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Optimal solution to LASSO

• Let the lasso problem be defined as
𝑓 𝒘 = 𝑅𝑆𝑆 𝒘 + 𝜆 𝒘

1

Where 𝑅𝑆𝑆 𝒘 = 𝑿𝒘− 𝒚
2

2

It can be shown that (Exercise 13.1)
𝜕

𝜕𝑤𝑗
𝑅𝑆𝑆 𝒘 = 𝑎𝑗𝑤𝑗 − 𝑐𝑗 , where

𝑎𝑗 = 2 
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𝑁
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𝑇 𝑥𝑖,−𝑗 =2𝐱:,𝑗

𝑇 𝒓𝑗

where 𝒘−𝑗 is 𝒘 without the component 𝑗 and similarly for 𝑥𝑖,−𝑗, 
𝒓𝑗 = 𝑦𝑖 −𝒘−𝑗

𝑇 𝑥𝑖,−𝑗



• Adding in the penalty term, we find that the subderivative1 is given
by

𝜕

𝜕wj
f 𝐰 = ajwj − cj + 𝜆

𝜕

𝜕wj
𝒘

1

=

𝑎𝑗𝑤𝑗 − 𝑐𝑗 − 𝜆 𝑖𝑓 𝑤𝑗 < 0

−𝑐𝑗 − 𝜆,−𝑐𝑗 + 𝜆 𝑖𝑓 𝑤𝑗 = 0

𝑎𝑗𝑤𝑗 − 𝑐𝑗 + 𝜆 𝑖𝑓 𝑤𝑗 > 0

• In the second case, when 𝑤𝑗 = 0, −𝜆 ≤ 𝑐𝑗 ≤ 𝜆.

• Thus, depending on the value of 𝑐𝑗, the solution to 
𝜕

𝜕wj
f 𝐰 =0 can 

occur at 3 different values of 𝑤𝑗
• Subderivatives are computed because of the discontinuity at the 

corners imposed by constraints causing certain 𝑤𝑗’s going to 0.

1. Subderivative defined in  Murphy – Sec. 13.3.2



 𝑤𝑗 𝑐𝑗 =

𝑐𝑗 + 𝜆

𝑎𝑗
𝑖𝑓 𝑐𝑗 < −𝜆

0 𝑖𝑓 𝑐𝑗 ∈ [−𝜆, 𝜆]

𝑐𝑗 − 𝜆

𝑎𝑗
𝑖𝑓 𝑐𝑗 > 𝜆

This can be written as
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−
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, 0 , the positive part.  This is called 

soft thresholding

Soft thresholding



Soft thresholding vs hard 
thresholding

• Figure 13.5 Left: soft thresholding. The flat region 
is the interval [-λ, +λ]. Right: hard thresholding.

This is illustrated in Figure 13.5(a), plotting  𝑤𝑗 𝑣𝑠 𝑐𝑗. The black line is the 

line 𝑤𝑗 = 𝑐𝑗/𝑎𝑗 corresponding to the least squares fit. 

The red line, which represents the regularized estimate shifts the red line 

down (or up) by λ, except when −𝜆 ≤ 𝑐 ≤ 𝜆 in which case it sets 𝑤𝑗 = 0.



Hard thresholding

• By contrast, in Figure 13.5(b), hard 
thresholding is illustrated. This sets values of 
𝑤𝑗 to 0 if −𝜆 ≤ 𝑐𝑗 ≤ 𝜆, but it does not shrink the 
values of 𝑤𝑗 outside of this interval 

• The slope of the soft thresholding line does not 
coincide with the diagonal, which means that 
even large coefficients are shrunk towards zero; 
consequently lasso is a biased estimator. 

• This is undesirable, since if the likelihood 
indicates (via 𝑐𝑗) that the coefficient 𝑤𝑗 should 
be large, we do not want to shrink it.



𝑙1regularization algorithms

• The various algorithms solving 𝑙1regularization 
problems are

• Coordinate descent 

• LARS

• Proximal Gradient



Coordinate descent algorith,

• Lasso objective has the form
𝑓 𝒘 = 𝑅𝑆𝑆 𝒘 + 𝜆 𝒘

1

Where 𝑅𝑆𝑆 𝒘 = 𝑿𝒘 − 𝒚
2

2

• The coordinate descent aims at obtaining 𝑤𝑗 one at 
a time

• In particular, we can solve for the j’th coefficient 
with all the others held fixed.



Coordinate descent algorithm

Disadvantage :  Since the variables are solved one at a time, 
the process is time consuming.
Thus, methods such as LARS and proximal gradient are used



Proximal gradient method

• Consider a convex objective function of the form

𝑓 𝒘 = 𝐿 𝒘 + 𝑅 𝒘

where 𝐿 𝒘 , representing loss, is convex and differentiable, 

whereas 𝑅 𝒘 , representing regularization, is convex and 

maybe non-differentiable

• Solution is to split the functions individually to solve the loss 

function and the regularization function (using proximal 

gradient method).

• Named “proximal” because the non-smooth function is solved 

using its ‘proximity operator’



Proximal operator

• For example, consider 𝐿 𝒘 = 𝑅𝑆𝑆 𝒘 , let 𝑅𝑆𝑆 𝒘 =

𝒚 − 𝑿𝒘
2

2

• For the the design matrix 𝑋 = 𝐼, the objective function 

becomes 𝑓 𝒘 = 𝑅 𝒘 +
1

2
𝒘− 𝑦

2

2

• The minimizer of the above function is given by the proximal 
operator (𝒑𝒓𝒐𝒙𝑹(𝒘)) for the convex set R.

𝑝𝑟𝑜𝑥𝑅 𝒚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑧 𝑅 𝑧 +
1

2
𝑧 − 𝒚

2

2

• Intuitively, a point that minimizers 𝑅 and also close (proximal) 
to 𝒘𝒚 is  returned



Examples of Proximal operators

• If 𝑅 𝒘 = 𝜆 𝒘
1

, the proximal operator is given 

by component wise soft thresholding
𝑝𝑟𝑜𝑥𝑅 𝒘 = 𝑠𝑜𝑓𝑡(𝒘, 𝜆)

• If 𝑅 𝒘 = 𝜆 𝒘
0

, the proximal operator is given 

by component wise hard thresholding
𝑝𝑟𝑜𝑥𝑅 𝒘 = ℎ𝑎𝑟𝑑(𝒘, 2𝜆)

• If 𝑅 𝒘 = 𝐼𝐶(𝒘), the proximal operator is given by 
the projection on to the set 𝐶:

𝑝𝑟𝑜𝑥𝑅 𝒘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑧∈C 𝑧 − 𝒘
2

2
= 𝑝𝑟𝑜𝑗𝐶(𝒘)



Examples of Projection 
(proximal) operators

• For some convex sets, it is easy to compute the 
projection operator. 

• For example, to project onto the rectangular set 
defined by the box constraints 𝐶 = {𝒘: 𝑙𝑗 ≤ 𝑤𝑗 ≤
𝑢𝑗}, we can use

𝑝𝑟𝑜𝑗𝐶 𝒘 𝑗 =

𝑙𝑗 𝑤𝑗 ≤ 𝑙𝑗
𝑤𝑗 𝑙𝑗 ≤ 𝑤𝑗 ≤ 𝑢𝑗
𝑢𝑗 𝑤𝑗 ≥ 𝑢𝑗



Examples of Projection 
(proximal) operators

• To project onto the Euclidean ball 

𝐶 = {𝒘: 𝒘
2
≤ 1} we can use

𝑝𝑟𝑜𝑗𝐶 𝒘 =

𝒘

𝒘
2

𝒘
2
> 1

𝒘 𝒘
2
≤ 1

• To project onto the 1-norm ball 

𝐶 = {𝒘: 𝒘
1
≤ 1} we can use

𝑝𝑟𝑜𝑗𝐶 𝒘 = soft 𝒘, 𝜆 , where 

𝜆 = 0, if 𝒘
1
≤ 1 and

𝜆 is the soln of:  𝑗=1
𝐷 max 𝑤𝑗 − 𝜆, 0 = 1,   otherwise



Proximal gradient method
• Proximal operator used in  gradient descent routine

• Consider the function 𝑓 𝒘 = 𝐿 𝒘 + 𝑅 𝒘

• Basic idea: minimize a simple quadratic approximation to the loss 
function, centered on 𝒘𝑘 for 𝑘𝑡ℎ iteration.

• Consider the Taylor series expansion of L 𝑧

𝐿 𝑧 = 𝐿 𝒘𝑘 + 𝑔𝑘
𝑇 𝑧 − 𝒘𝑘 +

1

2𝑡𝑘
𝑧 − 𝒘𝑘

2

2

where 𝑔𝑘 = 𝛻𝐿(𝒘𝑘) and a simple approximation of Hessian of the 

loss    𝛻2𝐿(𝒘𝑘) ≈
1

𝑡𝑘
𝐼

Thus, 

𝒘𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑧(𝑅 𝑧 + 𝐿 𝒘𝑘 + 𝑔𝑘
𝑇 𝑧 − 𝒘𝑘 +

1

2𝑡𝑘
𝑧 − 𝒘𝑘

2

2
)

𝐿 𝑧



Proximal gradient method
• Dropping the terms independent of 𝑧, multiplying by 𝑡𝑘 and 

rewriting the above equation in terms of proximal operator for 
𝑘𝑡ℎ iteration:

𝒘𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑧 𝑡𝑘𝑅 𝑧 +
1

2
𝑧 − 𝑢𝑘 2

2
= 𝑝𝑟𝑜𝑥𝑡𝑘𝑅 𝑢𝑘

𝑢𝑘= 𝒘𝑘 − 𝑡𝑘𝑔𝑘
𝑔𝑘 = 𝛻𝐿(𝒘𝑘)

(Verify : 𝑔𝑘
𝑇 𝑧 − 𝒘𝑘 +

1

2𝑡𝑘
𝑧 − 𝒘𝑘

2

2
=

1

2𝑡𝑘
𝑧 − 𝑢𝑘 2

2
)

• If 𝑅 𝒘 = 0, this is equivalent to gradient descent. 

• If 𝑅 𝒘 = 𝐼𝐶 𝒘 , this method is equivalent to projected gradient 
descent

• If 𝑅 𝒘 = 𝜆 𝒘
1
, the method is known as iterative soft thresholding
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