


Categorization of Optimization Problems
Continuous Optimization
Discrete Optimization
Combinatorial Optimization
Variational Optimization

Common Optimization Concepts in Computer Vision
Energy Minimization
Graphs
Markov Random Fields

Several general approaches to optimization are as follows:
Analytical methods
Graphical methods
Experimental methods
Numerical methods

Several branches of mathematical programming have
evolved, as follows:

Linear programming

Integer programming

Quadratic programming

Nonlinear programming

Dynamic programming
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Problem specification

Suppose we have a cost function (or objective function)

fx):RY — R

Our aim is to find values of the parameters (decision variables) x that
minimize this function

X = arg min f(x)
X

Subject to the following constraints:
« equality: ci(x) =0

» nonequality: ¢ (x) =0

If we seek a maximum of f(x) (profit function) it is equivalent to seeking
a minimum of —f(x)



Books to read

* Practical Optimization

— Philip E. Gill, Walter Murray, and Margaret H.
Wright, Academic Press,

1981

« Practical Optimization: Algorithms and
Engineering Applications
— Andreas Antoniou and Wu-Sheng Lu
2007

 Both cover unconstrained and constrained
optimization. Very clear and comprehensive.

PRACTICAL
OPTIMIZATION

Philip E. Gill

Walter Murray

and

Margaret H. Wright

Practical
Optimization

Algorithms and Engineering Applications




Further reading and web resources

 Numerical Recipes in C (or C++) : The Art
of Scientific Computing

— William H. Press, Brian P. Flannery, Saul A.
Teukolsky, William T. Vetterling

— Good chapter on optimization
— Available on line at
(1992 ed.) www.nrbook.com/a/bookcpdf.php

(2007 ed.) www.nrbook.com

« NEOS Guide
www-fp.mcs.anl.gov/OTC/Guide/

* This powerpoint presentation
www.utia.cas.cz




Introductory Items in OPTIMIZATION

- Category of Optimization methods

- Constrained vs Unconstrained

- Feasible Region
Gradient and Taylor Series Expansion
Necessary and Sufficient Conditions
Saddle Point
Convex/concave functions
1-D search - Dichotomous, Fibonacci - Golden
Section, DSC;

Steepest Descent; Newton; Gauss-Newton
Conjugate Gradient;
Quasi-Newton; Minimax;

Lagrange Multiplier; Simplex; Prinal-Dual,
Quadratic programming; Semi-definite;
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Unconstrained univariate optimization

Assume we can start close to the global minimum

f(=z)

min £(x)

How to determine the minimum??
« Search methods (Dichotomous, Fibonacci, Golden-Section)

« Approximation methods
1. Polynomial interpolation
2. Newton method

« Combination of both (alg. of Davies, Swann, and Campey)



Search methods

 Start with the interval ("bracket”) [x,, X] such that the
minimum Xx* lies inside.

« Evaluate f(x) at two point inside the bracket.

* Reduce the bracket.

 Repeat the process.

« Can be applied to any function and differentiability is not
essential.



Figure 4.2. Construction for dichotomous search.
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Algorithm 4.1 Fibonacci search

Step 1

Input 7,1, zp,1. and n.

Step 2

Compute Fy, Fy, ..., F,, using Eq. (4.4).
Step 3

Assign Iy = xp1 — xr,1 and compute

I = F;;‘Il (see Eq. (4.6))

To) =z —I2, Tpy =201+ 12
 Jfax = f(Zan),  for = flzp1)

Setk=1.
Step 4
Compute ;- using Eq. (4.6).
If fax = fox, then update T, k11, Zug+1, Tak+1> Tok+1s fak+1,
and fy k+1 using Egs. (4.7) to (4.12). Otherwise, if fa < fb.x, update
information using Eqgs. (4.13) to (4.18).
Step 5
Ifk=n—2o0rzg441 > Tpr1, OUtput r° = x4 441 and f* = f(z*),
and stop. Otherwise, set k = k + 1 and repeat from Step 4.

The condition Tak+1 = Thk+l implies that Tak+1 = Thk+1 within
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Algorithm 4.2 Golden-section search

Step 1
Input zy, 1, 271, and €.
Step 2
Assign Iy = 1 — z1.1, K = 1.618034 and compute
Iﬂ = Il/K

To1 =2yyg—lo, Ty =711+ 12

fa1 = f(Ta1), fou = f(Tp1)
Setk=1. If fax = fox, then update x, k11, TUk+1; Tak+1s Tok+1, fak+1s
Step 3 and f3 1.+ using Egs. (4.7) to (4.12). Otherwise, if f, 3 < fp . update
Compute information using Egs. (4.13) to (4.18).

Trs2 =IH'IIK ff‘::i £0r Tq j+1 > Thi+1, then do:
If fak+1 > fok+1, compute
2" = §(Tp ki1 + TUukt1)
If fak+1 = fok+1, compute
T* = $(Taps1 + Togs1)
If fak+1 < fok+1, compute
&* = 5(TLa+1 + Takt1)

Compute f* = f(z%).
Output z* and f*, and stop.

Step 5

Set k = k + 1 and repeat from Step 3.
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Polynomial interpolation

 Bracket the minimum.

* Fit a quadratic or cubic polynomial which
iInterpolates f(x) at some points in the interval.

« Jump to the (easily obtained) minimum of the
polynomial.

* Throw away the worst point and repeat the
process.






Newton method

Fit a quadratic approximation to f{x) using both gradient and
curvature information at x.

« Expand f(x) locally using a Taylor series.
flx+ox)= f(x)+ f'(x)or + 5,_}‘”(:(#)();1'2 + o(da?)

* Find the ox which minimizes this local quadratic
approximation. /()

or = — ".,N

1)

« Update x. Ve o =, — =



0 1 04 03 . -0 0 01
Iteration 3 Iteration 3




Newton method

« Global convergence of Newton’s method is poor.
« Often fails if the starting point is too far from the minimum.

Iteration 3 Iteration 3

 In practice, must be used with a globalization strategy
which reduces the step length until function decrease is
assured



Extension to N (multivariate) dimensions

 How big N can be?

— problem sizes can vary from a handful of parameters to
many thousands

* We will consider examples for N=2, so that cost
function surfaces can be visualized.




An Optimization Algorithm

« Startatx,, £=0.

1. Compute a search direction p,

2. Compute a step length «,, such that f(x, + o, p,) < f(x,)

3. Update x, =x, + a,p, e

4. Check for convergence (stopping criteria)
e.g.df/dx=0

Reduces optimization in N dimensions to a series of (1D) line minimizations



Taylor expansion

A function may be approximated locally by its Taylor series
expansion about a point x*

f(x* 4+ x)~ f(x*)+ Vfix+ axj Hx

where the gradient V/(x') is the vector
. Tor ot
VIt === =

Ty TN

and the Hessian H(x*) is the symmetric matrix

[ 92f d2f ]

) OF Ny

H(x") =




af af

g(x) = % Bt B V=[% % BGE
= Vf(x) - - —
the Hessian' of f(x) is defined as zé ?‘g& Ey&
H(x) = Vg = V{VTf(x)} H(x)= 5&1 Té o ﬁ
N
f(x+0) = f(x)+g(x)"s + 36" H(x)d + o(||8]*) WO%: Oz_.m% o Ei' )

f(x+8) = f(x) +g(x)"d + 26 H(x)é

f(x+8) = f(x) +g(x)"d + 36" H(x + ad)s

Theorem 2.1 First-order necessary conditions for a minimum
(a) If f(x) € C! and x* is a local minimizer, then

g(x)Td >0

f(x+8) = f(x) +g(x)'d

for every feasible direction d at x*.
(b) Ifx* is located in the interior of R then

g(x") =0



Theorem 2.2 Second-order necessary conditions for a minimum

(a) If f(x) € C? and x* is alocal minimizer, then for every feasible direction
dat x*
() g(x*)'d >0
(ii) If g(x*)"'d = 0, then A" H(x*)d > 0
(b) If x* is a local minimizer in the interior of R, then
(i) g(x*) =0
(ii) d"H(x)*d > 0 forall d # 0

Theorem 2.4 Second-order sufficient conditions for a minimum If f(x) € C*
and X* is located in the interior of R, then the conditions
(@) g(x*) =0
(b) H(XT) is positive definite
are sufficient for X* to be a strong local minimizer.
Definition 2.6 A point X € R, where R is the feasible region, is said to be a
saddle point if
(a) g(X) =

(b) point X is neither a maximizer nor a minimizer.

1. Find the points x; at which g(x,) —
2. Obtain the Hessian H(x;).
3. Determine the character of H(x;) for each point x;.
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Quadratic functions

| T |
f(x) = a + g'x + ~x Hx

 The vector g and the Hessian H are constant.

« Second order approximation of any function by the Taylor
expansion is a quadratic function.

We will assume only quadratic functions for a while.



Necessary conditions for a minimum

fx)=a+glx+ %XIHX
Expand f(x) about a stationary point x* in direction p
f(x* +ap) = f(x) +g(x*) ap + ;(_1:2p1 Hp

. | [
= f(x") + 5(_'.1--2p1 Hp

since at a stationary point g(x”) =0

At a stationary point the behavior is determined by H



 H is a symmetric matrix, and so has orthogonal
eigenvectors

HUj = /\,'ll; HU,H = |

L L ==
J(xX"+auw) = f(x7) + 3(_.1'2uf Hu,

D
— ]L(XA) + ;(,fl"z)\j

* As |a| increases, f(x* + au.) increases, decreases
or is unchanging according to whether 4. is
positive, negative or zero



Examples of quadratic functions

Case 1: both eigenvalues positive

| . | -
f(x)=a+glx+ §Xl Hx
with I |50 |6 4] positive
a=9, & = —501 ° H = 4 G| definite

T T
10 H -
<5
ot i
i Il
5 0 5 10 1
X

minimum

5



Examples of quadratic functions

Case 2: eigenvalues have different sign

with

a

saddle point

fx)=a+g'x+

—30
20 |

1 .
—x'Hx
2
6 0
H = 0 —4 indefinite
: v
e

-5 0 5



Examples of quadratic functions

Case 3: one eigenvalues is zero
_. S
f(x)=a+g'x+-x'Hx
with , 0 6 0| positive

a =10, g = ol - H = () ()| semidefinite

parabolic cylinder



Optimization for quadratic functions

Assume that H is positive definite

| e | -
fx)=a+g'x+ )Xl Hx

Vf(x)=g+ Hx

There is a unigue minimum at

x"=-H'g

If N is large, it is not feasible to perform this inversion directly.



Steepest descent

F+AF=f(x+6)= f(x)+ gl's + .l),s"‘Hfi

Xk

X

Basic principle is to minimize the N-dimensional function
by a series of 1D line-minimizations:

X1 = X+ OLPk

The steepest descent method chooses p, to be parallel to
the gradient

P, = —V [(x)

Step-size o, is chosen to minimize f(x, + a,p,).
For quadratic forms there is a closed form solution:

r1 = Xk + apdi | pl{ P/
X = —=F Prove it!
" 7
.‘-,-1;{ 8k pk Hp/\ <[ J

1 = X — —F
i



Steepest descent

0 5 10 15
Iteration 34, f = -250

 The gradient is everywhere perpendicular to the contour
lines.

» After each line minimization the new gradient is always
orthogonal to the previous step direction (true of any line
minimization).

« Consequently, the iterates tend to zig-zag down the
valley in a very inefficient manner



Steepest descent

* The 1D line minimization must be performed using one
of the earlier methods (usually cubic polynomial
interpolation)

1551

151

1451

141

1351

1 1 1 1 |
-2 -1.5 -1 0.5 0 05 1 1.5 2

Iteration 56, f = 3.8632 13 175 RE 115

* The zig-zag behaviour is clear in the zoomed view
* The algorithm crawls down the valley
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Newton method

Expand f(x) by its Taylor series about the point x,

*

(X, + 0xX) ~ f(x;) + Lox + —ox? H,ox
; 8 >

<.

where the gradient is the vector - N
y of Jdf
g, = V/[(xp) = D

L1 LN

and the Hessian is the symmetric matrix 2

HA. — H(X;\,) —

Xp4+1 = X T (s,o',- = X + fl,.“-l.'l;- &2 f




Newton method

For a minimum we require that V f(x) = 0, and so

VSix)=gi+Hox=0
with solution 0x = —H, ‘i, This gives the iterative update
Xk41 = X — H,‘Tlgk

. If f(x) is quadratic, then the solution is found in one step.
« The method has quadratlc convergence (as in the 1D case).
. The solution 90X = _HA 8k is guaranteed to be a downhill direction.

. Rather than jump straight to the minimum, it is better to perform a line
minimization which ensures global convergence

Nt
Xh+1 — XL — U‘A-Hzf g

. If H=I then this reduces to steepest descent.



Reosenbrock

log(F)

1.5

0.5 =1

Without second order1 ?(nowledge (ie gradient descent), you can miss the
narrow valley entirely with fixed sized steps in the direction of the gradient (i.e.
fixed steps are too large). Even if you go into the valley, you would spend a great
deal of time zig zagging back and forth the steep walls because the gradient at
those walls would simply direct the descent to each side of the valley.

Second order information (ie Hessian) allows you to take into
account the curvature and take steps sized inverse to the 'steepness’
(very steep -> small steps, very flat -> large steps).



S — Newton method
| - example

o Step 2
0 0.5 1
teration 18, = 6.85¢Compute g and Hy.

If Hy. is not positive definite, force it to become positive definite.

Step 3

Compute H,_'and d; = —I—I[_]gk.

Step 4

Find «v, the value of a that minimizes f(x; + adj. ), using a line search.
Step 5

Set Xk+1 = Xk + ardg.
Compute fi+1 = f(Xg+1)-

« The algorithm converges in only 18 iterations compared
to the 98 for conjugate gradients.

 However, the method requires computing the Hessian
matrix at each iteration — this is not always feasible



- m
> fol? =178

f = [fi(x) fa(x) -+ fm(x)]"

Step 2

Xk4+1 =
1 - X — ag(2373) 71 (237
xi — ax(I"3)1(37E) ’

Step 4
comte;.::ndﬁguingﬂgodthm
o 20d D using Algoc 5.4.
Find oy, the _L'{ﬁ;lyk
::p‘, value of a that minimizes F

xk-l-l?xh‘l'ﬂkdh- o
Compute f;+q) forp=1,2, ..., mand

S Fk-l-l-




Alpha (a) Calculation Intermediate Updates Convergence
Condition

Steepest-
Descent
Method
(Method 1)

Steepest-
Descent
Method
(Method 2)

Newton
Method

Find ay, the value of a that
minimizes f (x, + ady),
using line search

Without Using Line Search
T
Ik Ik
Ii Hie i

dp =~

Find ay, the value of a that
minimizes f (x, + ady),
using line search

Xp+1 = X + apdy
dp = — 9k
fre+1 = f (Xk+1)

Xg+1 = X + Qg dg
dr = — gk
frr1 = F (Xie41)

Xk+1 = X T akdk
d = —Hi ' g
fre+1 = f (Xk+1)

If ||akdk|| <€,
then x* = xp41,

f(x*) = frs1
Elsek=k+1

” n

” n



Alpha (a) Calculation Intermediate Updates Convergence
Condition

Steepest- Find ay, the value of a that Xp+1 = X + apdy If ||akdk|| <E,
Descent minimizes f (x, + ady), dir = —0Jx then x* = Xj41,
Method using line search fr+1 = f (Xk+1) f(x*) = frs1
(Method 1) Elsek=k+1
Steepest- Without Using Line Search Xps1 = X + Qpdy
Descent Ii Ik di = —gr "
Method Ak = 9 Hyegr fre1 = f(Xk41) -
(Method 2)

Find ay, the value of a that Xp+1 = X + apdy
Newton minimizes f(x, + ady), dy = —Hzlgs -
Method using line search free1 = f(Xgs1)

Xi+1 = X + Qpdy

Find ay, the value of a that dy = —Hi'gy If |Fry1 — Fl <€
Gauss- minimizes F(x; + ady,), gr =2JTf then x* = X411,
Newton using line search H=2]T] = L—lp(LT)—l F(x*) = Fiyq

Meth . -
sthod F=> @2 =fTf  Fen =% @0 N0T) gk = k41

p=1 Xi+1 = X — o L"DLgy
f =A@ £@) - I foers) = fo ()
F(k+1) = F(xy)



Conjugate gradient

« Each p, is chosen to be conjugate to all previous search
directions with respect to the Hessian H:

p;Hp,=0.  i#

 The resulting search directions are mutually linearly

independent. \L Prove it! J

* Remarkably, p, can be chosen using only knowledge of
P, V/(X-1), and V/(x.)

VeV )
Pr—1

= M fn : :
P ]LA ( vaT_ 1 V](L_ )



getx:ﬂ = Xk + aidy and calculate fir+1 = f(Xk+1).

tep

gllagdk“ < g, output X* = Xp4q and f(x*) = fi1, and stop.
tep

Compute g 1.

Compute

_ B8kl
By = o

Generate new direction
di+1 = —8rk41 + Brdi




Conjugate gradient

 An N-dimensional quadratic form can be minimized in at
most N conjugate descent steps.

« 3 different starting points.
« Minimum is reached in exactly 2 steps.
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Rosenbrock’s function

4

Minimum at [1, 1]



Conjugate gradient

* Again, an explicit line minimization must be used at
every step

-2 -1.5 1I -0.5 0 0.5 1 15 2
Iteration 98, f = 0.0012006

« The algorithm converges in 98 iterations
» Far superior to steepest descent



Quasi-Newton methods

« If the problem size is large and the Hessian matrix is
dense then it may be infeasible/inconvenient to compute
it directly.

* Quasi-Newton methods avoid this problem by keeping a
“rolling estimate” of H(x), updated at each iteration using
new gradient information.

« Common schemes are due to Broyden, Goldfarb,
Fletcher and Shanno (BFGS), and also Davidson,
Fletcher and Powell (DFP).

« The idea is based on the fact that for quadratic functions

hOIdS glf—i—l _ gL — H(Xl.f—i—l — X/I-«)

and by accumulating g,’s and x,’'s we can calculate H.



Quasi-Newton BFGS method

SetH,=1.
Update according to
vk Hepvi Hy

le+1 — HA’ —|_ S - ‘_[H N
i 0 ke 0 [ AL 0 Lk

where

Ve = 8k+1 — 8Bk O)p = Xpt1 — Xy
The matrix inverse can also be computed in this way.
Directions J,'s form a conjugate set.
H, ., is positive definite if H, is positive definite.
The estimate H, is used to form a local quadratic
approximation as before



BFGS example

2 15 -1 05 0 05 1 15 2
lteration 34, f = 3.4588e-008

 The method converges in 34 iterations, compared to
18 for the full-Newton method



W (a) Calculation Intermediate Updates

Conjugate
Gradient

Fletcher-
Reeves

Powell

Quasi-

Newton
Method

Without Using  dy = —go; X1 = X + apdy

Line Search Jis19
T B =50 ) = —Gp+a + Brdy
9k Ik GGk
Xk = dngdk fre1 = f(X+1)
Line search ’
Br = %/ Ars1 = —Gk+1 T Prdy
kIk
fr+1 = F(Xkg1)s Xes1 = X + apdy
Line search Xk = Xk—l + akdk; dk = [O 0..0 xkO O]T
Xk+1 = X + O; O = apdy,
Find ay, the dxy = =Sk9r,  Xp+1 = Xk — Sk Ik
value of a that Compute gxi1 /*= gr + HO */
minimizes So = I
f(x + ady), S (8k—=Sk¥i) (Ox — Sk¥i)"
using line k+1 = 2k V;((Sk — SiVi)
search

Yk = 9k+1 — Ik

If ||akdk|| <E,
then x™ = xp41
If(x*) — fk+1
Elsek=k+1
If 16, | <€,

then x™ = xj 41
rf(x*) — fk+1
Elsek=k+1



Alpha (a) Intermediate Updates Convergence
Calculation Condition

Find ay, the value Xp41 = Xp + g dy If ||akdk|| <E,
of a that minimizes then x* = xy41,
Coordinate [ (Xx + ady), using dg =[00 ..0d0 ...0]" f(X™) = frn
Descent |ine search Elseif k==n, then
fk+1 = f(xk+1) X1 = xk+1;k =1
Elsek=k+1
dO = —90 If ||akdk|| <E,
Without Using Line Xp41 = X + apdy then x* = xj41,
] Search _ Jicr19k+1 f(X*) = frsa
Conjugate Br = T
Gradient T Ik Y9k
7, = el di+1 = —Gk+1 T Prdy Aty = s 4
dy Hydy, fr+1 = F (Xi41)
Xi+1 = X + O If ||6k|| <€, then
Find ay,, the value Ok = apdy,; dy = —Sik9k X" = Xgt1 s
of a that minimizes Xp41 = Xk — Ok Sk Gk f(x*) = frs+1
I\?UiltSi' f(x; + ady), using Compute gi+q1 /*= gx + HO}, */ Elsek=k+1
ewton : _
Method line search So = I

(Ok—SkYk) (O — Ska)T
V;Z(&c — SkVk)
Yk = 9k+1 — Gk

Sk+1 = Sk T



is used to update the approximate Hessian B}, ;. or directly its inverse [, = Bk- _:1 using the Sherman-Morrison formula.

m A key property of the BFGS and DFP updates is that if /3, is positive definite and € is chosen to satisfy the Wolfe
conditions then Bk+1 1s also positive definite.

The most popular update formulas are:

Method Bk.|_1 = Hk-l-l = Bk_-li-l =
T T T T T T
DFP ( - y;Am" ) By (I - %,m“’y’f) i Aikﬁmk B Hkgﬁ:yk H;
Yy Az Yp Az ) Yy Azy, Y Azy Yy Hiy
T T T\ T T T
Ul BrAzi(BrAxy) YAzl yAzT\  AziAxl
BFGS |B . I - H.|I- — Tk
E ‘yfﬁxk Mka Axy, yr Azy, i yr Az i yr Azy,
Yk — Bkﬁxk 4 (.&:t:,,, o Hkyk)ﬁ:t{Hk
Broyden | By, + Az H
royden | Dy, AT Azy k K+ AzTH, v

Broyd
faﬁyeﬂ (1-0x)Birr +@xBiy » p € [0,1]
(yx — By Axy) (yx — B Axy)”

(ﬁiﬁk - Hkyk)(Amk - Hkyk)T

SRL | By + Hy +

(yr — By Azy)T Ay, (Azy — Hyyr) Tys




Non-linear least squares

e |tis very common in applications for a cost
function f(x) to be the sum of a large number of
squared residuals

M
fx) =2 _ri(x)

« |f each residual depends non-linearly on the
parameters x then the minimization of f(x) is a
non-linear least squares problem.



Non-linear least squares

M
=) i
=

 The M x N Jacobian of the vector of residuals » is defined

asS _ _
~ Oy dry ]
dxyq C ox N
J(X) =
orar arar
- e 1 C (‘,:);'1_"‘\." -

« Consider oF ; X
( ( CH
)
Dr ()IAZ Z o
« Hence
Vix)=2Jr



Non-linear least squares

. For the Hessian holds

G A A AV
J* f ( dr; dr; r;
da L ().‘_’I_??[ du l Ja L , da L ().‘_"I_f?[

] ?

N Gauss-Newton
@X) = 2 = ~ approximation

 Note that the second-order term in the Hessian is multiplied by the
residuals ..

. In most problems, the residuals will typically be small.
* Also, at the minimum, the residuals will typically be distributed with

mean = 0.

. For these reasons, the second-order term is often ignored.
. Hence, explicit computation of the full Hessian can again be avoided.



Gauss-Newton example

« The minimization of the Rosenbrock function

fla,y) = 100(y — :1:'2)2 + (1 — .'12')2

e can be written as a least-squares problem with
residual vector

r— [l()(.’/ — .1'2)]
- (1 —a)

[ Orq Iry | S
y_ |7 S| _ [-200 10
- Aro Aro — . :




Gauss-Newton example

X 1 T
Xe4+1 — X — (_}'[;Hk 245 Hl\ — ZJI{J

3

% | 1 1 ey

-2 15 -1 -05 0 05 1 15 2
lteration 11, f = 2.8678e-012

* minimization with the Gauss-Newton approximation with
line search takes only 11 iterations



Alpha (a) Calculation Intermediate Updates Convergence
Condition

Steepest- Find ay, the value of a that Xp+1 = X + apdy If ||akdk|| <E,
Descent minimizes f (x, + ady), dir = —0Jx then x* = Xj41,
Method using line search fr+1 = f (Xk+1) f(x*) = frs1
(Method 1) Elsek=k+1
Steepest- Without Using Line Search Xps1 = X + Qpdy
Descent Ii Ik di = —gr "
Method Ak = 9 Hyegr fre1 = f(Xk41) -
(Method 2)

Find ay, the value of a that Xp+1 = X + apdy
Newton minimizes f(x, + ady), dy = —Hzlgs -
Method using line search free1 = f(Xgs1)

Xi+1 = X + Qpdy

Find ay, the value of a that dy = —Hi'gy If |Fry1 — Fl <€
Gauss- minimizes F(x; + ady,), gr =2JTf then x* = X411,
Newton using line search H=2]T] = L—lp(LT)—l F(x*) = Fiyq

Meth . -
sthod F=> @2 =fTf  Fen =% @0 N0T) gk = k41

p=1 Xi+1 = X — o L"DLgy
f =A@ £@) - I foers) = fo ()
F(k+1) = F(xy)



W=

Newton vs Gradient Descent

0
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Levenberg-Marquardt algorithm for
optimizing the Rosenbrock function

-1 -0.5 0 0.5 1

Newton's method for optimizing the Rosenbrock functions.

(a) Constan lep length determined with an optimal line search strategy
1 5 i . = — 7 T
1.5 \\ /
1t W —e
1
0.5}
0 l."-..:"-:
b
SOLE N N
l"'.,. "
W
T \ ’ f/ f
b d f ’r f /

CI.S



Comparison

i | 1 1
-1 : : : ; -2 -1.5 -1 05 0 05 1 15 .

-2 -1.5 -1 -0.5 0 fl:5 1 15 2 . i i
lteration 98, f = 0.0012006 lteration 18, f = 6.8551e-015

CG Newton

2 A5 A 0.5 o 0.5 1 15 2 2 o5 o 05 0 05 i 15 2
Iteration 34, f = 3.4588e-008 teration 11, f = 2.86786-012

1 I L 1 . 1 i "

Quasi-Newton Gauss-Newton



W (a) Calculation Intermediate Updates

Conjugate
Gradient

Newton
Method

Gauss-
Newton
Method

Quasi-
Newton
Method

Without Using Line
Search

9k
T diHydy

Find ay, the value of «
that minimizes f(x; +
ad}), using line search

Use line search, for ay,
F=> f00?=fTf
=1

f:
[f1GO) () - fn (O]

Find ay, the value of «
that minimizes f(x; +
ady), using line search

= —Y0’

dk+1 =

Xp+1 = X + Qpdy, dp = —Hy ' gy
gr=2JTf;H~2]"] =L"'D")™?

,8 — gk+1gk+1,
i grtax

fre+1 = f(Xk41)

xk+1 = Xy + apdy

—Jk+1 T+ Brdy

Xp+1 = Xp + agdy

dy = —Hy ' g
fre+1 = [ (Xk+1)

X1 =X — a JTDTJTS)

Xk+1 = X — axL"DLgy

fok+1) = fo(Xk); Ferny = F(xk)
Xk+1 = Xk + Ok; O = aydy,

di = —SkGks Xk+1 = Xk — ASk Ik

Ik+1 = Gk + HOy; So = Iy

Sk+1

=Sk+

(0k—SkVi) (Ok

- Ska)T

VI{ (Ok

V. = (T1. . 4

— SkYk)

— (1.

Ifllakdk” <E,
then x™ = xp41
If(X*) = fk+1
Elsek=k+1

” - n

If [Frr1 — Fiel <

€ then x™ =
Xk+1, F(x™) =
Fr41
Elsek=k+1
If [16¢ 1| <€,
then

X = Xgg1
f(X) = fre
Elsek=k+1
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.. T 5EE AWORLD IN A GRAIN GF SAND, AND A HEAVEN IN A FLOWER... {by Yihui, 2008)




2 Momentum and Nesterov's On the importance of initialization and momentum in deep learning

Accelerated Gradient

The momentum method (Polyak, 1964), w T e

to as classical momentum (CM), is a tech E::;;E:’,fﬂ?,im
celerating gradient descent that accumulates a velocity
vector in directions ol persistent reduction in the ob-
jective across iterations. Given an objective function

f(0) to be minimized, classical momentum is given by:

vy = gy — eV f(0) (1)
b1 = H+wvmn (2)

where £ > 0 is the learning rate, g € [0, 1] is the mo-
mentum coefficient, and V f(#;) is the gradient at @,.

Since directions d of low-curvature have, by defini-
tion, slower local change in their rate of reduction (i.e.,
d"Vf), they will tend to persist across iterations and
be amplified by CM. Second-order methods also am-
plify steps in low-curvature directions, but instead of
accumulating changes they reweight the update along
each eigen-direction of the curvature matrix by the in-
verse of the associated curvature. And just as second-

ILYASUTGGOOGLE.COM

JIMARTENSQOS. TORONTO.EDU

GDAHLEOS. TORONTO. EDU
HINTONTCS. TORONTO, EDU

n. While NAG is not typically thought of as a
f momentum, it indeed turns out to be closely re-
o classical momentum, differing only in the pre-

wiou update of the velocity vector v, the significance of

which

we will discuss in the next sub-section. Specifi-

cally, as shown in the appendix, the NAG update may
be rewritten as:

Proceedings of the 30'" International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013, JMLR:
WE&CP volume 28. Copyright 2013 by the author(s).

Vg1 = MU — EVf('t?; + ﬂ’”t) (*5)
b1 = O+ v (4)



Deep learning via Hessian-free optimization

ulgorithm 1 The Hessian-free optimization method In the standard Newton’s method, g¢(p) is optimized by
I: for n=1,2.... do computing the N x N matrix B and then solving the system
2 gn — Vf(0,) Bp = —V f(#). This is prohibitively expensive when N is
3 compute/adjust A by some method large, as it is with even modestly sized neural networks. In-
4:  define the function By, (d) = H(#,)d + \d stead, HF optimizes gg(p) by exploiting two simple ideas.
5:  p, + CG-Minimize(B,,, —g,) The first 1s that for an /N-dimensional vector d, Hd can be
6:  Bpyq O+ pn easily computed using finite differences at the cost of a sin-
7- end for gle extra gradient evaluation via the identity:
Hd JiI}I[]j V(o4 m:j )

Deep learning via Hessian-free optimization
James Martens

JMARTENS@CS.TORONTO.EDU
University of Toronto, Ontario, M5S 1A1, Canada

proceedings of the 27 th International Conference
on Machine Learning, , Haifa, Israel, 2010. Copyright 2010



On Optimization Methods for Deep Learning
Quoc V. Le quocle@cs.stanford.edu; Jiquan Ngiam
jngiam@cs.stanford.edu; Adam Coates acoates@cs.stanford.edu;
Abhik Lahiri alahiri@cs.stanford.edu; Bobby Prochnow
prochnow@cs.stanford.edu; Andrew Y. Ng; ICML’1l1

Successful unconstrained optimization methods include
Newton-Raphson’s method, BFGS methods, Conjugate Gradient
methods and Stochastic Gradient Descent methods.

These methods are usually associated with a line search
method to ensure that the algorithms consistently improve the
objective function. When it comes to large scale machine
learning, the favorite optimization method is usually SGDs.
Recent work on SGDs focuses on adaptive strategies for the
learning rate for improving SGD convergence by approximating
second-order information.

In practice, plain SGDs with constant learning rates or
learning rates of the form (a/pB+t) are still popular thanks to
their ease of implementation. These simple methods are even
more common in deep learning because the optimization
problems are nonconvex and the convergence properties of
complex methods no longer hold.



Recent proposals for training deep networks argue for the use
of layer-wise pre-training. Optimization techniques for

training these models include Contrastive Divergence,

Conjugate Gradient, stochastic diagonal Levenberg-Marquardt
and Hessian-free optimization. Convolutional neural networks
have traditionally employed SGDs with the stochastic diagonal
Levenberg-Marquardt, which uses a diagonal approximation to

the Hessian.

In this paper, it is our goal to empirically study the pros
and cons of off-the-shelf optimization algorithms in the
context of unsupervised feature learning and deep learning. In
that direction, we focus on comparing L-BFGS, CG and SGDs.



sgd
momentum
nag
adagrad
adadelta

40 60 80 100 120

omparison of a few optimization methods (animation by Alec Radford). The star denotes the

global minimum on the error surface. Notice that stochastic gradient descent (SGD) without

momentum is the slowest method to converge in this example. We're using Nesterov's
Accelerated Gradient Descent (NAG) throughout this tutorial.

sgd
momentum
nag
adagrad
adadelta
rmsprop
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e )
% — SGD
—  Momentum
mesee NAG
- Adagrad
Adadelta
Rmsprop

150000~

100000~

50000~

"Beale's function: Due to the large initial gradient, velocity based techniques
shoot off and bounce around - adagrad almost goes unstable for the same
reason. Algos that scale gradients/step sizes like adadelta and RMSProp proceed
more like accelerated SGD and handle large gradients with more stability."

f(x)= (1.5 -z, +z,35)* + (2.25 — z, + z,72)* + (2.625 — z, + z,25)°

Global " ”
Mi?'li:wm: [I } =0, at x* = [3:[}-’5}



= 360 "Saddle point: Behavior around

- Momentum i
— NAG a saddle point. NAG/Momentum
*f.r*‘if»!:' 9 — Adagrad again like to explore around,

V it Adadelta almost taking a different path.
4 |~y {; 4 — Rmsprop | Adadelta/Adagrad/RMSProp
Ll proceed like accelerated SGD.

- SGD

-  Momentum
-  NAG

-— Adagrad
Adadelta
Rmsprop

1.0

-1.5

"Long valley: Algos without scaling
based on gradient information really
struggle to break symmetry here - SGD
gets no where and Nesterov Accelerated
Gradient / Momentum exhibits
oscillations until they build up velocity
in the optimization direction. Algos that
scale step size based on the gradient
quickly break symmetry and begin

-1.0 —05

0.0
descent." 1.0

0.5 -1.0
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EJ Search * E u

With no further changes, the algorithm can iterate toward a solution, arriving at w = —0.2365, b = 1.1449. This solution is plotted in Figure 12.

Function Curve Error Surface

o fteratian = 100
Weight = 047

08 Bias = 1.03

Figure 12 (interactive). Gradient descent on a one-node network, with multiple input/target pairs. Hover your cursor over either of the plots to watch the
progress of the gradient descent algorithm. The left plot shows the curve of the network, and the four targets (in red). Simultaneously, the right plot shows the position of

the network on its error surface.

We can make several observations in Figure 12.
» First, note that the four input/target pairs do not fit a sigmoid line, so there is no perfect solution to the problem. At best, we can expect gradient
descent to find a curve somewhere in between all of the points.
» Second, note that the error surface appears to have a single deep valley, so gradient descent should be able to descend into it.

= Finally, when watching the function curve move toward the targets, note that its movement becomes erratic as it nears the targets. This is an example
of the "overstepping” problem, where the algorithm misses a good solution because its step size is too large. We can address this by introducing a step
coefficient. In the context of ANNSs, this coefficient is often called a "learning rate”. Typically, the coefficient is set up to decrease over time, so that the




Constrained Optimization

fx):RY — R

X = arg min f(x)
X

Subiject to:

« Equality constraints: a(x)=0 1=1,2,...

 Nonequality constraints; ¢;(x) =20 = 1.2...
« Constraints define a feasible region, which is nonempty.

The idea is to convert it to an unconstrained optimization.

S



Equality constraints

« Minimize f(x) subject to: @;(x) =0  for i =1.2.....p

* The gradient of f(x) at a local minimizer is equal to the
linear combination of the gradients of a(x) with

Lagrange multipliers as the coefficients.

P
Vi) =) AVa(x)
A= |



Inequality constraints

« Minimize f(x) subject to: c¢;(x) >0 for J=1.2....

* The gradient of f(x) at a local minimizer is equal to the
linear combination of the gradients of ¢(x), which are
active (¢(x)=0)

« and Lagrange multipliers must be positive, ; = 0. )€ 4

V[I(x") = Z 15 Ve (x7)

jeA

»



Lagrangien

* \We can introduce the function (Lagrangien)

q

L(x, A p) = f(x ZA ai(x) = > pyei(x)

a=l|
* The necessary condition for the local minimizer is
V. L(x.A.u)=0

and it must be a feasible point (i.e. constraints are
satisfied).

* These are Karush-Kuhn-Tucker conditions



General Nonlinear Optimization

I N

Minimize AX)
subject to: a;(x) = 0
c;(x) >0
where the objective function and constraints are
nonlinear.

For a given {x«. Av. i} approximate Lagrangien by
Taylor series — QP problem

Solve QP — descent direction {d..6,.6,,}
Perform line search in the direction 6, — Xi+1
Update Lagrange multipliers — {Ni+1. #441}
Repeat from Step 1.



General Nonlinear Optimization

q
Lagrangien  L(x, A\, u) = f(x Z)\ (1 Z,{,zjcrj(x)

At the kth iterate: {x;. A, 1}
and we want to compute a set of increments:{9...9,.9,}

First order approximation of V. and constraints:

o VoL(Xpt1 M1 1) B Vo L(xp. A, o)+
+ V2 L(Xpee Abs )00+ Vs LKk Ao py )02+ V7 L(Xp Apeo )8, = 0

o Ci(x0,) & (%) + 6L V,ci(xy) >0
o a;(xp0,) = a;(xy) + 5;{V,,(i1.,;(x;‘[) = ()

These approximate KKT conditions corresponds to a QP program



Quadratic Programming (QP)

* Like in the unconstrained case, it is important to study
quadratic functions. Why?

* Because general nonlinear problems are solved as a
sequence of minimizations of their quadratic
approximations.

QP with constraints
1

Minimize f(X) = §XIHX +x'p

subject to linear constraints.

« H is symmetric and positive semidefinite.



QP with Equality Constraints

e Minimize  f(x) I;XIHXJerp

3
s

Subjectto: Ax=b

* Ass.: Ais p x N and has full row rank (p<N)

« Convert to unconstrained problem by variable
elimination:
x=7Z¢+ A"b

Z. is the null space of A
A" is the pseudo-inverse.

Minimize /(¢) = %cﬁfﬂcb +¢'p

This quadratic unconstrained problem can be solved, e.g.,
by Newton method.



QP with inequality constraints

. 1 .
e Minimize  [f(x) = 5x1 Hx +x'p
Subjectto: Ax>b

 First we check if the unconstrained minimizer x* = —H 'p
is feasible.
If yes we are done.

If not we know that the minimizer must be on the
boundary and we proceed with an active-set method.

* x, is the current feasible point
- A, is the index set of active constraints at x,
 Next iterate is given by x,4+1 = x; + a;d,



Active-set method

Al =Ja;...a)

* Xpt1 = X + (-]‘lcdlc How to find dk?

— To remain active a‘f‘x;\,ﬂ —0; =0 thus a:f'd;l, =0 jeA
— The objective function at x,+d becomes

fu(d) = §dl Hd + d’ gn + f(xi) where 81 — Vj(x;l..)

« The major step is a QP sub-problem

g -
d, = arg ngn 5d1 Hd + d’g,

subjectto:  a'd=0 je A,

* Two situations may occur: d, =0 or d;, #£0



Active-set method

® d,g =0
We check if KKT conditions are satisfied

VoL(x.pu)=Hx,+p— Z j;a;, =0 and g =0
e A
If YES we are done.
If NO we remove the constraint from the active set.4: with the most

negative //; and solve the QP sub-problem again but this time with
less active constraints.

+d;, # 0

We can move to X, = X, +d; but some inactive constraints
may be violated on the way.

In this case, we move by « . d, till the first inactive constraint
becomes active, update .4, , and solve the QP sub-problem again
but this time with more active constraints.
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