
Empirical Risk 
Minimization



Expected and Empirical Error
Given a function f, a loss function V, and a probability
distribution µ over Z = X x Y, the expected or true error of f
is: 𝐼 𝑓 =  න 𝑉 𝑦, 𝑓 𝑥 𝑑𝜇(𝑧)௭
In general 𝜇 is unknown. Thus, given n data points the
empirical error of f is𝐼௦ 𝑓 = 1𝑛 ෍ 𝑉(𝑦௜, 𝑓(𝑥௜))



ERM
Given a training set S and a function space ℋ, empirical risk
minimization (Vapnik introduced the term) is the class of
algorithms that look at S and select 𝑓ௌ as𝑓ௌ = arg min௙∈ு 𝐼ௌ[𝑓]
For example in linear regression ERM, loss function is V(z) =
(f(x)−y)2 and ℋ is space of linear functions f = ax.



Generalization and Well-posedness
of Empirical Risk Minimization

For ERM to represent a “good” class of learning algorithms,
the solution should

• Generalize - how accurately an algorithm is able to predict
outcome values for previously unseen data.

• Exist, be unique and – especially – be stable (well-
posedness).



ERM and generalization: given 
a certain number of samples...



...suppose this is the “true” 
solution...



... but suppose ERM gives this 
solution.



ERM solution is not generalized: Solution does not 
accurately model the true outcomes



ERM and stability: given 10 
samples...



...we can find the smoothest interpolating 
polynomial (which degree?).



But if we perturb the points 
slightly...



...the solution changes a lot!



If we restrict ourselves to 
degree two polynomials...



...the solution varies only a small 
amount under a small 
perturbation.



Regularization



Regularized least squares (RLS) is a family of methods for 
solving the least-squares problem while using regularization 
to further constrain the resulting solution.



Regularization
General form min௙∈ℋ ෍ 𝑉(𝑦௜, 𝑓(𝑥௜)) + 𝜆𝐽(𝑓)

Where J(f) is penalty functional and ℋ is the space of 
functions on which J(f) is defined



Tikhonov Regularization
• Tikhonov regularization ensures well-posedness. eg
existence, uniqueness and especially stability of the solution

• Tikhonov regularization ensures generalization - how
accurately the outcome values for previously unseen data
are predicted.



Tikhonov Regularization
Suppose the problem is represented as𝑋𝑓 = 𝑌
Ordinary LS minimizes 𝑌 − 𝑋𝑓 ଶ
In this case, the solution is 𝑓መ = (𝑋்𝑋)ିଵ𝑋்𝑌 
In Tikhonov Regularization, we minimize𝑌 − 𝑋𝑓 ଶ + Γ𝑓 ଶ
Where, Γ is the Tikhonov matrix. In this case the solution is 
given as 𝑓መ = 𝑋்𝑋 + Γ்Γ ିଵ𝑋்𝑌𝛽መ௥௜ௗ௚௘ = 𝐗்𝐗 + 𝜆 𝐈 ିଵ𝐗்𝒚, (3.44)



Image Restoration - Example

The problem is to find the true (original) image, I, given:
◦ the blurred image, 𝐽
◦ Blurring operator, 𝐻
such that, 𝐽 = 𝐻𝐼 + 𝜖, where 𝜖 is the noise in data.

Deblurring

Blurred Image, 𝐽 Restored Image, 𝐼



Image Restoration - Example
Generalized least square solution (OLS) is given as:
◦ 𝐼መ = 𝐻ିଵ𝐽
◦ 𝐼መ = 𝐻்𝐻 ିଵ𝐻்𝐽

Inverse
filtering

𝐽 𝐼መ



Image Restoration - Example
Using Tikhonov Regularization:
◦ 𝐼መ = 𝐻்𝐻 + 𝛼ଶ𝐿்𝐿 ିଵ𝐻்𝐽, where Γ = 𝛼𝐿

Using Tikhonov
Regularization

𝐽 𝐼መ



Early Stopping



Early Stopping
• To regularize non-parametric regression problem encountered in machine
learning.

• Nonparametric regression is a category of regression analysis in which the
predictor does not take a predetermined form but is constructed according
to information derived from the data.

• One common choice of regression function is to use functions from a
Reproducing Kernel Hilbert Space (RKHS).

• RKHS is infinite dimensional, in which they can supply solutions that overfit
the training sets of arbitrary size.

• In these cases, regularization is important.

• One way to regularize non-parametric regression problems is to apply an
early stopping rule to an iterative procedure such as gradient descent.



Gradient Descent
The components of 𝑓 are updated in the direction of the 
negative gradient: 𝑓ఛାଵ = 𝑓ఛ − 𝛿𝛻𝐸 𝑓ఛ
where 𝜏 is the iteration number, 𝛿 is the step size and 𝐸 . is 
an error function

Early stopping rule are based on the analysis of upper
bounds of the generalization error as a function of iteration
number.



Example plots showing 
performance of Early Stopping 



Steps in Validation-based Early 
Stopping

1. Split the training data into a training set and a validation 
set, e.g. in a 2-to-1 proportion.

2. Train only on the training set and evaluate the per-
example error on the validation set once in a while, e.g. 
after every fifth epoch.

3. Stop training as soon as the error on the validation set is 
higher than it was the last time it was checked.

4. Use the weights the network had in that previous step as 
the result of the training run.





Structural Risk 
Minimization



SRM
• ERM suggests to minimize the empirical risk at
any cost

• SRM looks for the optimal relationship between
• the amount of empirical data
• the quality of approximation of the data by the function

chosen from a given set of functions
• the value that characterizes capacity of a set of functions



Result 6.1 (Vapnik’s Book)
With probability at least 1 − 𝜂 simultaneously for all functions from the set of 
totally bounded functions 0 ≤ 𝑄 𝑧, 𝛼 ≤ 𝐵, 𝛼 ∈ Λ, with finite VC dimension ℎ the following (additive) inequality holds true:𝑅 𝛼 ≤ 𝑅௘௠௣ 𝛼 + 𝐵ε 𝑙2 1 + 1 + 4𝑅௘௠௣ 𝛼𝐵ε 𝑙
Where 𝑅 𝛼 = ׬  𝑄 𝑧, 𝛼 𝑑𝐹(𝑧) , 𝑧 ∈ 𝑍, is the risk function𝑅௘௠௣ 𝛼 is the empirical risk functionε 𝑙 = 4 ௛ ୪୬మ೗೓ ାଵ ି୪୬ആర௟ , 𝑙 is the number of training samples 



SRM
• If it happens that ௟௛ is large, then the value of actual risk is
determined by the value of empirical risk. Therefore to minimize
actual risk one minimizes the empirical risk.

• However, if ௟௛ is small, a small value of empirical risk 𝑅௘௠௣(𝛼) does
not guarantee a small value of the actual risk.
• The first term in inequality depends on a specific function of the
set of functions, while for a fixed number of observations the
second term depends mainly on the VC dimension of the whole set
of functions.
• Thus, to minimize both terms simultaneously, VC dimension is
made controlling variable.



Imposing Structure
• Impose the structure 𝒮 on the set 𝑆 of functions𝑄 𝑧, 𝛼 , 𝛼 ∈ Λ
• The set of nested subsets of functions:𝑆ଵ ⊂ 𝑆ଶ ⊂ ⋯ ⊂ 𝑆௠
where, 𝑆௞ = {𝑄 𝑧, 𝛼 : 𝛼 ∈ Λ௞} and𝑆 =  ራ 𝑆௞௞
• The sequence of values of VC dimensions ℎ௞ for the
elements 𝑆௞ of the structure 𝒮 is non-decreasing with
increasing 𝑘 ℎଵ ≤ ℎଶ ≤ ⋯ ≤ ℎ௠



SRM Induction Principle
“To provide the given set of functions with an admissible
structure and then to find the function that minimizes
guaranteed risk over given elements of the structure.”



Steps in SRM
1. Using a priori knowledge of the domain, choose a class

of functions , such as polynomials of degree n , neural
networks having n hidden layer neurons, a set of splines
with n nodes or fuzzy logic models having n rules .

2. Divide the class of functions into a hierarchy of nested
subsets in order of increasing complexity. For example,
polynomials of increasing degree.

3. Perform empirical risk minimization on each subset (this
is essentially parameter selection).

4. Select the model in the series whose sum of empirical
risk and VC confidence is minimal.
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