ICCV 2007 tutorial on Discrete Optimization Methods in Computer Vision

part I Basic overview of graph cuts

Disclaimer

Can not possibly cover all discrete optimization methods widely used in computer vision in the last 30 years

We mainly concentrate on

- Discrete energy minimization methods that can be applied to Markov Random Fields with binary or n-labels
 - applicable to a wide spectrum of problems in vision
- Methods motivated by LP relaxations
 - good bounds on the solutions

Discrete Optimization Methods in Computer Vision

Part I: basic overview of graph cuts

- binary labeling
 - a few basic examples
 - energy optimization
 - submodularity (discrete view)
 - continuous functionals (geometric view)
 - posterior MRF energy (statistical view)
- extensions to multi-label problems
 - interactions: convex, robust, metric
 - move-based optimization

2D Graph cut \Leftrightarrow shortest path on a graph

Example: find the shortest closed contour in a given domain of a graph

Shortest paths approach (*live wire*, *intelligent scissors*)

Compute the *shortest path p*->*p* for a point *p*. Repeat for all points on the gray line. Then choose the optimal contour. Graph Cuts approach

Compute the *minimum cut* that separates red region from blue region

Graph cuts for optimal boundary detection (B&J, ICCV'01)

Minimum cost cut can be computed in polynomial time

(max-flow/min-cut algorithms)

Standard minimum *s*-*t* cuts algorithms

Augmenting paths [Ford & Fulkerson, 1962]Push-relabel [Goldberg-Tarjan, 1986]

adapted to N-D grids used in computer vision

- Tree recycling (dynamic trees) [B&K, 2004]
- Flow recycling (*dynamic cuts*) [Kohli & Torr, 2005]
- Cut recycling (*active cuts*) [Juan & Boykov, 2006]
- Hierarchical methods
 - in search space [Lombaert et al., CVPR 2005]
 - in edge weights (capacity scaling) [Juan et al., ICCV07]

Optimal boundary in 2D

"max-flow = min-cut"

Optimal boundary in 3D

3D bone segmentation (real time screen capture)

Graph cuts applied to multi-view reconstruction

surface of good photoconsistency

CVPR'05 slides from Vogiatzis, Torr, Cippola

suppose I^s and I^t are given "expected" intensities of object and background

regional bias example

NOTE: hard constrains are not required, in general.

EM-style optimization of piece-vice constant Mumford-Shah model

More generally, regional bias can be based on any intensity models of object and background

given object and background intensity histograms

Iterative learning of regional color-models

GMMRF cuts (Blake et al., ECCV04)Grab-cut (Rother et al., SIGGRAPH 04)

parametric regional model – Gaussian Mixture (GM) designed to guarantee convergence At least three ways to look at energy of graph cuts

- I: Binary submodular energy
- II: Approximating continuous surface functionals III: Posterior energy (MAP-MRF)

Simple example of energy

$$L_p \in \{s, t\}$$

binary object segmentation

Graph cuts for minimization of submodular <u>binary</u> energies I

Characterization of **binary** energies that can be globally minimized by *s-t* graph cuts [Boros&Hummer, 2002, K&Z 2004]

$$E(L)$$
 can be minimized
by s-t graph cuts $\longleftrightarrow E(s,s) + E(t,t) \le E(s,t) + E(t,s)$ Submodularity ("convexity")

- **Non-submodular cases** can be addressed with some optimality guarantees, e.g. *QPBO* algorithm
 - (see Boros&Hummer, 2002, Tavares et al. 06, Rother et al. 07)

Graph cuts for minimization of continuous surface functionals

Geometric length any convex, symmetric metric *g* e.g. Riemannian Flux any vector field V **Regional bias** any scalar function f

Characterization of energies of <u>binary</u> cuts C as functionals of continuous surfaces

> [B&K, ICCV 2003] [K&B, ICCV 2005]

One extension using parametric max-flow methods

optimization of ratio functionals

$$E(C) = \frac{\int_{C} \left\langle \vec{\mathbf{N}}, \vec{\mathbf{v}}_{x} \right\rangle ds}{\int_{C} g(\cdot) ds} \qquad E(C) = \frac{\int_{C} g(\cdot) ds}{\int_{\Omega(C)} f(x) dp}$$

In 2D can use DP [Cox et al'96, Jermyn&Ishikawa'01]
In 3D, see a poster on Tuesday (Kolmogorov, Boykov, Rother)

Graph cuts for minimization of posterior energy

Ш

Greig at al. [IJRSS, 1989]

• Posterior energy (MRF, Ising model)

$$E(L) = \sum_{p} -\ln \Pr(D_{p} | L_{p}) + \sum_{pq \in N} V_{pq}(L_{p}, L_{q})$$
Likelihood
(data term) Spatial prior
(regularization) $L_{p} \in \{s, t\}$

Graph cuts algorithms can minimize multi-label energies as well

Multi-scan-line stereo with *s*-*t* graph cuts (Roy&Cox'98)

s-t graph-cuts for multi-label energy minimization

Ishikawa 1998, 2000, 2003

Generalization of construction by Roy&Cox 1998

Pixel interactions V:

"convex" vs. "discontinuity-preserving"

Pixel interactions: "convex" vs. "discontinuity-preserving"

truncated "linear" V

Robust interactions

- NP-hard problem (3 or more labels)
 - two labels can be solved via *s-t* cuts (Greig at. al., 1989)
- *a-expansion* approximation algorithm (Boykov, Veksler, Zabih 1998, 2001)
 - guaranteed approximation quality (Veksler, thesis 2001)
 - within a factor of 2 from the global minima (Potts model)
 - applies to a wide class of energies with robust interactions
 - Potts model (BVZ 1989)
 - "metric" interactions (BVZ 2001)
 - can be extended to arbitrary interactions with weaker guarantees
 - truncation (Kolmogorov et al. 2005)
 - QPBO (Boros and Hummer, 2002)
- Other "move" algorithms (e.g. *a-b* swap, jump-moves)
- More is coming later in this tutorial

a-expansion algorithm

- 1. Start with any initial solution
- 2. For each label "a" in any (e.g. random) order
 - 1. Compute optimal a-expansion move (s-t graph cuts)
 - 2. Decline the move if there is no energy decrease
- 3. Stop when no expansion move would decrease energy

a-expansion move

Basic idea: break multi-way cut computation into a **sequence of binary** *s-t* cuts

a-expansion moves

In each *a*-expansion a given label "a" grabs space from other labels

For each move we choose expansion that gives the largest decrease in the energy: **binary optimization problem**

Metric interactions

 $V(a,b) = 0 \quad \text{iff } a = b$ V(a,b) = V(b,a) >= 0 $V(a,c) <= V(a,b) + V(b,c) \qquad \qquad \text{Triangular}$ inequality

Implies that every expansion move (a binary problem) is <u>submodular</u>

a-expansions: examples of *metric* interactions

Multi-object Extraction

Multi-way graph cuts

Stereo/Motion with slanted surfaces (Birchfield &Tomasi 1999)

Labels = parameterized surfaces

EM based: E step = compute surface boundaries M step = re-estimate surface parameters

Multi-way graph cuts

stereo vision

depth map

original pair of "stereo" images

Graph-cut textures

(Kwatra, Schodl, Essa, Bobick 2003)

similar to "image-quilting" (Efros & Freeman, 2001)

a-expansions vs. simulated annealing

nsirmalitæðlæmrælinig,n, startlfohoune,ali212,324.71% err

a-expansions (BVZ 89,01) 90 seconds, 5.8% err

