


MATHEMATICAL MODEL OF IMAGE DEGRADATION
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Gaussian Kernel

Source: C. Rasmussen



Gaussian filters

= 30 pixels= 1 pixel = 5 pixels = 10 pixels



Gaussian filter
• Removes “high-frequency” components from 

the image (low-pass filter)
• Convolution with self is another Gaussian

– Convolving two times with Gaussian kernel of 
width = convolving once with kernel of width  

Source: K. Grauman
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Sharpening revisited
• What does blurring take away?

original smoothed (5x5)

–

detail

=

sharpened

=

Let’s add it back:

original detail

+ α

Source: S. Lazebnik



Sharpen filter

Gaussianscaled impulse Laplacian of Gaussian

image blurred
image unit impulse

(identity)



Sharpen filter

unfiltered

filtered



Convolution in the real world

Source: http://lullaby.homepage.dk/diy-camera/bokeh.html

Bokeh: Blur in out-of-focus regions of an image. 

Camera shake

*=
Source: Fergus, et al. “Removing Camera Shake from a Single Photograph”, SIGGRAPH 2006 



Image Sharpening
• Idea: compute intensity differences in local 

image regions.
• Useful for emphasizing transitions in 

intensity (e.g., in edge detection).

1st derivative
of Gaussian



Sharpening

Source: D. Lowe



Filtering as matrix multiplication

What kind of filter is this?



Multiplying row and column vectors

=  ?



Filtering as matrix multiplication
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A model of the image 
degradation/restoration process

g(x,y)=f(x,y)*h(x,y)+η(x,y)

G(u,v)=F(u,v)H(u,v)+N(u,v)



 Histogram is an estimate of PDF

Measure the mean and variance
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Gaussian: μ, σ
Uniform: a, b



Additive noise only

g(x,y)=f(x,y)+η(x,y)

G(u,v)=F(u,v)+N(u,v)



Estimation by image 
observation

 Take a window in the image
 Simple structure
 Strong signal content 

 Estimate the original image in the window
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Inverse filtering
 With the estimated degradation function 

H(u,v)
G(u,v)=F(u,v)H(u,v)+N(u,v)
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Estimate of
original image

Problem: 0 or small values

Unknown
noise

Sol: limit the frequency 
around the origin
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Obtain restoration as:

Minimize:

Atmospheric Turbulence Blur
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h(m,n) +x(m,n) y(m,n)

),( nmw

• Linear degradation model

),( nmh blurring filter

),0(~),( 2
wNnmw σ additive white Gaussian noise

Modeling Blurring Process
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w

zBSNR
σ
σ=

Blurring SNR

The Curse of Noise 

h(m,n) +x(m,n) y(m,n)

),0(~),( 2
wNnmw σ

z(m,n)
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Blind vs. Nonblind Deblurring
 Blind deblurring (deconvolution): 

blurring kernel h(m,n) is unknown
 Nonblind deconvolution:

blurring kernel h(m,n) is known
 In this course, we only cover the 

nonblind case (the easier case)
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Image Deblurring
 Introduction
 Inverse filtering

 Suffer from noise amplification
 Wiener filtering

 Tradeoff between image recovery and 
noise suppression

 Iterative deblurring*
 Landweber algorithm
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Inverse Filter

h(m,n)

blurring filter

hI(m,n)x(m,n) y(m,n)

inverse filter
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To compensate the blurring, we require
hcombi (m,n)

x(m,n)^
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Inverse Filtering (Con’t)

h(m,n) +x(m,n) y(m,n)

),( nmw

hI(m,n)

inverse filter

x(m,n)^

Spatial:
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Pseudo-inverse FilterBasic idea:

To handle zeros in H(w1,w2), we treat them separately
when performing the inverse filtering
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Image Deblurring
 Introduction
 Inverse filtering

 Suffer from noise amplification
 Wiener filtering

 Tradeoff between image recovery and 
noise suppression

 Iterative deblurring*
 Landweber algorithm
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Norbert Wiener (1894-1964)

The renowned MIT professor Norbert Wiener 
was famed for his absent-mindedness. While 
crossing the MIT campus one day, he was 
stopped by a student with a mathematical 
problem. The perplexing question answered, 
Norbert followed with one of his own: "In which 
direction was I walking when you stopped me?" 
he asked, prompting an answer from the 
curious student. "Ah," Wiener declared, 
"then I've had my lunch”

Anecdote of Norbert Wiener
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Wiener Filtering
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Also called Minimum Mean Square Error (MMSE) or Least-Square (LS) filtering

constant

Example choice of K:
2

2

z

wK
σ
σ=

noise energy

signal energy
K=0 → inverse filtering
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Constrained Least Square Filtering
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Similar to Wiener but a different way of balancing the tradeoff between

Example choice of C:
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Laplacian operator
γ=0 → inverse filtering
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Image Deblurring
 Introduction
 Inverse filtering

 Suffer from noise amplification
 Wiener filtering

 Tradeoff between image recovery and 
noise suppression

 Iterative deblurring*
 Landweber algorithm
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Method of Successive Substitution

 A powerful technique for finding the roots of any 
function f(x)

 Basic idea
 Rewrite f(x)=0 into an equivalent equation x=g(x) (x is 

called fixed point of g(x))
 Successive substitution: xi+1=g(xi)
 Under certain condition, the iteration will converge to the 

desired solution
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Numerical Example
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Numerical Example (Con’t)

Note that iteration quickly converges to x=1
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Landweber Iteration

Successive substitution:

00 =X
)(1 nnn HXYXX −+=+ β

HXYXf −=)(

),(),(),( 212121 wwXwwHwwY =Linear blurring

We want to find the root of

)()()(0)( XgHXYXXfXXXf =−+=+== ββ
β relaxation parameter – controls convergence property
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