
Linear Least Square Regression of a line
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A simple and trivial looking problem, but a good illustration 
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(Xi, Yi)

ΔY

ΔX

Assume X to be the independent variable with no errors.

Errors are only with Y.

Reduce deviations,  d = ΔY.



METHOD - I



Cost Function:
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Minimize using derivatives:
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Re-arranging, 
we get Normal 
Equations:



Solving, we get:

;
)(

;
)(

1 111

2

1 11

DEN

YXXXY
C

DEN

YXYXN
m

N

i

N

i
ii

N

i
i

N

i
ii

N

i

N

i
ii

N

i
ii

 

 

= ===

= ==

−
=

−
=

where,


==

−=
N

i
i

N

i
i XXNDEN

1

2

1

2 )(

In parametric form:
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In parametric 
form:
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Check from above that the LSQ-line passes through the point: 
(μX, μY). Thus shift the origin to the point: (μX, μY). 

The equation of the line 
in the transformed space: .0';' 2 == Cm

X

XY
σ
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METHOD - II



Solving the same, 
using matrix concepts:
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Any two points on the line, can give us the parameters: 
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Thus:



If you use this: [ ] [ ]
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NC2 lines may be obtained for each pair.
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We are basically 
trying to solve 
an ill-posed problem, 
where:

In case of best fit:
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Take this as:  Aβ = B, 
where A is a non-square 
(or even singular square) matrix.

Use Pseudo-inverse in this case:

;BAAABA TT == ββ

inverse.-Pseudo  theis  ;)(   ,
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(ATA) is square and assumed to be non-singular (generally).
If not, look for alternative formula (hang on, for now) 
A+A or AA+ is not equal to I (except non-singular square A), but Ip.



;

1

1
1

2

1























=

NX

X
X

A

;
2

1























=

NY

Y
Y

B

β =[m C]T









=



















=































=





=

==

1

;

1

1
1

111

2

1

11

2

2

1

21

x

xx
N

i
i

N

i
i

N

i
i

T

N

NT

N
NX

XX
AA

X

X
X

XXX
AA

μ
μσ

;)(
;

1 BAAA
BAAABA

TT

TT

−=
==

β
ββ



;
111

1

1
2

1

21








=



















=































=





=

=

Y

XY
N

i
i

N

i
ii

N

NT N
Y

YX

Y

Y
Y

XXX
BA

μ
σ









−

−
=








= −

2
1

2 1
)

.
1()(  ;

1 xx

xT

x

xxT

DN
AANAA

σμ
μ

μ
μσ

where, D= 22
xx μσ −

Thus:
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The solution is same as in 
LSQ-FIT.

Pseudo-inverse satisfies the
Least-square criteria.



So we have seen the relation between 
LSQ and Pseudo-inverse.

Where and how does the 
eigen-space (PCA)

help us?

- Solve that analytical mystery yourselves.

Ref: Chap. 3 of Hastie – ESL book,
for “HAT matrix” in regression;

.



ଵଵ ଵ
ேଵ ே = ଵ ே ்= ଵ 

i-th Observation (row-vector): ் ଵ 
 ଵ ே ்; j = 1,…,p

Notations in ESLT – Hastie:
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Now see chap. 2 of Hastie – ESL book,
for in regression;

And come back for related concepts - “HAT matrix” .



In statistics and machine learning, the bias–variance 
tradeoff (or dilemma) is the problem of simultaneously minimizing 
two sources of error that prevent supervised learning algorithms 
from generalizing beyond their training set:

The bias is error from erroneous assumptions in the learning 
algorithm. High bias can cause an algorithm to miss the relevant 
relations between features and target outputs (underfitting).

The variance is error from sensitivity to small fluctuations in 
the training set. High variance can cause overfitting: modeling the 
random noise in the training data, rather than the intended 
outputs.

The bias–variance decomposition is a way of analyzing a 
learning algorithm's expected generalization error with respect to a 
particular problem as a sum of three terms, the bias, variance, and 
a quantity called the irreducible error, resulting from noise in the 
problem itself.

This tradeoff applies to all forms of supervised learning: 
classification, regression (function fitting), and structured output 
learning. It has also been invoked to explain the effectiveness of 
heuristics in human learning.  <Src: WIKI>



Motivation  (WIKI):

The bias–variance tradeoff is a central problem in supervised 
learning. Ideally, one wants to choose a model that both accurately 
captures the regularities in its training data, but also generalizes 
well to unseen data. Unfortunately, it is typically impossible to do 
both simultaneously. 

High-variance learning methods may be able to represent 
their training set well, but are at risk of overfitting to noisy or 
unrepresentative training data. In contrast, algorithms with high 
bias typically produce simpler models that don't tend to overfit, but 
may underfit their training data, failing to capture important 
regularities.

Models with low bias are usually more complex (e.g. higher-
order regression polynomials), enabling them to represent the 
training set more accurately. In the process, however, they may 
also represent a large noise component in the training set, making 
their predictions less accurate - despite their added complexity. 

In contrast, models with higher bias (low variance) tend to 
be relatively simple (low-order or even linear regression 
polynomials), but may produce lower variance predictions when 
applied beyond the training set.



A function is approximated using 
radial basis functions (RBF). Several trials 
are shown in each graph.

For each trial, a few noisy data 
points are provided as training set. For a 
wide sigma (top-right image) the bias is 
high: the RBFs cannot fully approximate 
the function (especially the central dip), 
but the variance between different trials is 
low. As sigma decreases (images at bottom 
row) the bias decreases: the yellow curves 
more closely approximate the blue one 

However, depending on the noise in 
different trials the variance between trials 
increases. In the lower-right image the 
approximated values for x=0 varies wildly 
depending on where the data points were 
located.  SRC: WIKI





Lets examine two learning techniques for prediction: the 
stable but biased linear model and the less stable but apparently 
less biased class of k-nearest-neighbor estimates.





The linear decision boundary from least squares is very smooth, 
and apparently stable to fit. It does appear to rely heavily on the 
assumption that a linear decision boundary is appropriate. It has low 
variance and potentially high bias.

On the other hand, the k-nearest-neighbor procedures do not 
appear to rely on any stringent assumptions about the underlying data, and 
can adapt to any situation. However, any particular sub-region of the 
decision boundary depends on a handful of input points and their particular 
positions, and is thus wiggly and unstable—high variance and low 
bias.

The MSE is generally broken into two components that will become 
familiar as we proceed: variance and squared bias. Such a decomposition is 
always possible and often useful, and is known as the bias–variance 
decomposition.

REFER : ELT - HASTIE BOOK  (2.25) PP ( 24, 239, 242)











For Parameter set,
say using LSQ



SRC - WIKI







Equation 2.25 Derivation; τ is expectation over training set𝑀𝑆𝐸 𝑥 =  𝑓 𝑥 − 𝑦ො ଶ  =      𝑓 𝑥 ଶ − 2𝑓 𝑥 𝑦ො  +  𝑦ොଶ
   ଶ   ఛ     ଶ

Add and subtract   ଶ
RHS =

τ 𝑦ොଶ −  𝑦ො ଶ +  𝑦ො ଶ − 2  𝑓 𝑥  𝑦ො  +  𝑓 𝑥 ଶ
Since, is deterministic (given a particular input, will always

provide the same output),    andଶ ଶ ଶ
    ଶ

   ଶ
ఛ  ଶ 

 ఛ  ଶ 



Equation 2.27 and 2.28 Derivation
Suppose the relation between and is linear,்
where ଶ and we fit a model by least squares to the training
data.

For an arbitrary point  , we have  ் , which can be
written as  ்   ேୀଵ , where   is the i-th element
of ் ିଵ . Since under this model the least squares estimates are
unbiased, we find that:  ௬బ|௫బ    ଶ

௬బ|௫బ  ଶ   ଶ௬బ|௫బ ଶ     ଶ௬బ|௫బ ଶ   ௬బ|௫బ   ଶ



 ௬బ|௫బ     ଶ
௬బ|௫బ   ଶ   ଶ௬బ|௫బ ଶ      ଶ௬బ|௫బ ଶ   ௬బ|௫బ    ଶ

Using ଶ ଶ on above, we have, EPE   ௬బ|௫బ  ଶ
   ௬బ|௫బ    ଶ

Add and subtract ఛ  ଶ; and ௬బ|௫బ   ்    ଶ    ଶ
   ଶ    ଶ  ఛ      ଶ

  ఛ    ் ଶ
  ఛ  ଶ 



Using   ଶ and substituting the expansion for 𝐸𝑃𝐸 𝑥 = 𝜎ଶ + 𝑉𝑎𝑟ఛ 𝑥் 𝛽 + 𝑙 𝑥 𝜖ே
ୀଵ  +  𝑥் 𝛽 + 𝑙 𝑥 𝜖ே

ୀଵ − 𝑥் 𝛽 ଶ

= 𝜎ଶ + 𝑉𝑎𝑟ఛ 𝑥் 𝛽 + 𝑙 𝑥 𝜖ே
ୀଵ  + 𝑥் 𝛽 + E 𝑙 𝑥 𝜖ே

ୀଵ − 𝑥்𝛽

𝐸𝑃𝐸 𝑥= 𝑉𝑎𝑟 𝑦 𝑥 + E 𝑦ොଶ − E  𝑦ො ଶ +  E  𝑦ො ଶ − 2𝑦E 𝑦ො + 𝑦ଶ= 𝑉𝑎𝑟 𝑦 𝑥 +  𝑉𝑎𝑟ఛ 𝑦ො + E  𝑦ො − 𝑦 ଶ= 𝑉𝑎𝑟 𝑦 𝑥 +  𝑉𝑎𝑟ఛ 𝑦ො +  E 𝑦ො − 𝑥் 𝛽 ଶ=  𝑉𝑎𝑟 𝑦 𝑥 +  𝑉𝑎𝑟ఛ 𝑦ො +  𝐵𝑖𝑎𝑠ଶ 𝑦ො

Since 𝐸 𝜖 = 0,   ∑ 𝑙 𝑥 𝜖ேୀଵ = 0 
 ଶ ఛ ்   ே

ୀଵ



 ଶ ఛ ் ఛ   ே
ୀଵ

Since ఛ ்  ଶ ଶ ேୀଵ ଶ
ଶ ் ் ି𝟏 ் ் ିଵ  ଶ

Since ் is symmetric:

 ଶ ் ் ିଵ  ଶ

Since, ,     ேୀଵ
 ଶ ఛ ்   ே

ୀଵ

𝑙(𝑥) is the i-th element of  𝑿 𝑿்𝑿 ିଵ𝑥



Since ் is symmetric ଶ ் ் ିଵ  ଶ
Here, we have incurred an additional variance ଶ in the

prediction error, since our target is not deterministic. There is no bias,
and the variance depends on .

If is large and were selected at random, and
assuming , then ் and

௫బ  ௫బ ் ିଵ  ଶ ଶ
Using property, 𝑻 ் 𝑻

ିଵ  ଶ ଶ
௫బ  ଶ ே ଶ (2.28)



௫బ  ିଵ  ଶ ଶ
௫బ  ଶ ே ଶ (2.28)

Here we see that the expected EPE increases linearly as a
function of , with slope ଶ . If is large and/or ଶ is small, this
growth in variance is negligible (0 in the deterministic case).

By imposing some heavy restrictions on the class of models
being fitted, we have avoided the curse of dimensionality.







Equation 2.47 Derivation
The k-nearest-neighbor regression fit   usually illustrates

the competing forces that effect the predictive ability of such
approximation. Suppose the data arise from a model
with and ଶ.

For simplicity here we assume that the values of  in the
samples are fixed in advance (nonrandom). For an input ,

   
ୀଵ  

ୀଵ
The subscript in the parentheses- indicate the sequence of

nearest neighbors to . The expected prediction error at , also known
as test or generation error, can be decomposed:

    ଶ 



    ଶ Using   𝐸𝑃𝐸 𝑥= 𝑉𝑎𝑟 𝑦 𝑥 + 𝐸ఛ 𝑦ොଶ −  𝐸ఛ 𝑦ො ଶ + 𝐸ఛ 𝑦ො ଶ  − 2𝑦𝐸ఛ 𝑦ො +  𝑦ଶ  ఛ  ఛ   ଶ
  ఛ  ఛ  ் ଶ

  ఛ  ଶ 
 ଶ ଶ   ఛ  = 𝜎ଶ + 𝑦 −  𝐸ఛ 𝑓መ 𝑥 ଶ + 𝑉𝑎𝑟ఛ 𝑓መ 𝑥

= 𝜎ଶ + 𝑦 −  𝐸ఛ 1𝑘 𝑓 𝑥  + 𝜖 
ୀଵ

ଶ + 𝑉𝑎𝑟ఛ 1𝑘 𝑓 𝑥  + 𝜖 
ୀଵ



 ଶ ଶ   ఛ  = 𝜎ଶ + 𝑦 −  𝐸ఛ 𝑓መ 𝑥 ଶ + 𝑉𝑎𝑟ఛ 𝑓መ 𝑥= 𝜎ଶ + 𝑦 −  𝐸ఛ 1𝑘 𝑓 𝑥  + 𝜖 
ୀଵ

ଶ + 𝑉𝑎𝑟ఛ 1𝑘 𝑓 𝑥  + 𝜖 
ୀଵ

= 𝜎ଶ + 𝑓 𝑥 − 1𝑘 𝐸ఛ 𝑓 𝑥 
ୀଵ + 𝐸ఛ 𝜖 

ୀଵ
ଶ     

+ 1𝑘ଶ 𝑉𝑎𝑟ఛ 𝑓 𝑥 
ୀଵ + 𝑉𝑎𝑟ఛ 𝜖 

ୀଵSince,∑ 𝑓 𝑥 ୀଵ is a constant:𝐸𝑃𝐸 𝑥 = 𝜎ଶ + 𝑓 𝑥 − 1𝑘𝑓 𝑥 
ୀଵ

ଶ + 𝑘𝜎ଶ𝑘ଶ
𝑬𝑷𝑬𝒌 𝒙𝟎 = 𝝈𝟐 + 𝒇 𝒙𝟎 − 𝟏𝒌𝒇 𝒙 𝒍𝒌

𝒍ୀ𝟏
𝟐 + 𝝈𝟐𝒌                     (𝟐.𝟒𝟕)





Compare:
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