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Abstract: This study describes a new technique of unsupervised domain adaptation based on eigenanalysis in kernel
space, for the purpose of categorisation tasks. The authors propose a transformation of data in source domain, such
that the eigenvectors and eigenvalues of the transformed source domain become similar to that of the target domain.
They extend this idea to the reproducing kernel Hilbert space, which enables to deal with non-linear transformation of
source domain. They also propose a measure to obtain the appropriate number of eigenvectors needed for
transformation. Results on object, video and text categorisations tasks using real-world datasets show that the
proposed method produces better results when compared with a few recent state-of-art methods of domain adaptation.
1 Introduction

Enormous amount of data generated everyday poses a challenge to
analyse the data efficiently. Insufficient amount of labelled data in
one dataset is overcome using the knowledge from the labelled
examples of another dataset of a similar nature. In this paper, we
deal with the problem of domain adaptation (DA), where
knowledge from one dataset having a particular data distribution is
used to improve classification performance on another dataset
having a different data distribution.

DA has gained an increasing amount of attention in the recent
past. In real-world scenarios, where the distributions of the
training and the testing samples differ, DA can be also used to
improve the performance of any statistical task (e.g. classification,
regression etc.). The pair of domains from which the training and
test samples are separately obtained, are termed as the source and
target domains. By applying DA, one can use the training samples
available from source domain to improve the performance of a
statistical learning task to be done on testing samples obtained
from the target domain.

To estimate the distribution of the target domain, few training
samples must also be considered from the target domain. On the
basis of the type of training samples available from the target
domain, there are two categories of DA: (i) unsupervised – a large
number of unlabelled samples and (ii) supervised – only a few
number of labelled samples are available. Our work focuses on the
former category of DA.

In this paper, we propose a technique of unsupervised DA using
the eigenvectors and eigenvalues (EDA) of both the source and
target domains. We first find an optimal linear transformation
(termed EDA-L) of data in source domain such that the
transformed source and target domains have similar eigenvectors
and eigenvalues. Moreover, for non-linear projection of data, we
use the concept of reproducing kernel Hilbert space (RKHS), and
estimate a suitable transformation (termed EDA-K) in the
(reduced) sub-space. An optimal dimension of the sub-space is
also derived using an optimisation function. The method is fast, as
eigendecomposition in lower dimensional sub-space (for EDA-L)
and use of kernel Gram matrix (for EDA-K) help to reduce the
time complexity in case of very large dimensional datasets. We
evaluate our proposed method on real-world datasets for tasks,
such as, object, video and text categorisation.

The rest of the paper is organised as follows. Section 2 briefly
describes the related work published in literature. Section 3
describes the proposed methods of DA: using a linear
transformation, which is later extended to a non-linear
transformation with the help of RKHS. Section 4 describes the
experimental results and Section 5 concludes the paper.
2 Related works

There has been a lot of work on DA in the recent past with various
applications in the fields of computer vision, natural language
processing (NLP) and text processing [1, 2]. A commonly used
statistical approach is to estimate a domain invariant sub-space,
such that the disparity (i.e. divergence) in the distributions of two
domains is minimised in the projected space. Pan et al. [3] and
Gretton et al. [4] have used this concept to build suitable
sub-spaces. Most of these works perform the projection in RKHS
to build a domain-invariant sub-space. Howard and Jebara [5]
aligned the kernel Gram matrices of source and target domains
such that the distance between two domains is reduced in RKHS.

Gopalan et al. [6] have considered the geodesic path between the
principal components of source and target domain data in the
Grassmann manifold, in his proposed method of Geodesic Flow
Sampling (GFS). The intermediate sampled points on the path give
an estimate of the continuous change of the properties of sub-spaces
of source and target domains. This was later enhanced by Gong et
al. [7] in his proposed method of Geodesic Flow Kernel (GFK),
where an infinite number of intermediary sampled points are
considered on the geodesic path, estimated by the geodesic flow
kernel. In our earlier work of sequential domain invariant sub-space
(SDIS) [8] method, we had considered a finite number of domain
invariant sub-spaces lying along a suitable path on the Grassmann
manifold, between the pair of sub-spaces spanning the source and
the target domains in RKHS, to find an optimal feature set for DA.
In another notable work, Fernando et al. [9] calculated a sub-space
using eigenvectors of both the domains, such that the basis vectors
of transformed source and target domains are aligned. Application
of DA for improved results of object categorisation and video
classification has also been discussed in [10, 11].
3 Proposed method

The proposed method uses eigenanalysis to minimise the disparity in
distributions between the two domains. We aim to transform the
1



source domain in such a way that the eigenvectors and values of the
covariance matrix of the transformed source domain are similar to
that of the target domain. We extend this idea of transformation of
source domain in RKHS to deal with non-linear transformation
of data.

3.1 EDA-L: DA using linear transformation

Let X and Y be the data in source and target domains, with nX and nY
number of instances, respectively, and X̃ be the transformed source
domain. Let Xi and Yj represent the ith and jth instances in X and Y,
respectively. Let the eigenvectors and eigenvalues of the covariance
matrices of X and Y be denoted as (U , L) and (V, Γ) respectively. L
and Γ are diagonal matrices whose ith diagonal element represents
the ith largest eigenvalue of the covariance matrices of X and Y,
respectively. The ith column in U and V represents the eigenvector
corresponding to the ith largest eigenvalue in L and Γ, respectively.

The proposed method needs an optimal dimension (p*) of the
transformed source domain which is estimated using a
dissimilarity criterion. Next, the transformed source domain is
obtained by a linear transformation of data, such that the
eigenvectors and the eigenvalues of the transformed source
domain are similar to that of the target domain. Since the principal
components of a dataset along with their spectrum
(dimension-wise) is an estimate of the distribution of the data, we
can infer that the disparity between the distributions of the source
and target domains is minimised after the transformation.
Generally, p* is less than the dimension of X or Y, and hence we
consider the first p* largest eigenvalues and the corresponding
eigenvectors of both the source and target domains during
transformation. The two steps of EDA-L are described below.
3.1.1 Finding the optimal dimension: Let Up and Vp represent
the matrices whose columns consist of the first p eigenvectors
corresponding to the p largest eigenvalues. Hence, Up and Vp
consists of the first p columns of U and V, respectively. Similarly,
let Lp and Γp denote the diagonal sub-matrices containing the first
p largest eigenvalues as the diagonal elements. To find the optimal
number of eigenvectors and eigenvalues to be considered for
transforming the data in source domain, we estimate the square of
the distance between sub-spaces, as given by

d2proj Up, V p

( )
=

∑p
i=1

sin2ui = p−
∑p
i=1

cos2ui (1)

where θi, i = 1, 2, … p are the principal angles between these
sub-spaces. The span of sub-spaces Up and Vp are given by
span

(
Up

) = UpU
T
p and span

(
V p

) = V pV
T
p , respectively, and∑p

i=1 cos
2ui = kspan

(
Up

)
, span

(
V p

)
l. Let tr(A) denote the trace of

a matrix A. Then, the square of the projection distance (as used in
[7, 8, 12]) is expressed as

d2proj
(
Up, V p

) = p− tr
(
UpU

T
pV pV

T
p

)
= p− tr

(
VT

pUpU
T
pV p

)
(2)

The appropriate dimension of the optimal sub-space is solved by
maximising the following function

p∗ = argmax
p

1

p
d2proj

(
Up, V p

)
(3)

= argmax
p

1

p
tr
(
VT

pUpU
T
pV p

)
(4)

The term 1/p avoids the bias selection for a very low value of p* (i.e.
p* = 1) as the optimal dimension of the sub-space to be considered.
This concept (4) is similar to the sub-space disagreement measure
[7], where the aim is to consider the optimal dimension of the
2

sub-space such that the source and target domains are closest to
each other in the Grassmann manifold.

3.1.2 Estimating the transformed source domain: Once we
obtain the optimal value of p*, we estimate the optimal sub-space of
dimension p*. If the transformed source domain data is given by

X̃ = XU p∗L
−1/2
p∗ G1/2

p∗ V
T
p∗ (5)

then the eigenvectors and eigenvalues of X̃ and Y are the same (see
Lemma 1). Using (5), a linear transformation of the source domain
data reduces the difference in distributions between the two
domains by: (i) aligning their principal component vectors and (ii)
making the eigenspectrums identical.

Lemma 1: Given (Û , L̂) and (V̂ , Ĝ) as the pairs of eigenvectors,
eigenvalues of the covariance matrices of two datasets A and B,
then the eigenanalysis of the covariance matrix of
AÛ

ˆ
L−1/2Ĝ

1/2
V̂T is the same as that of B.

Proof: The covariance matrices of datasets A and B can be expressed
as ÛL̂ÛT and V̂ ĜV̂ T , respectively. Now, the covariance matrix of

Ã = AÛL̂
−1/2

Ĝ
1/2

V̂
T

( )
is given as

Ã
T
Ã = V̂ Ĝ1/2L̂−1/2ÛTATAÛL̂−1/2Ĝ1/2V̂ T (6)

= V̂ Ĝ1/2L̂−1/2ÛT ÛL̂ÛT ÛL̂−1/2Ĝ1/2V̂ T (7)

= V̂ ĜV̂ T (8)

This shows that the eigenvectors and eigenvalues of the covariance
matrix of Ã are same as that of B. □

This process (5) must be followed by shifting of X̃ such that its
mean is identical to that of the target domain data Y. This is
necessary to align the spatial arrangements of data in both the
domains, which improves the classification accuracy.

A similar method had earlier been proposed for sub-space
alignment (SA) [9], where instead of transforming the data the
eigenvectors of source domain are rotated to align with that of the
target domain. However, the eigenspectrum was not considered
and thus the range of the corresponding feature values in
transformed source and target domains were not coincident. While
the proposed method transforms the source domain data such that
the underlying sub-space aligns with that of the target domain, SA
first aligns the two sub-spaces and then projects the data onto
respective sub-spaces. It can be analytically verified that the
sub-space spanning the projected source domain data will be
different from that of the sub-space spanning the target domain.

The proposed method of EDA-L (5) thus works best for datasets
having Gaussian-like distributions in the feature space. We extend
EDA-L to RKHS to handle non-linear transformation of data,
which is termed as EDA-K. In higher dimensional kernel space,
the main advantages are: (i) non-linear transformations are
implicitly incorporated and (ii) datasets having non-Gaussian
distributions are less affected. The details of EDA-K are explained
in the next sub-section.

3.2 EDA-K: extension of EDA-L to RKHS

EDA-L performs linear transformation of the source domain data. To
handle non-linear transformation of data, we extend the formulation
to RKHS. If Φ(.) is a kernel function, then in kernel space the source
and target domains are denoted by Φ(X ) and Φ(Y ), respectively. Let
KXX and KYY be the Gram matrices of Φ(X ) and Φ(Y ), respectively
(i.e. KXX =Φ(X )Φ(X )T, KXY =Φ(X )Φ(Y )T, KYY =Φ(Y )Φ(Y )T and
KYX = KT

XY ). Let UΦ and VΦ be the principal components of

Φ(X ) and Φ(Y ). Also, let CF, LF
( )

and (ΩΦ, ΓΦ) be the pairs

of eigenvectors and eigenvalues of KXX and KYY. Then, the
IET Image Process., pp. 1–6
& The Institution of Engineering and Technology 2015



principal components of Φ(X ) and Φ(Y ) are (see [13])

UF = F(X )TCF (9)

VF = F(Y )TVF (10)

Now, let the singular value decomposition of Φ(X ) be ZLSZ
T
R.

Then, the eigendecomposition of the covariance matrix, Φ(X )TΦ

(X )/N, is ZRY
FZT

R, where YF( = S2
/N ) is the diagonal matrix

containing the eigenvalues where, N = nX . Similarly, the
eigendecomposition of the kernel Gram matrix Φ(X )Φ(X )T is
ZLL

FZT
L, where LF = S2. This may seem ambiguous, as even

though the dimensions of YF and LF are potentially different, the
following can be written [14]: YF × N = LF = S2. Note that the
larger matrix (say YF) is an extension of the smaller one (LF)
with zero padding. Hence, we can use the matrix LF/N to
represent the eigenvalues of the covariance matrix of Φ(X ).
Accordingly, ΓΦ/N can be used to represent the eigenvalues of the
covariance matrix of Φ(Y ).

Then, the distance between sub-spaces of dimension p, in the
kernel space is

d2proj UF
p , V

F
p

( )
= p− tr VF

p
T
UF

P U
F
P
T
VF

p

( )
(11)

= p− tr VF
p
T
F(Y )F(X )TCFCFT

F(X )F(Y )TVF
p

( )
(12)

= p− tr VF
p
T
KT

XYC
F
p C

F
p
T
KXYV

F
p

( )
(13)

Hence, the appropriate dimension to be considered for
transformation (as in (4)) is

p∗ = argmax
p

1

p
tr VF

p
T
KT

XYC
F
p C

F
p
T
KXYV

F
p

( )
(14)

Once we obtain the appropriate number of dimensions to be
considered, we estimate the transformed source domain in RKHS
as (similar to (5))

F(X̃ ) = 1

N
F(X )UF

p∗L
F−1/2
p∗ GF1/2

p∗ VFT
p∗ (15)

The corresponding Gram matrices are given by (using (9), (10) and
(15))

KX̃X̃ = F(X̃ )F(X̃ )T

= 1

N2
KXXC

F
p∗L

F−1/2
p∗ GF1/2

p∗ VFT
p∗

× KYYV
F
p∗G

F1/2
p∗ LF−1/2

p∗ VFT
p∗ KXX

(16)

K X̃ Y = F(X̃ )F(Y )T = 1

N
KXXC

F
p∗L

F−1/2
p∗ GF1/2

p∗ VFT
p∗ KYY (17)

If oX∈ℝnX and oY ∈ℝnY denote two vectors with all elements as 1/nX
and ,1/nY respectively, then in RKHS the means of source domain
after transformation and that of target domain, are given by
oTXF(X̃ ) and oTYF(Y ). Next, it is necessary to modify the Gram
matrices appropriately, such that the mean of the transformed
source and target domains are identical in kernel space. Let for
any arbitrary matrix A, the ith row of A be denoted by A(i, †) and
the jth column by A(†, j). If K̂X̃X̃ represents the mean-shifted
IET Image Process., pp. 1–6
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Gram matrix, then each element of this matrix is calculated as

K̂X̃X̃ (i, j) =
F X̃ i

( )− oTXF X̃
( )+ oTYF(Y ))

(F X̃ i

( )− oTXF X̃
( )+ oTYF(Y )

( )T

= KX̃X̃ (i, j)− KX̃X̃ (i, †)oX + K X̃ Y (i, †)oY
− oTXKX̃X̃ (†, j)+ oTXKX̃X̃oX

− oTXK X̃ YoY + oTYKYX̃ (†, j)− oTYKYX̃oX + oTYKYYoY
(18)

Similarly, each element of the mean shifted Gram matrix K̂X̃ Y is
calculated as

K̂ X̃ Y (i, j) = F X̃ i

( )− oTXF X̃
( )+ oTYF(Y )

( )
.F Yj

( )T
= K X̃ Y (i, j)− oTXKX̃Y (†, j)+ oTYKYY (†, j) (19)

In RKHS, we thus calculate the modified kernel Gram matrices using
the implicit expressions ((18), (19)) of the transformed source
domain.

3.3 Classification of test dataset

Let the test samples to be classified be given by the rows in the
matrix, W. We calculate K̂X̃W by replacing Y with W in (19). Once
we obtain the Gram matrices K̂X̃X̃ and K̂X̃W , we first calculate the
overall Gram matrix

K̂ =
K̂X̃X̃ K̂ X̃W

K̂T
X̃W KWW

[ ]
.

The Euclidean distance between any two data instances (i and j) in
RKHS is then given as: dist(i, j) = K̂(i, i)+ K̂(j, j)− 2K̂(i, j). This
distance matrix helps to classify test samples appropriately, using
k-nearest neighbour (kNN) classifier, trained using transformed
source domain data in RKHS.
4 Experimental results

We evaluate the performances of EDA-L and EDA-K on three
real-world datasets, for the tasks of object, video and text
categorisation. The details of the experimental results are given
below.

4.1 Object categorisation

We use the Office+Caltech dataset [7], which contains four domains:
Amazon (A), Caltech (C), Dslr (D) and Webcam (W), with ten
classes of objects in each domain. Each image is resized to 300 ×
300 dimension and speeded-up robust features [15] are extracted
from the images to form a codebook of size 800. A few sample
images from the four domains are shown in Fig. 1. The results
reported in this paper are obtained by using the features shared by
Gong et al. [7], from which we follow the same experimental
protocols. For EDA-K, we have used linear kernel to build a
generic model for all datasets, avoiding any parameter tuning for
obtaining the appropriate kernel Gram matrix. However, any
kernel function can be used with appropriate values. Eight random
samples per class for the Amazon and Caltech domains, three
random samples per class for the Dslr and Webcam domains, have
been chosen when each of these domains are being considered as
the target domain for the experimentation. We compare the
performances of our methods with transfer component analysis
(TCA) [3], geodesic flow sub-space [6], geodesic flow kernel [7],
SA [9] and SDIS [8]; while NA denotes ‘no adaptation’, where the
given source domain samples are used for training the classifier.
3



Fig. 1 Samples of two object classes, from four domains of Office+Caltech dataset [7]

Table 1 Classification accuracies (in%-age) on Office+Caltech dataset [7], using different techniques of unsupervised DA (best results highlighted
in bold)

Method C→A D→A W→A A→ C D→ C W→ C

NA 21.5 26.9 20.8 22.8 24.8 16.4
TCA [3] 21.96 16.81 13.43 16.18 17.67 11.14
GFS [6] 36.9 32 27.5 35.3 29.4 21.7
GFK [7] 36.9 32.5 31.1 35.6 29.8 27.2
SA [9] 39.0 38.0 37.4 35.3 32.4 32.3
SDIS [8] 42.63 44.16 44.65 34.40 41.56 43.26
EDA-L(LDA) 24.69 19.83 21.38 13.78 26.20 21.04
EDA-L(PCA) 27.79 21.42 26.42 17.78 26.00 25.50
EDA-K 40.66 44.41 46.81 36.62 37.02 36.21

Method A→D C→D W→D A→W C→W D→W Average

NA 22.4 21.7 40.5 23.3 20.0 53.0 26.18
TCA [3] 16.69 22.8 32.31 23.60 22.03 44.69 21.61
GFS [6] 30.7 32.6 54.3 31.0 30.6 66.0 35.67
GFK [7] 35.2 35.2 70.6 34.4 33.7 74.9 39.76
SA [9] 37.6 39.6 80.3 38.60 36.80 83.6 44.24
SDIS [8] 38.82 43.64 80.57 39.31 42.27 78.03 47.76
EDA-L(LDA) 18.91 30.44 51.60 31.97 24.84 45.44 27.52
EDA-L(PCA) 26.77 29.92 58.50 32.83 30.19 62.64 32.15
EDA-K 43.31 44.09 85.82 40.00 38.49 85.28 48.22

Table 2 Optimal number of dimensions obtained ((4), (14)) for
transforming the source domain data, in case of Office+Caltech dataset [7]

Method C→A D→A W→A A→ C D→ C W→ C

EDA-L(PCA) 209 231 128 157 144 162
EDA-K 18 23 27 10 9 35

Method A→D C→D W→D A→W C→W D→W

EDA-L(PCA) 183 156 164 239 243 251
EDA-K 15 11 12 19 17 9
As a special case, we also obtain the performance of DA when the
sub-space of the source domain is estimated using the traditional
supervised method of linear discriminant analysis (LDA). LDA
obtains an optimal sub-space where the class separation is
maximum. However, due to the absence of class labels in the
target domain, we use principal component analysis (PCA) to
estimate the corresponding sub-space. We varied the number of
dimensions to be considered from 1 to C− 1 (C = number of
classes) and only the best accuracies for each case have been
reported in Table 1.

Table 1 shows the classification accuracies for 12 different pairs
of source and target domains, using a 25-fold cross-validation.
Results given in seventh row as ‘EDA-L(LDA)’ gives the
classification accuracy when sub-spaces are calculated using LDA
for source domain and PCA for target domain. Results obtained
using EDA-L(PCA) shows the result of our approach, when the
sub-spaces of both source and target domains are estimated using
PCA. Results given in ninth row give the classification accuracies
when the transformation of source domain is done in RKHS ((18),
(19)). The right-most column of Table 1 (see lower sub-part)
shows the average of classification accuracies over all 12 cases.

EDA-K outperforms all the other cases of DA. Even though we
use class information to estimate the source domain sub-space in
case of EDA-L(LDA), the average classification accuracy is much
lower. This is due to the fact that sub-space estimated using LDA
gives the maximum class separability but do not characterise the
distribution of the overall data. Since the correspondences between
the sub-spaces estimated by PCA and LDA is missing, EDA-L
(LDA) produces a poor performance of object categorisation
(seventh row of Table 1).

SA performs close (but inferior) to our method, as it directly uses
eigenvectors of source and target domains in feature space to
formulate the transformation matrix. Our recently proposed SDIS
4

method [8] performs better in a few cases, but the average
performance is best for EDA-K. The average time necessary for
the task of object categorisation using EDA-K is 61 s, while that
of SDIS is 437 s. SDIS [8] uses manifold-based optimisation,
whereas the proposed method uses eigenvectors and eigenvalues,
which is computationally efficient. Another added advantage is
that the optimal number of dimensions is automatically chosen for
this proposed method, which makes it adaptable to various
datasets. Table 2 shows the optimal number of dimensions/
eigenvectors considered for transformation of the source domain in
both the feature and kernel spaces.
4.2 Event categorisation in videos

We use two video datasets: Kodak and YouTube [16]. YouTube data
is considered as the source domain and classification accuracies are
observed on Consumer (Kodak) domain, as done in [17]. We
consider six common classes (events), ‘birthday’, ‘picnic’,
‘parade’, ‘show’, ‘sports’ and ‘wedding’, between YouTube (906
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Table 3 Values of MAPs (in%-age) for event categorisation in videos [16], using different techniques of DA (best results highlighted in bold)

Method SIFT feature ST feature Average

Gaussian Laplacian ISD ID Gaussian Laplacian ISD ID

A-MKL [16] 50.4 53.8 52.9 51.0 20.6 35.8 22.3 35.9 40.3
TCA [3] 42.6 40.8 43.4 39.7 17.5 19.1 18.2 18.4 30.0
NA 22.3 28.4 24.8 22.5 15.6 22.3 27.4 25.5 23.6
EDA-K(kNN) 49.3 52.9 52.6 52.5 23.6 37.2 26.7 36.4 41.4
EDA-K(SVM) 51.3 41.6 55.2 44.3 40.6 25.5 40.9 24.5 40.5
videos) and Consumer (195 videos) [16]. We have used the distance
matrices of Kodak and YouTube domains, with scale invariant
feature transform (SIFT) descriptors and spatio-temporal (ST)
features – histogram of oriented gradients (HOG) and histogram of
optical flow (HOF) features [http://vc.sce.ntu.edu.sg/index_files/
VisualEventRecognition/VisualEventRecognition.html]. Three
samples per class have been randomly selected from the target
domain for training. We have used four different kernel functions
for evaluation as in [16], which are: Gaussian, Laplacian, inverse
square distance (ISD) and inverse distance (ID) kernel.

Performances over ten-fold experimentation have been compared
with adaptive multiple kernel learning (A-MKL) [16], TCA [3], as
well as the case of NA (no adaptation). Since, our experiments use
the distance matrix as input, we are unable to obtain the
performances of GFS [6], GFK [7] and SA [9] methods for this
task. Table 3 shows the mean average precision (MAP), using
both SIFT and ST features separately, using a 25-fold
cross-validation. We have trained both kNN (k = 1) and support
vector machine (SVM) classifiers, using the transformed source
domain. Results in Table 3 show that the proposed EDA-K
method outperforms TCA. In case of ST features, EDA-K
outperforms all other methods when kNN classifier is used.
However, A-MKL [16] is better than the proposed method in one
case, only when SIFT features are used to build the three different
kernel Gram matrices. Note that, although A-MKL uses labelled
training samples from target domain unlike the proposed method,
it exhibits inferior performance for most cases, as shown in
Table 3. Also, observe that results of categorisation using SVM, as
given in last row of Table 3, is not consistent over different
Fig. 2 Two sets of plots of criterion function (RHS of (14)) with increasing dimen
different kernels

a Gaussian
b Laplacian
c ISD
d ID
Global peak gives the optimal value of p*
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kernels. For both SIFT and ST features, SVM gives the best
results with Gaussian and ISD kernels. Fig. 2 shows the change in
the criterion function, as given in the right hand side (RHS) of
Eqn. (14), with increasing number of eigenvectors. A global
maxima is considered as the optimal (reduced) number of
eigenvectors/dimensions for the transformation of source domain
data.
4.3 Text categorisation

Performance of the proposed method of DA was observed on the
pre-processed Reuters-21578 dataset [18]. This popular dataset
contains five top categories and many sub-categories. Data from
different sub-categories under the same parent category are
considered to be from different but related domains. By this way,
three datasets are obtained, namely ‘orgs vs. people’, ‘orgs vs.
places’ and ‘people vs. places’, as used by Dai et al. [18]. The
number of instances in each of the source and target domains for
the three datasets are 1109 (average) and the number of features is
4563. We have used linear kernel to evaluate our method. We
compare our work with topic correlation analysis (ToCA) [19] and
spectral feature alignment (SFA) [20]. Table 4 shows the
classification accuracies using various techniques of DA using
SVM classifier. A Gaussian kernel is used for our proposed
EDA-K, where the mean of the dataset (over all dimensions) is
taken as the sigma of the kernel function. We considered 20% of
the data from target domain as the training samples to estimate the
transformed source domain. Since it is easier to consider large
sion, using features – (i) SIFT, in top row and (ii) ST, in bottom row, for four
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Fig. 3 Plots of the criterion function (RHS in (14)) with the increasing dimension for

a Orgs people,
b Orgs places
c People places, in Reuters-21578 [18] dataset
Global peak gives the optimal value of p*

Table 4 Classification accuracies (in %-age) for text categorisation using
Reuters-21578 dataset [18], using different techniques of DA (best results
highlighted in bold)

Method Orgs vs.
people

Orgs vs.
places

People vs.
places

Average

ToCA [19] 79.2 73.0 62.6 70.5
SFA [20] 67.1 68.3 50.6 62
NA 67.0 66.9 52.0 62
EDA-K 85.3 82.7 81.4 83.1
dimensional dataset using kernel Gram matrices, we perform
transformation of source domain data only in RKHS in this case.
Fig. 3 shows the change in the criterion function (see (14)) with
increasing number of eigenvectors, to obtain the optimal value of p*.

Results from all experimentations reveal that the proposed method
of DA is robust and can be applied to a wide range of datasets.
Selecting the optimal number of dimensions and estimating the
transformed source domain in RKHS significantly improves the
performance. Using reduced number of eigenvectors (dimension)
for estimating the transformation, also improves the computational
cost.
5 Conclusions

In this paper, we propose an efficient technique of unsupervised DA
using the eigenvectors and eigenvalues of source and target domains.
We extend the concept from feature space to the kernel space, to deal
with non-linear transformation of data. Experimental results on
real-world image, video and text datasets show that the proposed
method gives better classification accuracy in most of the cases,
when compared with recent state-of-art works on DA.
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