
ICCV 2007 tutorial on
Discrete Optimization Methods 

in Computer Vision 

part  I
Basic overview of graph cuts



Disclaimer

 Can not possibly cover all discrete optimization methods 
widely used in computer vision in the last 30 years

 We mainly concentrate on
• Discrete energy minimization methods that can be applied to 

Markov Random Fields with binary or n-labels
– applicable to a wide spectrum of problems in vision

• Methods motivated by LP relaxations
– good bounds on the solutions



Discrete Optimization Methods 
in Computer Vision

 Part  I: basic overview of graph cuts
• binary labeling 

– a few basic examples
– energy optimization

• submodularity (discrete view)
• continuous functionals (geometric view)
• posterior MRF energy (statistical view)

• extensions to multi-label problems
– interactions: convex, robust, metric  
– move-based optimization



Shortest paths
approach

(live wire, intelligent scissors)

2D Graph cut shortest path on a graph

Example:
find the shortest 

closed contour in a given 
domain of a graph

Compute the shortest path
p ->p for a point p. 

p

Graph Cuts
approach

Compute the 
minimum cut that 

separates red region 
from blue region

Repeat for all points on the 
gray line. Then choose the 

optimal contour.





Graph cuts for optimal boundary detection
(B&J, ICCV’01)
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Minimum cost cut can be 
computed in polynomial time

(max-flow/min-cut algorithms)
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Standard minimum s-t cuts algorithms

 Augmenting paths [Ford & Fulkerson, 1962]
 Push-relabel [Goldberg-Tarjan, 1986]

 Tree recycling (dynamic trees) [B&K, 2004]
 Flow recycling (dynamic cuts) [Kohli & Torr, 2005]
 Cut recycling (active cuts) [Juan & Boykov, 2006]
 Hierarchical methods

- in search space [Lombaert et al., CVPR 2005]
- in edge weights (capacity scaling) [Juan et al., ICCV07]

adapted to N-D grids used in computer vision



Optimal boundary in 2D

“max-flow = min-cut”



Optimal boundary in 3D

3D bone segmentation (real time screen capture)



Graph cuts applied to multi-view  
reconstruction

CVPR’05 slides from Vogiatzis, Torr, Cippola

visual hull
(silhouettes)

surface of good photoconsistency



Adding regional properties
(B&J, ICCV’01)
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NOTE: hard constrains are not required, in general.EM-style optimization of piece-vice constant Mumford-Shah model

Adding regional properties
(B&J, ICCV’01)
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object and background
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Adding regional properties
(B&J, ICCV’01)
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More generally, regional bias can be based on any 
intensity models of object and background



Adding regional properties
(B&J, ICCV’01)



Iterative learning of regional color-models

 GMMRF cuts (Blake et al., ECCV04)
 Grab-cut (Rother et al., SIGGRAPH 04)

parametric regional model – Gaussian Mixture (GM)
designed to guarantee convergence



At least three ways to look at
energy of graph cuts

I:  Binary submodular energy 

II: Approximating continuous surface functionals
III: Posterior energy (MAP-MRF)



Simple example of energy
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Graph cuts for minimization of 
submodular binary energies             I

 Characterization of binary energies that can be globally 
minimized by s-t graph cuts [Boros&Hummer, 2002, K&Z 2004]

 Non-submodular cases can be addressed with some 
optimality guarantees, e.g. QPBO algorithm 
• (see Boros&Hummer, 2002,  Tavares et al. 06, Rother et al. 07)
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E(L) can be minimized 
by s-t graph cuts
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Submodularity    (“convexity”)



Graph cuts for minimization of 
continuous surface functionals                 II

[K&B, ICCV 2005]
[B&K, ICCV 2003]

 Characterization of energies of binary cuts C as                    
functionals of continuous surfaces 

This image cannot currently be displayed.
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Geometric length
any convex, 

symmetric metric g
e.g. Riemannian

Flux
any vector field v

Regional bias
any scalar function f



One extension
using parametric max-flow methods

 optimization of ratio functionals

 In 2D can use DP [Cox et al’96, Jermyn&Ishikawa’01] 
 In 3D, see a poster on Tuesday (Kolmogorov, Boykov, Rother)
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Graph cuts for minimization of
posterior energy                                        III

 Greig at al. [IJRSS, 1989]
• Posterior energy (MRF, Ising model)

),()|Pr(ln)( 



Npq

qppq
p

pp LLVLDLE

},{ tsLp

Example: binary image restoration

Spatial prior
(regularization)

Likelihood
(data term)



Graph cuts algorithms can minimize 
multi-label energies as well



Multi-scan-line stereo 
with s-t graph cuts (Roy&Cox’98)
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s-t graph-cuts for 
multi-label energy minimization

 Ishikawa 1998, 2000, 2003
 Generalization of construction by Roy&Cox 1998

V(dL)

dL=Lp-Lq

V(dL)

dL=Lp-Lq

Linear interactions “Convex” interactions
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Pixel interactions V:
“convex” vs. “discontinuity-preserving”  

V(dL)

dL=Lp-Lq

Potts 
model

Robust or “discontinuity preserving”
Interactions V

V(dL)

dL=Lp-Lq

“Convex”
Interactions V

V(dL)

dL=Lp-Lq

V(dL)

dL=Lp-Lq

“linear” 
model

(weak membrane models,
see a book by Blake and Zisserman, 87)



Pixel interactions:
“convex” vs. “discontinuity-preserving”

“linear” V

truncated 
“linear” V



Robust interactions
 NP-hard problem (3 or more labels) 

• two labels can be solved via s-t cuts (Greig at. al., 1989)

 a-expansion approximation algorithm 
(Boykov, Veksler, Zabih 1998, 2001)

• guaranteed approximation quality (Veksler, thesis 2001)
– within a factor of 2 from the global minima (Potts model)

• applies to a wide class of energies with robust interactions
– Potts model   (BVZ 1989)
– “metric” interactions   (BVZ 2001)
– can be extended to arbitrary interactions with weaker guarantees

• truncation (Kolmogorov et al. 2005) 
• QPBO (Boros and Hummer, 2002)

 Other “move” algorithms (e.g. a-b swap, jump-moves)
 More is coming later in this tutorial



a-expansion algorithm

1. Start with any initial solution
2. For each label  “a”  in any (e.g. random) order

1. Compute optimal a-expansion move (s-t graph cuts)
2. Decline the move if there is no energy decrease

3. Stop when no expansion move would decrease energy



other labelsa

a-expansion move
Basic idea: break multi-way cut computation 

into a sequence of binary s-t cuts



a-expansion moves

initial solution

-expansion

-expansion

-expansion

-expansion

-expansion

-expansion

-expansion

In each a-expansion a given label “a”  grabs space from other labels

For each move we choose expansion that gives the largest decrease in 
the energy:      binary optimization problem



Metric interactions

V(a,b)=0  iff a=b

V(a,b) = V(b,a) >= 0   

V(a,c) <= V(a,b)+V(b,c)   Triangular
inequality

Implies that every expansion move (a binary problem)
is submodular



a-expansions:
examples of metric interactions

Potts V

“noisy diamond”“noisy shaded diamond”

Truncated “linear” V



Multi-way graph cuts

Multi-object Extraction



Multi-way graph cuts

Stereo/Motion with slanted surfaces 
(Birchfield &Tomasi 1999)

Labels = parameterized surfaces

EM based:  E step = compute surface boundaries  
M step = re-estimate surface parameters 



Multi-way graph cuts

stereo vision

original pair of “stereo” images

depth map

ground truthBVZ 1998KZ 2002



Multi-way graph cuts

Graph-cut textures 
(Kwatra, Schodl, Essa, Bobick 2003)

similar to “image-quilting” (Efros & Freeman, 2001) 
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normalized correlation,
start for annealing, 24.7% err

simulated annealing, 
19 hours,   20.3% err

a-expansions (BVZ 89,01)
90 seconds,   5.8% err
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Annealing Our method

a-expansions vs. simulated annealing


