960 04920 04830 04840 04801 04761 0.4721 0.4681 0.4641 34 0.9997 0.9997 0.9997 09997 09997 0.9997 0.9997 09997 09997 0.9998

Note that the probabilities given in this table represent the area to the LEFT of the z-score.
The area to the RIGHT of a z-score = 1 — the area to the LEFT of the z-score
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The Central Limit Theorem
more formally



The Central Limit Theorem

If repeated random samples of size N are drawn from
a population that 1s normally distributed along some
variable Y, having a mean  and a standard deviation
o, then the sampling distribution of all theoretically
possible sample means will be a normal distribution
having a mean L and a standard deviation & given

by 5
" I

[Sirkin (1999), p. 239]
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The Standard Error

6=
VN

where s, = sample standard deviation
and N = sample size




Let's assume that we have a random sample of 200 USC
undergraduates. Note that this is both a large and a random
sample, hence the Central Limit Theorem applies to any
statistic that we calculate from it. Let's pretend that we
asked these 200 randomly-selected USC students to tell us
their grade point average (GPA). (Note that our statistical
calculations assume that all 200 [a] knew their current GPA
and [b] were telling the truth about it.) We calculated the
mean GPA for the sample and found it to be 2.58. Next, we
calculated the standard deviation for these self-reported
GPA values and found it to be 0.44.



The standard error is nothing more than
the standard deviation of the sampling
distribution. The Central Limit Theorem
tells us how to estimate It:

Sy

JN

G =



The standard error is estimated by
dividing the standard deviation of the
sample by the square root of the size
of the sample. In our example,

. 0.44
O =

200

. 044
O =

14.142

0 =0.031



An example illustrating
the central limit theorem

* Distribution of X
: forn =10
Pes,
HEY
r “:.
I: t
3
y
% Distribution of X
. forn = 3
Asymmetric population
distribution

Value

Distributions of )_( for n =3 and n = 10 in sampling from an asymmetric population.



1.

2.

Recapitulation

The Central Limit Theorem holds only for
large, random samples.

When the Central Limit Theorem holds, the
mean of the sampling distribution (i is
equal to the mean in the universe (also ).

. When the Central Limit Theorem holds, the

standard deviation of the sampling
distribution (called the standard error, 6,)
IS estimated by

~ S
G:_Y

JN



Recapitulation (continued)

4. \When the Central Limit Theorem holds, the
sampling distribution is normally shaped.

5. All normal distributions are symmefrical,
asymptotic, and have areas that are fixed
and known.






In statistics, a confidence interval (CI) is a type of interval
estimate of a population parameter. It is an observed interval (i.e., it
is calculated from the observations), in principle different from
sample to sample, that potentially includes the unobservable true
parameter of interest.

How frequently the observed interval contains the true
parameter if the experiment is repeated is called the confidence
level. In other words, if confidence intervals are constructed in
separate experiments on the same population following the same
process, the proportion of such intervals that contain the true value
of the parameter will match the given confidence level. <WIKI>

Confidence intervals consist of a range of values (interval)
that act as good estimates of the unknown population parameter.
However, the interval computed from a particular sample does not
necessarily include the true value of the parameter.

Confidence intervals are commonly reported in tables or
graphs, to show the reliability of the estimates. For example, a
confidence interval can be used to describe how reliable survey
results are.



In applied practice, confidence intervals are typically
stated at the 95% confidence level. However, when presented
graphically, confidence intervals can be shown at several confidence
levels, for example 90%, 95% and 99%.

Certain factors may affect the confidence interval size
including size of sample, level of confidence, and population
variability. A larger sample size normally will lead to a better estimate
of the population parameter.

In statistical inference, the concept of a confidence
distribution (CD) has often been loosely referred to as a
distribution function on the parameter space that can represent
confidence intervals of all levels for a parameter of interest.

In statistics, a confidence region is a multi-dimensional
generalization of a confidence interval. It is a set of points in an n-
dimensional space, often represented as an ellipsoid around a point
which is an estimated solution to a problem, although other shapes
can ocCcur.

A confidence band is used in statistical analysis to represent
the uncertainty in an estimate of a curve or function based on limited
or noisy data.



The explanation of a confidence interval can amount to
something like: "The confidence interval represents values for the
population parameter for which the difference between the
parameter and the observed estimate is not statistically
significant at the 10% level® (assuming 90% confidence interval
as an example). In fact, this relates to one particular way in which a
confidence interval may be constructed.

The following applies: If the true value of the parameter lies
outside the 90% confidence interval once it has been calculated,
then a sampling event has occurred which had a probability of 10%
(or less) of happening by chance.

In statistical hypothesis testing, statistical significance (or
a statistically significant result) is attained whenever the observed p-
value of a test statistic is less than the significance level defined
for the study.

The p-value is the probability of obtaining results at least as
extreme as those observed, given that the null hypothesis is true.
The significance level, a, is the probability of rejecting the null
hypothesis, given that it is true.



In statistics, the p-value 1s the probability that, using a given
statistical model, the statistical summary (such as the sample mean
difference between two compared groups) would be the same as or more
extreme than the actual observed results.

The p-value 1s defined as the
probability, under the

assumption of hypothesis H,
of obtaining a result equal to

Important:

Pr (observation | hypothesis) = Pr (hypothesis | observation)
The probability of observing a result given that some hypothesis
is true is not equivalent to the probability that a hypothesis is true

given that some result has been observed.

Using the p-value as a “score” is committing an egregious logical error:
the transposed conditional fallacy.

or more extreme than what
was actually observed.

The p-value 1s used 1n the
context of null hypothesis
testing in order to quantify
the 1dea of statistical
significance of evidence.

More likely observation

\

> A P-value

0

c

]

©

2 | Very un-likely Very un-likely
3 observations observations
% * Observed *

data point\
&

Set of possible results

A p-value (shaded green area) is the probability of an observed
(or more extreme) result assuming that the null hypothesis is true.



The smaller the p-value, the larger the significance because
it tells the investigator that the hypothesis under consideration
may not adequately explain the observation. The hypothesis H is
rejected if any of these probabilities is less than or equal to a

small, fixed but arbitrarily pre-defined threshold value o, which is
referred to as the level of significance. Unlike the p-value, the a
level is not derived from any observational data and does not
depend on the underlying hypothesis; the value of o is instead
determined by the consensus of the research community that the
investigator is working in.



Statistical significance plays a pivotal role in statistical hypothesis
testing. It is used to determine whether the null hypothesis should be
rejected or retained. The null hypothesis is the default assumption that
nothing happened or changed. For the null hypothesis to be rejected, an
observed result has to be statistically significant, i.e. the observed p-
value is less than the pre-specified significance level.

To determine whether a result is statistically significant, a
researcher calculates a p-value, which is the probability of observing an
effect given that the null hypothesis is true. The null hypothesis is
rejected if the p-value is less than a predetermined level, a. a is called
the significance level, and is the probability of rejecting the null
hypothesis given that it is true (a type I error — false hit). It is usually set
at or below 5%.

For example, when a is set to 5%, the conditional probability of a
type I error, given that the null hypothesis is true, is 5%, and a
statistically significant result is one where the observed p-value is less
than 5%. When drawing data from a sample, this means that the
rejection region comprises 5% of the sampling distribution. These 5%
can be allocated to one side of the sampling distribution, as in a one-
tailed test, or partitioned to both sides of the distribution as in a two-
tailed test, with each tail (or rejection region) containing 2.5% of the
distribution.




A 959% confidence interval does not mean that 95% of the
sample data lie within the interval.

A 95% confidence interval does not mean that for a given
realised interval calculated from sample data there is a 95%
probability the population parameter lies within the interval. Once an
experiment is done and an interval calculated, this interval either
covers the parameter value or it does not; it is no longer a matter of
probability. The 95% probability relates to the reliability of the
estimation procedure, not to a specific calculated interval.

A confidence interval is not a range of plausible values for the
sample parameter, though it may be understood as an estimate of
plausible values for the population parameter.

A particular confidence interval of 95% calculated from an
experiment does not mean that there is a 95% probability of a
sample parameter from a repeat of the experiment falling within this
interval.



What 1s the difference between an alpha level and a p-value?

Science sets a conservative standard to meet for a researcher to claim that s/he has made a
discovery of a real phenomenon. The standard 1s the alpha level, usually set of .05.

Assuming that the null hypothesis 1s true, this means we may reject the null only 1f the observed
data are so unusual that they would have occurred by chance at most 5 % of the time. The
smaller the alpha, the more stringent the test (the more unlikely 1t is to find a statistically
significant result).

Once the alpha level has been set, a statistic (like ) 1s computed. Each statistic has an associated
probability value called a p-value, or the likelihood of an observed statistic occurring due to
chance, given the sampling distribution.

Alpha sets the standard for how extreme the data must be before we can reject the null
hypothesis. The p-value indicates how extreme the data are. We compare the p-value with the
alpha to determine whether the observed data are statistically significantly different from the null
hypothesis:

If the p-value 1s less than or equal to the alpha (p< .05), then we reject the null hypothesis, and
we say the result 1s statistically significant.

If the p-value 1s greater than alpha (p > .05), then we fail to reject the null hypothesis, and we say
that the result 1s statistically nonsignificant (n.s.).



The basic breakdown of how to calculate a confidence interval for a population mean is as follows:

m.
1. Identify the sample mean, & . While Z differs from , population mean, they are still calculated the same way: Z =
n

2. ldentify whether the standard deviation is known, &, or unknown, s.

o If standard deviation is known then z* is used as the critical value. This value is only dependent on the confidence level for the test.
Typical two sided confidence levels are:(2]

99% | 2.576

98% | 2.326
95% | 1.96

90% | 1.645

+ |f the standard deviation is unknown then t* is used as the critical value. This value is dependent on the confidence level (C) for the
test and degrees of freedom. The degrees of freedom is found by subtracting one from the number of observations, n - 1. The critical
value is found from the t-distribution table. In this table the critical value is written as {,(r), where ris the degrees of freedom and

1-C

=—

3. Plug the found values into the appropriate equations:

o

. 0 _ L,
« For a known standard deviation: |z — 2 —, 2+ 2 —

Jn

+ For an unknown standard deviation: | £ — 1
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STATISTICAL INFERENCE

Statistical inference provides methods for drawing conclusions about a
population from sample data.




INFERENCE ABOUT A MEAN: SIMPLE CONDITIONS

1. We have an SRS from the population of interest.

2. The variable we measure has a perfectly Normal distribution N(u, o)
in the population.

3. We don’t know the population mean p. Our task is to infer
something about p from the sample data. But we do know the
population standard deviation o.




iilha X = 272\ Standard
SRS n= 84-0 - deviation
» X=268 O _ 5
' SRSn=840 _ > \n
¥ X= 273
. Mean L
. unknown
. r

+—— Valuesof x —
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Probability = 0.95

Sampling
distribution
of x

T
u u+4.2

(unknown)

T — X —>



SRSn=840 _
» xXt4.2=272142

SRSh=840 _
» X1t42=268+4.2

SRSn=840 _
» x+42=273142
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95% of these
intervals capture
the unknown mean
u of the population.



CONFIDENCE INTERVAL

A level C confidence interval for a parameter has two parts:

* An interval calculated from the data, usually of the form

estimate & margin of error

* A confidence level C, which gives the probability that the interval
will capture the true parameter value in repeated samples. That is,
the confidence level is the success rate for the method.
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CONFIDENCE INTERVAL FOR THE MEAN OF A
NORMAL POPULATION

Draw an SRS of size n from a Normal population having unknown mean
i and known standard deviation o. A level C confidence interval for 1 is

o
X + ¥ —

/n

The critical value *




I

0.83 0.84 0.85 0.86

0.82



p ® > 90% confidence
< o > 99% confidence

I i [ [ i
0.82 0.83 0.84 0.85 0.86



SAMPLE SIZE FOR DESIRED MARGIN OF ERROR

The confidence interval for the mean of a Normal population will have a
specified margin of error m when the sample size is

Yo \*
n =




Inference about a Population Mean



CONDITIONS FOR INFERENCE ABOUT A MEAN

Our data are a simple random sample (SRS) of size n from the
population. This condition is very important.

Observations from the population have a Normal distribution with
mean p and standard deviation o. In practice, it is enough that the
distribution be symmetric and single-peaked unless the sample is very
small. Both i and o are unknown parameters.




STANDARD ERROR

When the standard deviation of a statistic is estimated from data, the
result is called the standard error of the statistic. The standard error of
the sample mean X is s //n.




THE ONE-SAMPLE t STATISTIC AND THE t DISTRIBUTIONS

Draw an SRS of size n from a population that has the Normal distribution
with mean pu and standard deviation o. The one-sample t statistic

s/

has the t distribution with n — 1 degrees of freedom.

¢




- = t,2degrees of freedom
\ t, 9 degrees of freedom
— standard Normal

t distributions have more
area in the tails than the
standard Normal distribution




THE ONE-SAMPLE t CONFIDENCE INTERVAL

Draw an SRS of size n from a population having unknown mean .
A level C confidence interval for u is

_ S
X L tF——
T
where t* is the critical value for the t(n — 1) density curve with area C
between —t* and t*. This interval is exact when the population
distribution is Normal and is approximately correct for large n in other

CasEs.




THE ONE-SAMPLE t TEST

Draw an SRS of size n from a population having unknown mean . To
test the hypothesis Hp: ;¢ = o based on an SRS of size n, compute the

one-sample ¢ statistic:
X — [o
t —

s/

In terms of a variable T having the t(n — 1) distribution, the P -value for
a test of Hy against

Hez pospp s PLT = ¢}

A
Hy:u<pug is P(T<t) //\
?
[t]

Hp: o # o is 2P(T = Jt])

These P-values are exact if the population distribution is Normal and are
approximately correct for large n in other cases.




THE ONE-SAMPLE t TEST

Draw an SRS of size n from a population having unknown mean . To
test the hypothesis Hy: # = o based on an SRS of size n, compute the

one-sample t statistic:
X — [L0

NG

In terms of a variable T having the t(n — 1) distribution, the P -value for
a test of Hy against

t

Hpy:p>puo is P(T >t)

Hp:p<puo is P(T <t)

Hep#po is 2P(T > )

PP

|t]

These P-values are exact if the population distribution is Normal and are
approximately correct for large n in other cases.




ROBUST PROCEDURES

A confidence interval or significance test is called robust if the
confidence level or P-value does not change very much when the
conditions for use of the procedure are violated.




Recapitulation

. Statistical inference involves generalizing
from a sample to a (statistical) universe.

. Statistical inference is only possible with
random samples.

. Statistical inference estimates the probability
that a sample result could be due to chance
(in the selection of the sample).

. Sampling distributions are the keys that
connect (known) sample statistics and
(unknown) universe parameters.

. Alpha (significance) levels are used to
identify critical values on sampling
distributions.



