
What is Statistics?
Definition of Statistics

– Statistics is the science of collecting, organizing, analyzing, 
and interpreting data in order to make a decision.

• Branches of Statistics
– The study of statistics has two major branches –

descriptive(exploratory) statistics and inferential statistics.
• Descriptive statistics is the branch of statistics that 

involves the organization, summarization, and display of 
data. 

• Inferential statistics is the branch of statistics that 
involves using a sample to draw conclusions about 
population. A basic tool in the study of inferential statistics 
is probability.



Scatterplots and Correlation



• Displaying relationships: Scatterplots

• Interpreting scatterplots

• Adding categorical variables to scatterplots

• Measuring linear association: correlation r

• Facts about correlation



• Response variable measures an outcome of a 
study.

• An explanatory variable explains, influences or 
cause changes in a response variable. 

• Independent variable and dependent variable.

• WARNING: The relationship between two 
variables can be strongly influenced by other 
variables that are lurking in the background. 

• Note: There is not necessary to have a cause-and-effect 
relationship between explanatory and response 
variables. 

• Example. Sales of personal computers and athletic shoes



Example - 1



Definitions
• Sample space: the set of all possible outcomes. 

We denote S
• Event: an outcome or a set of outcomes of a 

random phenomenon. An event is a subset of the 
sample space.

• Probability is the proportion of success of an 
event.

• Probability model: a mathematical description 
of a random phenomenon consisting of two 
parts: S and a way of assigning probabilities to 
events.



Probability distributions
• Probability distribution of a 

random variable X: it tells what values 
X can take and how to assign probabilities to 
those values.

– Probability of discrete random variable: list 
of the possible value of X and their 
probabilities

– Probability of continuous random variable: 
density curve.



Measuring linear association: correlation r
(The Pearson Product-Moment Correlation Coefficient or Correlation Coefficient)

• The correlation r measures the strength and 
direction of the linear association between two 
quantitative variables, usually labeled X and Y.
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Facts about correlation
• What kind of variables do we use?

– 1. No distinction between explanatory and response variables.
– 2. Both variables should be quantitative

• Numerical properties
– 1. 
– 2.  r>0: positive association between variables
– 3.  r<0: negative association between variables
– 4. If r =1or r = - 1, it indicates perfect linear relationship
– 5. As |r| is getting close to 1, much stronger relationship

– 6. Effected by a few outliers not resistant.
– 7. It doesn’t describe curved relationships
– 8. Not easy to guess the value of r from the appearance of a 

scatter plot
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Some necessary elements of 

Probability theory and Statistics



The NORMAL DISTRIBUTION

The normal (or Gaussian) distribution, is a very 
commonly  used (occurring) function in the fields of 
probability theory, and has wide applications in the 
fields of:
- Pattern Recognition;
- Machine Learning;
- Artificial Neural Networks and Soft computing;
- Digital Signal  (image, sound , video etc.) processing
- Vibrations, Graphics etc.



Its also called a BELL function/curve. 

The formula for the normal distribution is:
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The parameter μ is called the mean or expectation (or 
median or mode) of the distribution. 

The parameter σ is the standard deviation; 
and variance is thus σ2.
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The normal distribution p(x), with any mean μ and 
any positive deviation σ, has the following properties:

• It is symmetric around the mean (μ) of the distribution.

• It is unimodal: its first derivative is positive for x < μ, 
negative for x > μ, and zero only at x = μ.

• It has two inflection points (where the second 
derivative of f is zero and changes sign), located one 
standard deviation away from the mean,  x = μ − σ and x = 
μ + σ.

• It is log-concave.

• It is infinitely differentiable, indeed supersmooth of 
order 2.



Also, the standard normal distribution 
p (with μ = 0 and σ = 1) also has the following properties:

• Its first derivative p′(x) is:    −x.p(x).

• Its second derivative p′′(x) is:    (x2 − 1).p(x)

• More generally, its n-th derivative :

p(n)(x) is:                 (-1)nHn(x)p(x),

where, Hn is the Hermite polynomial of order n.



The 68 – 95 - 99.7% Rule:
All normal density curves satisfy the following property 

which is often referred to as the Empirical Rule: 

- 68% of the observations fall within
1 standard deviation of the mean, 
that is, between

- 95% of the observations fall within
2 standard deviations of the mean, 
that is, between 

- 99.7% of the observations fall within 
3 standard deviations of the mean, 
that is, between
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A normal distribution:

1.  is symmetrical (both halves are identical);
2.  is asymptotic (its tails never touch the 

underlying x-axis; the curve reaches to – ∞
and + ∞ and thus must be truncated); 

3.  has fixed and known areas under the curve
(these fixed areas are marked off by units
along the x-axis called z-scores; imposing
truncation, the normal curve ends at + 3.00
z on the right and - 3.00 z on the left).

















Expected Value of Random Variables
The expected value of a random variable is the weighted average of all 
possible values of the variable. The weight here means the probability 
of the random variable taking a specific value.



PDF function represented by this 
line is: f(x) = 0.03125x































Normal Density: ])(
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Bivariate Normal Density:
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Visualize ρ as equivalent to the orientation of tilted asymmetric Gaussian 
filter.
For x as a discrete random variable, 
the expected value of x: 
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E(x) is also called the first moment of the distribution.
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P(xi) is the probability of x = xi. 



Covariance of x and y, is defined as: )])([( yxxy yxE μμσ −−=
Covariance indicates how much x and y vary together. The value 

depends on how much each variable tends to deviate from its mean, and also 
depends on the degree of association between x and y.
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The correlation coefficient can also be viewed as the cosine of the angle 
between the two vectors (R D) of samples drawn from the two random variables.

This method only works with centered data, i.e., data which have been 
shifted by the sample mean so as to have an average of zero. 
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Other PDFs:
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Double Exponential Density:

Read about:

• Central Limit Theorem

• Uniform Distribution

• Geometric Distribution

• Quantile-Quantile (QQ) Plot

• Probability-Probability (P-P) Plot













The mean and standard 
deviation of a random variable 
X are 5 and 4 respectively.
Find:

E(X2) =     25 + 16 = 41











Sample mean is defined as: 
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Second, third,…  moments of the distribution p(x) are the expected values of: 
x2, x3,… 
The kth central moment is defined as:
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Thus, the second central moment (also called Variance) of a random variable x is 
defined as:
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S.D. of x is σx.

If z is a new variable: z= ax + by; Then E(z) = E(ax + by)=aE(x) + bE(y).
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MAXIMUM LIKELIHOOD ESTIMATE (MLE)

The ML estimate (MLE) of a parameter is that value which, when substituted 
into the probability distribution (or density), produces that distribution for which 
the probability of obtaining the entire observed set of samples is maximized.

Problem:     Find the maximum likelihood estimate for μ in a normal distribution.
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Taking derivative (w.r.t. μ ) 
of the LOG of the above:
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Also read about MAP estimate – Baye’s is an example.





Sampling Distributions

http://grid.cs.gsu.edu/~skarmakar/math1070_slides.html



Sampling Distribution 
Introduction

• In real life calculating parameters of 
populations is prohibitive because 
populations are very large.

• Rather than investigating the whole 
population, we take a sample, calculate a 
statistic related to the parameter of interest, 
and make an inference. 

• The sampling distribution of the statistic is 
the tool that tells us how close is the statistic 
to the parameter.



What are the main types of sampling and how is each done?

Simple Random Sampling: A simple random sample (SRS) of size 
n is produced by a scheme which ensures that each subgroup of the 
population of size n has an equal probability of being chosen as the 
sample. 
Stratified Random Sampling: Divide the population into "strata". 
There can be any number of these. Then choose a simple random 
sample from each stratum. Combine those into the overall sample. 
That is a stratified random sample. (Example: Church A has 600 
women and 400 women as members. One way to get a stratified 
random sample of size 30 is to take a SRS of 18 women from the 
600 women and another SRS of 12 men from the 400 men.) 
Multi-Stage Sampling: Sometimes the population is too large and 
scattered for it to be practical to make a list of the entire population 
from which to draw a SRS. For instance, when the a polling 
organization samples US voters, they do not do a SRS. Since voter 
lists are compiled by counties, they might first do a sample of the 
counties and then sample within the selected counties. This 
illustrates two stages.

<* SRC: WIKI *>



In statistics, a simple random sample is a subset of 
individuals (a sample) chosen from a larger set (a population). Each 
individual is chosen randomly and entirely by chance, such that 
each individual has the same probability of being chosen at any 
stage during the sampling process, and each subset of k individuals 
has the same probability of being chosen for the sample as any 
other subset of k individuals. This process and technique is known 
as simple random sampling, and should not be confused with 
systematic random sampling. A simple random sample is an 
unbiased surveying technique.

Systematic sampling (Sys-S) is a statistical method involving 
the selection of elements from an ordered sampling frame. The most 
common form of systematic sampling is an equi-probability method. In 
this approach, progression through the list is treated circularly, with a 
return to the top once the end of the list is passed. The sampling starts 
by selecting an element from the list at random and then every k-th 
element in the frame is selected, where k, the sampling interval 
(sometimes known as the skip): this is calculated as:  k = N/n
where n is the sample size, and N is the population size.



Systematic sampling (Sys-S) Example: Suppose a supermarket 
wants to study buying habits of their customers, then using systematic 
sampling they can choose every 10th or 15th customer entering the 
supermarket and conduct the study on this sample.

This is random sampling with a system. From the sampling 
frame, a starting point is chosen at random, and choices thereafter are at 
regular intervals. For example, suppose you want to sample 8 houses 
from a street of 120 houses. 120/8=15, so every 15th house is chosen 
after a random starting point between 1 and 15. If the random starting 
point is 11, then the houses selected are 11, 26, 41, 56, 71, 86, 101, and 
116.



Sampling With Replacement and Sampling Without Replacement

Consider a population of potato sacks, each of which has 
either 12, 13, 14, 15, 16, 17, or 18 potatoes, and all the values are 
equally likely. Suppose that, in this population, there is exactly one 
sack with each number. So the whole population has seven sacks.

Sampling with replacement:
If I sample two with replacement, then I first pick one (say 

14). I had a 1/7 probability of choosing that one. Then I replace it. 
Then I pick another. Every one of them still has 1/7 probability of 
being chosen. And there are exactly 49 different possibilities here.

Sampling without replacement:

If I sample two without replacement, then I first pick one (say 
14). I had a 1/7 probability of choosing that one. Then I pick another. 
At this point, there are only six possibilities: 12, 13, 15, 16, 17, and 
18. So there are only 42 different possibilities here (again assuming 
that we distinguish between the first and the second.)



Sampling distribution

• The sampling distribution of a statistic (not 
parameter) is the distribution of values taken by 
the statistic (not parameter) in all possible 
samples of the same size from the same 
population.



• An estimator of a population parameter is a sample 
statistic used to estimate or predict the population 
parameter.

• An estimate of a parameter is a particular numerical 
value of a sample statistic obtained through 
sampling.

• A point estimate is a single value used as an 
estimate of a population parameter.

A population parameter
is a numerical measure of 
a summary characteristic 
of a population.

Sample Statistics as Estimators 
of Population Parameters

• A sample statistic is a 
numerical measure of a 
summary characteristic 
of a sample.



• The sample mean,   , is the most common 
estimator of the population mean, μ.

• The sample variance, s2,  is the most common 
estimator of the population variance, σ2.

• The sample standard deviation, s, is the most 
common estimator of the population standard 
deviation, σ. 

• The sample proportion,   , is the most common 
estimator of the population proportion, p.

Estimators

X

p̂



• The sampling distribution of X is the 
probability distribution of all possible values 
the random variable     may assume when a 
sample of size n is taken from a specified 
population.

X

Sampling Distribution of X



Sampling Distribution of the Mean
• An example

– A die is thrown infinitely many times.  Let X 
represent the number of spots showing on 
any throw.

– The probability distribution of X is

x        1      2      3      4      5      6
p(x)   1/6   1/6    1/6    1/6    1/6    1/6

E(X) = 1(1/6) +
2(1/6) + 3(1/6)+
………………….= 3.5

V(X) = (1-3.5)2(1/6) + 
(2-3.5)2(1/6) +                           

…………. …= 2.92        



• Suppose we want to estimate μ
from the mean    of a sample of 
size n = 2.

• What is the distribution of    ?

x

Throwing a dice twice – sampling 
distribution of sample mean

x



Sample Mean Sample Mean Sample Mean
1 1,1 1 13 3,1 2 25 5,1 3
2 1,2 1.5 14 3,2 2.5 26 5,2 3.5
3 1,3 2 15 3,3 3 27 5,3 4
4 1,4 2.5 16 3,4 3.5 28 5,4 4.5
5 1,5 3 17 3,5 4 29 5,5 5
6 1,6 3.5 18 3,6 4.5 30 5,6 5.5
7 2,1 1.5 19 4,1 2.5 31 6,1 3.5
8 2,2 2 20 4,2 3 32 6,2 4
9 2,3 2.5 21 4,3 3.5 33 6,3 4.5

10 2,4 3 22 4,4 4 34 6,4 5
11 2,5 3.5 23 4,5 4.5 35 6,5 5.5
12 2,6 4 24 4,6 5 36 6,6 6

Sample Mean Sample Mean Sample Mean
1 1,1 1 13 3,1 2 25 5,1 3
2 1,2 1.5 14 3,2 2.5 26 5,2 3.5
3 1,3 2 15 3,3 3 27 5,3 4
4 1,4 2.5 16 3,4 3.5 28 5,4 4.5
5 1,5 3 17 3,5 4 29 5,5 5
6 1,6 3.5 18 3,6 4.5 30 5,6 5.5
7 2,1 1.5 19 4,1 2.5 31 6,1 3.5
8 2,2 2 20 4,2 3 32 6,2 4
9 2,3 2.5 21 4,3 3.5 33 6,3 4.5

10 2,4 3 22 4,4 4 34 6,4 5
11 2,5 3.5 23 4,5 4.5 35 6,5 5.5
12 2,6 4 24 4,6 5 36 6,6 6

Throwing a die twice – sample 
mean



xThe distribution of    when n = 2 
Sample Mean Sample Mean Sample Mean

1 1,1 1 13 3,1 2 25 5,1 3
2 1,2 1.5 14 3,2 2.5 26 5,2 3.5
3 1,3 2 15 3,3 3 27 5,3 4
4 1,4 2.5 16 3,4 3.5 28 5,4 4.5
5 1,5 3 17 3,5 4 29 5,5 5
6 1,6 3.5 18 3,6 4.5 30 5,6 5.5
7 2,1 1.5 19 4,1 2.5 31 6,1 3.5
8 2,2 2 20 4,2 3 32 6,2 4
9 2,3 2.5 21 4,3 3.5 33 6,3 4.5

10 2,4 3 22 4,4 4 34 6,4 5
11 2,5 3.5 23 4,5 4.5 35 6,5 5.5
12 2,6 4 24 4,6 5 36 6,6 6

Sample Mean Sample Mean Sample Mean
1 1,1 1 13 3,1 2 25 5,1 3
2 1,2 1.5 14 3,2 2.5 26 5,2 3.5
3 1,3 2 15 3,3 3 27 5,3 4
4 1,4 2.5 16 3,4 3.5 28 5,4 4.5
5 1,5 3 17 3,5 4 29 5,5 5
6 1,6 3.5 18 3,6 4.5 30 5,6 5.5
7 2,1 1.5 19 4,1 2.5 31 6,1 3.5
8 2,2 2 20 4,2 3 32 6,2 4
9 2,3 2.5 21 4,3 3.5 33 6,3 4.5

10 2,4 3 22 4,4 4 34 6,4 5
11 2,5 3.5 23 4,5 4.5 35 6,5 5.5
12 2,6 4 24 4,6 5 36 6,6 6

1       1.5     2.0     2.5     3.0     3.5     4.0     4.5     5.0     5.5    6.0

6/36

5/36

4/36

3/36

2/36
1/36

x

E(    ) =1.0(1/36)+
1.5(2/36)+….=3.5

V(X) = (1.0-3.5)2(1/36)+
(1.5-3.5)2(2/36)... = 1.46
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Sampling Distribution of the 
Mean



Sampling Distribution of the 
Mean
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Notice that      is smaller than .  
The larger the sample size the 
smaller      .  Therefore,     tends 
to fall closer to μ, as the sample 
size increases.

2
xσ

x2
xσ

Notice that      is smaller than σx.  
The larger the sample size the 
smaller      .  Therefore,     tends 
to fall closer to μ, as the sample 
size increases.
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The expected value of the sample mean is equal to the population mean:

 E X
X X( ) = =μ μ

The variance of the sample mean is equal to the population variance divided by 
the sample size:

 V X
nX

X( ) = =σ σ2
2

The standard deviation of the sample mean, known as the standard error of 
the mean, is equal to the population standard deviation divided by the square 
root of the sample size:

n
XSD X

X
σσ === )(s.e. 

Relationships between Population Parameters and 
the Sampling Distribution of the Sample Mean



Law of Large Number



How sample means approach the population mean 
(μ=25).



Example
- what would happen in many samples?



Recall Some Features of the Sampling Distribution

• It will approximate a normal curve even if the 
population you started with does NOT look 
normal

• Sampling distribution serves as a bridge between 
the sample and the population



Mean of a sample mean x



Standard Deviation of a sample mean x



Third Property: Sample Size and the 
Standard Deviation

• The larger the sample size, the smaller the 
standard deviation of the mean 

Or

• As n increases, the standard deviation of the 
mean decreases

x





Sampling distribution of a sample mean 

• Definition: For a random variable x and a given sample 
size n, the distribution of the variable     , that is the 
distribution of all possible sample means, is called the 
sampling distribution of the sample mean.

x

x



Sampling distribution of the sample mean

• Case 1. Population follows Normal 
distribution
– Draw an SRS of size n from any population.
– Repeat sampling.
– Population follows a Normal distribution with 

mean µ and standard deviation σ.
– Sampling distribution of      follows normal 

distribution as follows: N(µ, σ/√n ).
xn/σ



Example
(The population distribution follow a Normal 
distribution, then so does the sample mean)



The central limit theorem

This theorem tells us: 
1. Small samples: Shape of sampling distribution is 

less normal
2. Large sample: Shape of sampling distribution is 

more normal.



Sampling distribution of the sample mean

• Case 2. Population follows any distribution  
(CLT: Central limit theorem)

– Draw an SRS of size n from any population.
– Repeat sampling.
– Population follows a distribution with mean µ

and standard deviation σ.
– When n is large (n>=30), sampling dist of      

follows approximately Normal distribution as 
follows N(µ, σ/√n ).

x



When sampling from a population 
with mean μ and finite standard 
deviation σ, the sampling 
distribution of the sample mean will 
tend to be a normal distribution with 
mean μ and standard deviation as 
the sample size becomes large
(n >30).

For “large enough” n:

σ
n

)/,(~ 2 nNX σμ

P( X
)

X

0.25
0.20
0.15
0.10
0.05
0.00

n = 5

P( X
)

0.2

0.1

0.0 X

n = 20

f ( X)

X-

0.4

0.3

0.2

0.1

0.0

μ

Large n

The Central Limit Theorem



Normal Uniform Skewed

Population

n = 2

n = 30

XμXμXμXμ

General

The Central Limit Theorem Applies to 
Sampling Distributions from Any Population



If the population standard deviation, σ, is unknown, replace σ with 
the sample standard deviation, s.  If the population is normal, the 
resulting statistic:

has a t distribution with (n - 1) degrees of freedom.

• The t is a family of bell-shaped and 
symmetric distributions, one for each 
number of degree of freedom.

• The expected value of t is 0.
• The variance of t is greater than 1, but 

approaches 1 as the number of degrees of 
freedom increases.   

• The t distribution approaches a standard 
normal as the number of degrees of 
freedom increases.

• When the sample size is small (<30) we use 
t distribution.

ns
Xt /

μ−=

Standard normal
t, df=20
t, df=10

0
μ

Student’s t Distribution



Sampling Distributions

Finite Population Correction Factor

If the sample size is more than 5% of the 
population size and the sampling is done
without replacement, then a correction needs
to be made to the standard error of the 
means.
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• is referred to as the standard error of the
mean.
σ xσ x

• A finite population is treated as being
infinite if n/N < .05.

• is the finite correction factor.( ) / ( )N n N− −1( ) / ( )N n N− −1
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The sample proportion is the percentage of 
successes in n binomial trials.  It is the 
number of successes, X, divided by the 
number of trials, n.

p X
n

  =

As the sample size, n, increases, the sampling 
distribution of     approaches a normal 
distribution with mean p and standard 
deviation

p

p p
n

( )1 −

Sample proportion: 
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Statistical inference: 
CLT, confidence 

intervals, p-values



The process of making 
guesses about the truth 

from a sample.  

Sample 
(observation)

Make guesses about 
the whole 
population 

Truth (not 
observable)
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Sample statistics

*hat notation ^ is often used to indicate  
“estitmate”



Statistics vs. Parameters
• Sample Statistic – any summary measure calculated from data; e.g., 

could be a mean, a difference in means or proportions, an odds ratio, 
or a correlation coefficient
– E.g., the mean Vit-D level in a sample of 100 men is 63 nmol/L
– E.g., the correlation coefficient between vit-D and cognitive function in the 

sample of 100 men is 0.15

• Population parameter – the true value/true effect in the entire 
population of interest
– E.g., the true mean vitamin D in all middle-aged and older European men is 

62 nmol/L
– E.g., the true correlation between vitamin D and cognitive function in all 

middle-aged and older European men is 0.15 



Distribution of a statistic…
• Statistics follow distributions too…
• But the distribution of a statistic is a theoretical construct.
• Statisticians ask a thought experiment: how much would 

the value of the statistic fluctuate if one could repeat a 
particular study over and over again with different samples 
of the same size? 

• By answering this question, statisticians are able to 
pinpoint exactly how much uncertainty is associated with a 
given statistic. 



Distribution of a statistic

• Two approaches to determine the distribution of a 
statistic:
– 1. Computer simulation

• Repeat the experiment over and over again virtually!
• More intuitive; can directly observe the behavior of statistics.

– 2. Mathematical theory
• Proofs and formulas! 
• More practical; use formulas to solve problems.



Coin tosses…

Conclusions: 

We usually get 
between 40 and 60 
heads when we flip a 
coin 100 times. 

It’s extremely 
unlikely that we will 
get 30 heads or 70 
heads (didn’t happen 
in 30,000 
experiments!).



Distribution of the sample mean, 
computer simulation…

• 1. Specify the underlying distribution of vitamin D in all 
European men aged 40 to 79. 

– Right-skewed
– Standard deviation = 33 nmol/L 
– True mean = 62 nmol/L (this is arbitrary; does not affect the 

distribution)
• 2. Select a random sample of 100 virtual men from the 

population.
• 3. Calculate the mean vitamin D for the sample. 
• 4. Repeat steps (2) and (3) a large number of times (say 

1000 times).
• 5. Explore the distribution of the 1000 means. 



Mathematical Theory…
The Central Limit Theorem!

If all possible random samples, each of size n, are taken 
from any population with a mean μ and a standard 
deviation σ, the sampling distribution of the sample 
means (averages) will:

μμ =x1. have mean:

nx
σσ =2. have standard deviation:  

3. be approximately normally distributed regardless of the shape 
of the parent population (normality improves with larger n). It all 
comes back to Z!



Symbol Check

xμ The mean of the sample means. 

xσ The standard deviation of the sample means. Also 
called “the standard error of the mean.”



Mathematical Proof (optional!)
If X is a random variable from any distribution with known 

mean, E(x), and variance, Var(x), then the expected value 
and variance of the average of n observations of X is:
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Computer simulation of the CLT:

1. Pick any probability distribution and specify a mean and standard 
deviation.

2. Tell the computer to randomly generate 1000 observations from that 
probability distributions
E.g., the computer is more likely to spit out values with high 

probabilities
3. Plot the “observed” values in a histogram.
4. Next, tell the computer to randomly generate 1000 averages-of-2 

(randomly pick 2 and take their average) from that probability 
distribution. Plot “observed” averages in histograms.  

5. Repeat for averages-of-10, and averages-of-100.



Uniform on [0,1]: average of 1
(original distribution)



Uniform: 1000 averages of 2



Uniform: 1000 averages of 5



Uniform: 1000 averages of 100



The Central Limit Theorem:
(revisited) 

If all possible random samples, each of size n, are taken 
from any population with a mean μ and a standard 
deviation σ, the sampling distribution of the sample 
means (averages) will:

μμ =x1. have mean:

nx
σσ =2. have standard deviation:  

3. be approximately normally distributed regardless of the shape 
of the parent population (normality improves with larger n)



Statistical inference about the population mean is of prime practical 
importance. Inferences about this parameter are based on the sample 
mean and its sampling distribution.

Distribution of the sample mean









Consider a population with mean 82 and standard deviation 12.
If a random sample of size 64 is selected, what is the probability that the sample mean 

will lie between 80.8 and 83.2?
Solution: We have μ = 82 and σ = 12. Since n = 64 is large, the central limit theorem 

tells us that the distribution of the sample mean is approximately normal with

Converting to the standard normal variable:

Thus,
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Example on probability calculations 
for the sample mean
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The Central Limit Theorem
more formally



The Central Limit Theorem
If repeated random samples of size N are drawn from 
a population that is normally distributed along some 
variable Y, having a mean μ and a standard deviation 
σ, then the sampling distribution of all theoretically 
possible sample means will be a normal distribution 
having a mean μ and a standard deviation  given 
by

[Sirkin (1999), p. 239]

n
sY

σ̂



Mean Standard Deviation Variance

Universe μY σY σY
2

Sampling μY
Distribution

_
Sample Y sY sY

2

2ˆYσYσ̂



N
sY=σ̂

The Standard Error

where sY = sample standard deviation
and N = sample size



Let's assume that we have a random sample of 200 USC 
undergraduates.  Note that this is both a large and a random 
sample, hence the Central Limit Theorem applies to any
statistic that we calculate from it.  Let's pretend that we 
asked these 200 randomly-selected USC students to tell us 
their grade point average (GPA).  (Note that our statistical 
calculations assume that all 200 [a] knew their current GPA 
and [b] were telling the truth about it.)  We calculated the 
mean GPA for the sample and found it to be 2.58.  Next, we 
calculated the standard deviation for these self-reported 
GPA values and found it to be 0.44.



The standard error is nothing more than 
the standard deviation of the sampling 
distribution.  The Central Limit Theorem 
tells us how to estimate it:

N
sY=σ̂



The standard error is estimated by 
dividing the standard deviation of the 
sample by the square root of the size 
of the sample.  In our example,

200
44.0ˆ =σ

142.14
44.0ˆ =σ

031.0ˆ =σ



Distributions of        for n = 3 and n = 10 in sampling from an asymmetric population.

An example illustrating 
the central limit theorem



Recapitulation

1.  The Central Limit Theorem holds only for 
large, random samples.

2.  When the Central Limit Theorem holds, the 
mean of the sampling distribution μ is 
equal to the mean in the universe (also μ). 

3.  When the Central Limit Theorem holds, the 
standard deviation of the sampling 
distribution (called the standard error,    )
is estimated by  

N
sY=σ̂

Yσ̂



Recapitulation (continued)

4.  When the Central Limit Theorem holds, the 
sampling distribution is normally shaped. 

5.  All normal distributions are symmetrical, 
asymptotic, and have areas that are fixed
and known.





In statistics, a confidence interval (CI) is a type of interval 
estimate of a population parameter. It is an observed interval (i.e., it 
is calculated from the observations), in principle different from 
sample to sample, that potentially includes the unobservable true 
parameter of interest.

How frequently the observed interval contains the true 
parameter if the experiment is repeated is called the confidence 
level. In other words, if confidence intervals are constructed in 
separate experiments on the same population following the same 
process, the proportion of such intervals that contain the true value 
of the parameter will match the given confidence level.  <WIKI>

Confidence intervals consist of a range of values (interval) 
that act as good estimates of the unknown population parameter. 
However, the interval computed from a particular sample does not 
necessarily include the true value of the parameter.

Confidence intervals are commonly reported in tables or 
graphs,  to show the reliability of the estimates. For example, a 
confidence interval can be used to describe how reliable survey 
results are.



In applied practice, confidence intervals are typically 
stated at the 95% confidence level. However, when presented 
graphically, confidence intervals can be shown at several confidence 
levels, for example 90%, 95% and 99%.

Certain factors may affect the confidence interval size 
including size of sample, level of confidence, and population 
variability. A larger sample size normally will lead to a better estimate 
of the population parameter.

In statistical inference, the concept of a confidence 
distribution (CD) has often been loosely referred to as a 
distribution function on the parameter space that can represent 
confidence intervals of all levels for a parameter of interest.

In statistics, a confidence region is a multi-dimensional 
generalization of a confidence interval. It is a set of points in an n-
dimensional space, often represented as an ellipsoid around a point 
which is an estimated solution to a problem, although other shapes 
can occur.

A confidence band is used in statistical analysis to represent 
the uncertainty in an estimate of a curve or function based on limited 
or noisy data. 



The explanation of a confidence interval can amount to 
something like: "The confidence interval represents values for the 
population parameter for which the difference between the 
parameter and the observed estimate is not statistically 
significant at the 10% level“  (assuming 90% confidence interval 
as an example). In fact, this relates to one particular way in which a 
confidence interval may be constructed.

The following applies: If the true value of the parameter lies 
outside the 90% confidence interval once it has been calculated, 
then a sampling event has occurred which had a probability of 10% 
(or less) of happening by chance.

In statistical hypothesis testing,  statistical significance (or 
a statistically significant result) is attained whenever the observed p-
value of a test statistic is less than the significance level defined 
for the study.

The p-value is the probability of obtaining results at least as 
extreme as those observed, given that the null hypothesis is true. 
The significance level, α, is the probability of rejecting the null 
hypothesis, given that it is true.



In statistics, the p-value is the probability that, using a given 
statistical model, the statistical summary (such as the sample mean 
difference between two compared groups) would be the same as or more 
extreme than the actual observed results.

The p-value is defined as the 
probability, under the 
assumption of hypothesis H,
of obtaining a result equal to 
or more extreme than what 
was actually observed.

The p-value is used in the 
context of null hypothesis 
testing in order to quantify 
the idea of statistical 
significance of evidence.



The smaller the p-value, the larger the significance because 
it tells the investigator that the hypothesis under consideration 
may not adequately explain the observation. The hypothesis  H is 
rejected if any of these probabilities is less than or equal to a 
small, fixed but arbitrarily pre-defined threshold value α, which is 
referred to as the level of significance. Unlike the p-value, the α 
level is not derived from any observational data and does not 
depend on the underlying hypothesis; the value of α is instead 
determined by the consensus of the research community that the 
investigator is working in. 



Statistical significance plays a pivotal role in statistical hypothesis 
testing. It is used to determine whether the null hypothesis should be 
rejected or retained. The null hypothesis is the default assumption that 
nothing happened or changed. For the null hypothesis to be rejected, an 
observed result has to be statistically significant, i.e. the observed p-
value is less than the pre-specified significance level.

To determine whether a result is statistically significant, a 
researcher calculates a p-value, which is the probability of observing an 
effect given that the null hypothesis is true. The null hypothesis is 
rejected if the p-value is less than a predetermined level, α. α is called 
the significance level, and is the probability of rejecting the null 
hypothesis given that it is true (a type I error – false hit). It is usually set 
at or below 5%.

For example, when α is set to 5%, the conditional probability of a 
type I error, given that the null hypothesis is true, is 5%, and a 
statistically significant result is one where the observed p-value is less 
than 5%. When drawing data from a sample, this means that the 
rejection region comprises 5% of the sampling distribution. These 5% 
can be allocated to one side of the sampling distribution, as in a one-
tailed test, or partitioned to both sides of the distribution as in a two-
tailed test, with each tail (or rejection region) containing 2.5% of the 
distribution.



A 95% confidence interval does not mean that 95% of the 
sample data lie within the interval.

A 95% confidence interval does not mean that for a given 
realised interval calculated from sample data there is a 95% 
probability the population parameter lies within the interval. Once an 
experiment is done and an interval calculated, this interval either 
covers the parameter value or it does not; it is no longer a matter of 
probability. The 95% probability relates to the reliability of the 
estimation procedure, not to a specific calculated interval.

A confidence interval is not a range of plausible values for the 
sample parameter, though it may be understood as an estimate of 
plausible values for the population parameter.

A particular confidence interval of 95% calculated from an 
experiment does not mean that there is a 95% probability of a 
sample parameter from a repeat of the experiment falling within this 
interval.



































Inference about a Population Mean



















Recapitulation

1.  Statistical inference involves generalizing
from a sample to a (statistical) universe.

2.  Statistical inference is only possible with
random samples.

3.  Statistical inference estimates the probability
that a sample result could be due to chance
(in the selection of the sample).

4.  Sampling distributions are the keys that
connect (known) sample statistics and
(unknown) universe parameters.

5.  Alpha (significance) levels are used to 
identify critical values on sampling
distributions.


