[, regularization
algorithmes

Machine Learning: a probabilistic perspective: Kevin P
Murphy (Chapter 13.3.2, 13.4)



In the case of linear regression, the £; objective becomes

N
1
flw) = —F{yi—(wwaxi))EHllwlll (13.35)
i=1
= RSS(w) + X||w]|y (13.36)

where A’ = 2Ag?. This method is known as basis pursuit denoising or BPDN (Chen et al. 1998)
min R55(w) + A||wl| (13.37)

We can rewrite this as a constrained but smooth objective (a quadratic function with linear
constraints):
min RS5(w) st. ||w|[{ < B (13.38)

W

where B is an upper bound on the #;-norm of the weights: a small (tight) bound B corresponds
to a large penalty ), and vice versa.” Equation 13.38 is known as lasso, which stands for “least

absolute shrinkage and selection operator” (Tibshirani 1996).
Similarly, we can write ridge regression

min RSS{w) + A||w]||3

or as a bound constrained form:

min RSS(w) st ||w]lz < B



In Figure 13.3, we plot the contours of the RSS objective function, as well as the contours of
he {5 and £; constraint surfaces. From the theory of constrained optimization, we know that
he optimal solution occurs at the point where the lowest level set of the objective function
infersects the constraint surface (assuming the constraint is active). It should be geometrically

clear that as we relax the constraint B, we “grow” the £; “ball” until it meets the objective; the
corners of the ball are more likely to intersect the ellipse than one of the sides, especially in high
dimensions, because the corners “stick out” more. The corners correspond fo sparse solutions,
vhich lie on the coordinate axes. By contrast, when we grow the £; ball, it can intersect the
objective at any poinf; there are no “corners”, so there is no preference for sparsity.




XTX =1 In this cﬂs;e;, the R3S is gi'u:en bv
RSS(w) = [y—Xw|l=yy+v X Xw 2wl X'y [13.59)

= const 4+ Z w;z_: — ZZ Z WL ik Wi [13.60)
k I 2

&0 we see this factorizes into a sum of terms, one per dimension. Hence we can write down the
AP and ML estimates analytically, as follows:

# MLE The OLS solufion is given by

ﬁELS _ :{1;, 3 [13.61)

where x.;. is the &'th column of X. This follows trivially from Equation 13.60. We see

that EELS is just the orthogonal projection of feature % onto the response vector (see
Section 7.3.2).

# Ridge One can show that the ridge estimate is given by

ridge ?'EJELS
I = 2 J.62
s T+ A 13.62)
# Lasso From Eguation 13.55, and using the fact that ap = 2 and @ELS = o/ 2, we have
r - - "}"
lﬁﬁfam = EIE‘E{{WELS} ([WELS| — E) (13.63)
+

This corresponds to soft thresholding, shown in Figure 13.5(a).

¢ Subset selection If we pick the best & features using subset selection, the parameter
estimate is as follows

LS = LS
- (i if rank(|w; =) < K
et _ { 0 otherwise (13.64)

where rank refers to the location in the sorted list of weight magnitudes. This corresponds
to hard thresholding, shown in Figure 13.5(b).




Optimal solution to LASSO

* Let the lasso problem be defined as
f(w) =RSS(w) + /1||w||1

Where RSS(W) = || Xw — I|
It can be shown that (Exercise 13.1)
—RSS (w) = a;jw;j — ¢j, where

j
_Zz U’:Z“xj”

— .. o — T . . . f— T. .
G = 22 xij (i = wljxi ) = 2x]1;

where w_; is w without the component] and similarly for x; _;,
= Vi~ W—]xl —J

ow ;



Adding in the penalty term, we find that the subderivative! is given
by
0

oW —f(w) = (ajw; — ¢;) + Aaw] |lw|

({ajwj —Cj — /1} if wi<0 )
[—Cj — A,—Cj +A] lf W] =0
\ajo—Cj+)l lfW]>0}

A
Y

In the second case, when w; = 0, —1 < Cj < A.

. . a
Thus, depending on the value of ¢;, the solution to Wf(w) =0 can
occur at 3 different values of w; ’

Subderivatives are computed because of the discontinuity at the
corners imposed by constraints causing certain Wj’s going to 0.

1. Subderivative defined in Murphy — Sec. 13.3.2



Soft thresholding

( Cj + /1 ) \
if ¢; <-4
a;
Wj(cj) = 4 0 ifc¢e[-AA4];
Cj — A f N /1
if c;
\ a; J
This can be written as
. . ¢ A
w; = sof 2w

€

where Soft(— —) = sign (CJ) ( <

(21-2), = max(([2

aj
soft thresholding

_i)
aj +

c] A

aj aj

——),O), the positive part. This is called



Soft thresholding vs hard
thresholding

This is illustrated in Figure 13.5(a), plotting w; vs ¢c;. The black line is the
line w; = ¢;/a; corresponding to the least squares fit.

The red line, which represents the regularized estimate shifts the red line
down (or up) by A, except when —1 < ¢ < 1in which case it sets w; = 0.

ik

* Figure 13.5 Left: soft thresholding. The flat region
is the interval [-A, +A]. Right: hard thresholding.



Hard thresholding

« By contrast, in Figure 13.5(b), hard
thresholding is illustrated. This sets values of
w; to 0 if =1 < ¢; < 4, but it does not shrink the
values of w; outside of this interval

« The slope of the soft thresholding line does not
coincide with the diagonal, which means that
even large coefficients are shrunk towards zero;
consequently lasso is a biased estimator.

« This is undesirable, since if the likelihood
indicates (via ¢;) that the coefficient w; should
be large, we do not want to shrink it.



[regularization algorithms

» The various algorithms solving [,regularization
problems are

 Coordinate descent
 LARS
 Proximal Gradient



Coordinate descent algorith,

* Lasso objective has the form
f(w) = RSS(w) + /1||w||1

Where RSS(w) = HXW — yl‘z2

* The coordinate descent aims at obtaining w; one at
a time

* In particular, we can solve for the j'th coefficient
with all the others held fixed.



- Coordinate descent algorithm

Algorithm 13.1: Coordinate descent for lasso (aka shooting algorithm)

1
2
3
i

B
i

-1

Initialize w = (X7 X + AT} Xy,

repeat

for j=1....,0do

I:['_']' = EZ?:I 1';_?_']? |

e = 20 Ta( — W X+ w5Zig) 5

.:'. .
W = snﬁ{%: ﬁ}'

until converged;

Disadvantage : Since the variables are solved one at a time,

the process is time consuming.
Thus, methods such as LARS and proximal gradient are used




Proximal gradient method

* Consider a convex objective function of the form
f(w) = L(w) + R(w)

where L(w), representing loss, is convex and differentiable,
whereas R(w), representing regularization, is convex and
maybe non-differentiable

* Solution is to split the functions individually to solve the loss
function and the regularization function (using proximal
gradient method).

* Named “proximal” because the non-smooth function is solved
using its ‘proximity operator’



Proximal operator

* For example, consider L(w) = RSS(w), let RSS(w) =
2
|ly — xwl|]

* For the the design matrix X = I, the objective function
becomes f(w) = R(w) + %‘Iw — y||2

* The minimizer of the above function is given by the proximal
operator (proxgy(w)) for the convex set R.

. 1 2
proxg(y) = argmin, (R(Z) + > “Z — )’”2>

* |Intuitively, a point that minimizers R and also close (proximal)
to wy is returned



Examples of Proximal operators

*If R(w) = /1||w| _» the proximal operator is given
by component wise soft thresholding
proxgr(w) = soft(w, 1)

* If R(w) = /1||w| . the proximal operator is given
by component wise hard thresholding
proxg(w) = hard(w,V221)

 If R(w) = I-(w), the proximal operator is given by
the projection on to the set C:

. 2 .
proxy(w) = argmin,ec|lz — wi|: = proje(w)



Examples of Projection
(proximal) operators

* For some convex sets, it is easy to compute the
projection operator.

* For example, to project onto the rectangular set
defined by the box constraints C = {w:l; < w; <

u;}, we can use

. L w; < \
projc(w); = 5 Wi l S WS U,
\ W wj =y )



Examples of Projection
(proximal) operators

* To project onto the Euclidean ball
C ={w: ||w||2 < 1} we can use

(W )

||w||2>1

proje(w) = 5 [Iwll, ’
v Wl <1

* To project onto the 1-norm ball
C = {w: ||w||1 < 1} we can use
proj-(w) = soft(w, 1), where

A=0, if||w||1S10nd
A is the soln of: Z?=1 max(|wj| — A, O) = 1, otherwise



Proximal gradient method

Proximal operator used in gradient descent routine
Consider the function f(w) = L(w) + R(w)

Basic idea: minimize a simple quadratic approximation to the loss
function, centered on w* for kt" iteration.

Consider the Taylor series expansion of L(z)

1
L) = L(W*) + gl (z — w¥) + 5] |2 - wk”z
Ztk 2

where g, = VL(w¥) and a simple approximation of Hessian of the
loss V2L(w") = tll
k

Thus,
1
wktl = argmin,(R(z) + L(W*) + gi (z —w") + o “Z — wk”j)
k

L(z)



Proximal gradient method

* Dropping the terms independent of z, multiplying by t;, and
rewriting the above equation in terms of proximal operator for
kt" iteration:

k+1 : 1 2
= argmin, [th(z) + §|IZ — uk||2] = prox., gr(uy)

U= w — tp gy
gx = VL(WH)

2
(Verify : gi (z — wk) +$“Z—Wk”2 = %“Z—uk”z)

w

* If R(w) = 0, this is equivalent to gradient descent.

* If R(w) = I-(w), this method is equivalent to projected gradient
descent

* IfR(w) = A| |lw| |1, the method is known as iterative soft thresholding
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