

Augmenting Reality, Naturally:

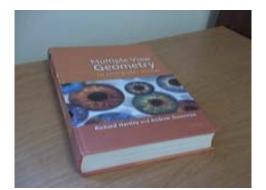
Scene Modelling, Recognition and Tracking with Invariant Image Features

by Iryna Gordon

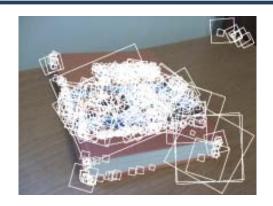
> in collaboration with David G. Lowe Laboratory for Computational Intelligence Department of Computer Science University of British Columbia, Canada

computer vision

automation:


- acquisition of scene representation
- camera auto-calibration
- scene recognition from arbitrary viewpoints

versatility:


- easy setup
- unconstrained scene geometry
- unconstrained camera motion
- distinctive natural features

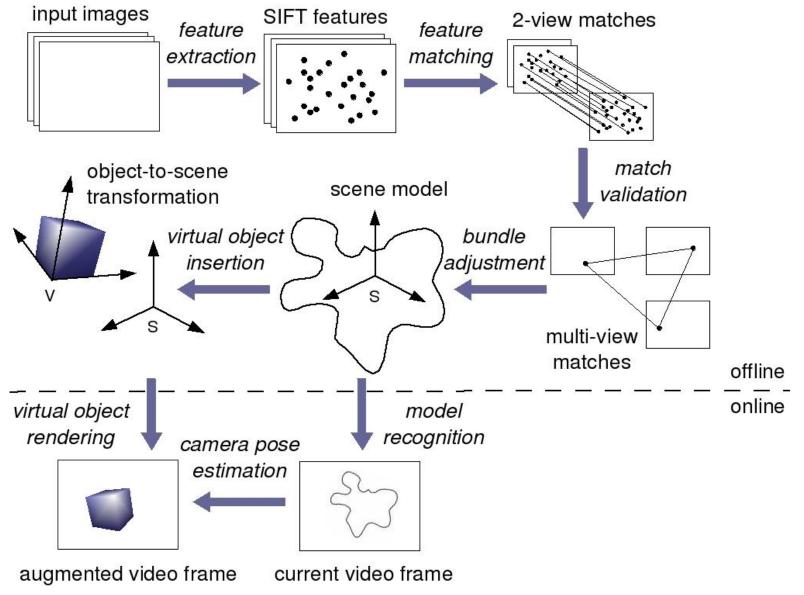
natural features

Scale Invariant Feature Transform (SIFT)

- characterized by image location, scale, orientation and a descriptor vector
- . invariant to image scale and orientation
- partially invariant to illumination & viewpoint changes
- . robust to image noise
- . highly distinctive and plentiful

David G. Lowe. Distinctive image features from scale-invariant keypoints. *International Journal of Computer Vision*, 2004.

what the system needs

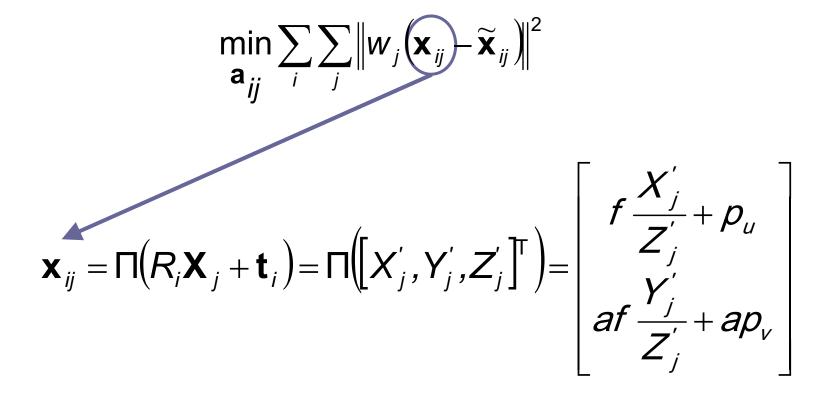


- computer
- off-the-shelf video camera
- set of reference images:
 - unordered
 - acquired with a handheld camera
 - unknown viewpoints
 - at least 2 images

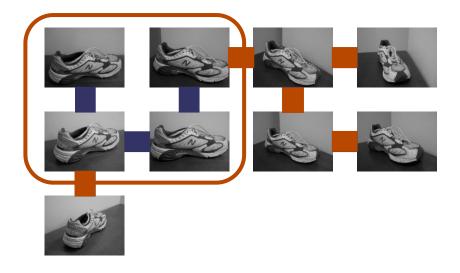
what the system does

modelling reality: feature matching

- best match smallest Euclidean distance between descriptor vectors
- 2-view matches found via Best-Bin-First (BBF) search on a k-d tree
- epipolar constraints computed for N -1 image pairs with RANSAC
- image pairs selected by constructing a spanning tree on the image set:



F. Schaffalitzky and A. Zisserman. Multi-view matching for unordered image sets, or "How do I organize my holiday snaps?". *ECCV*, 2002.


 Euclidean 3D structure & auto-calibration from multi-view matches via direct <u>bundle adjustment</u>:

R. Szeliski and Sing Bing Kang. Recovering 3D shape and motion from image streams using non-linear least squares. Cambridge Research, 1993.

- Problem:
 - computation time increases exponentially with the number of unknown parameters
 - trouble converging if the cameras are too far apart (> 90 degrees)
- Solution:
 - select a subset of images to construct a partial model
 - incrementally update the model by resectioning and triangulation
 - images processed in order automatically determined by the spanning tree

modelling reality: object placement

initial placement in 2D

determining relative depth

adjusting size and pose

rendered object in reference images

- model points' appearances in reference images are stored in a k-d tree
- 2D-to-3D matches $(\widetilde{\mathbf{x}}_{t_i}, \mathbf{X}_{j})$ found with RANSAC for each video frame t
- camera pose computed via non-linear optimization:

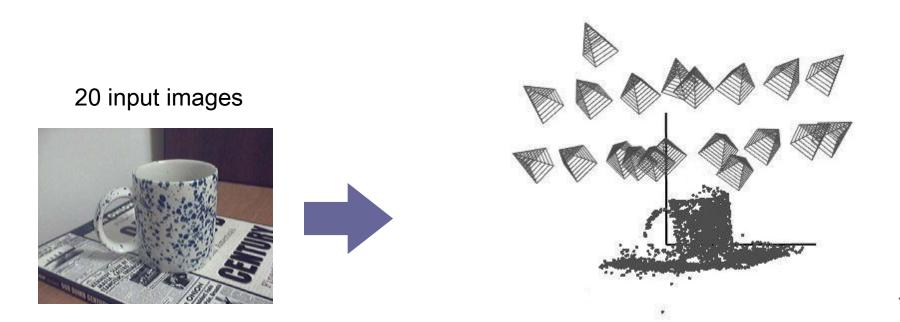
$$\min_{\mathbf{p}_{t}} \sum_{j} \left\| \boldsymbol{w}_{tj} \left(\mathbf{x}_{tj} - \widetilde{\mathbf{x}}_{tj} \right) \right\|^{2} + \alpha^{2} \left\| \boldsymbol{W} \left(\mathbf{p}_{t} - \mathbf{p}_{t-1} \right) \right\|^{2}$$

- we regularize the solution to reduce virtual jitter
- α iteratively adjusted for each video frame:

$$\alpha^{2} \| W(\mathbf{p}_{t} - \mathbf{p}_{t-1}) \|^{2} \leq \sigma^{2} N \qquad \Longrightarrow \qquad \alpha^{2} = \frac{\sigma^{2} N}{\| W(\mathbf{p}_{t} - \mathbf{p}_{t-1}) \|^{2}}$$

video examples

- optimize online computations for real-time performance:
 - SIFT recognition with a frame-to-frame feature tracker
- introduce multiple feature types:
 - SIFT features with edge-based image descriptors
- perform further testing:
 - scalability to large environments
 - multiple objects: real and virtual



questions?

http://www.cs.ubc.ca/~skrypnyk/arproject/

modelling reality: an example

20 iterations: error = **0**.2 pixels

394

393

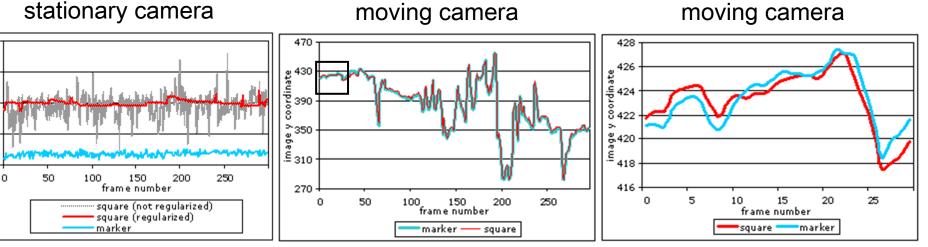
392

391

390

image y coordinate

registration accuracy


ground truth: ARToolKit marker

stationary camera

measurement: virtual square

