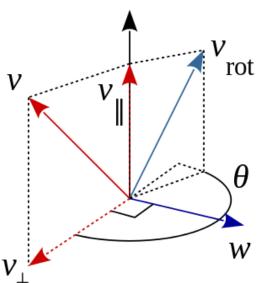
Rodrigues' Rotation Formula k

- k unit vector (rotation axis)
- v vector to rotate about k by θ
- $v = v_{par} + v_{per}$ • $v_{par} = (v.k)k$ (1) [projection of v on k]

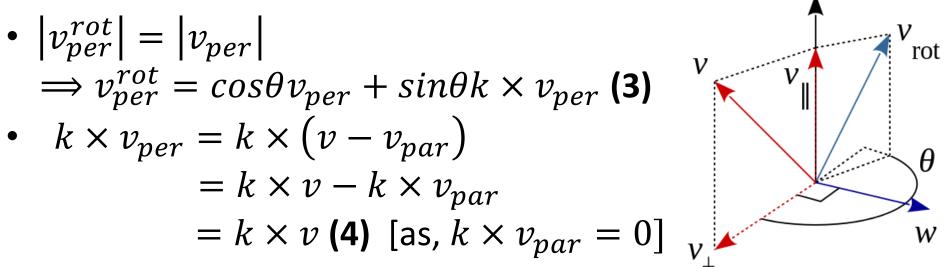


•
$$v_{per} = (v - v_{par})$$

= $v - (k.v)k = (k.k)v - k.v(k) = -k \times (k \times v)$ (2)

- $v_{par}^{rot} = v_{par}$ (parallel comp. will not change direction or magnitude Under rotation)
- $|v_{per}^{rot}| = |v_{per}|$ (perpendicular comp. changes its direction but retains its magnitude under rotation)

Rodrigues' Rotation Formula



- Putting in Eq.3, $v_{per}^{rot} = cos\theta v_{per} + sin\theta k \times v$
- Finally, the full rotated vector is

$$v_{rot} = v_{par}^{rot} + v_{per}^{rot}$$

= $v_{par} + \cos\theta v_{per} + \sin\theta k \times v$
= $v_{par} + \cos\theta (v - v_{par}) + \sin\theta k \times v$
= $\cos\theta v + (1 - \cos\theta)v_{par} + \sin\theta k \times v$
= $\cos\theta v + (1 - \cos\theta)(k.v)k + \sin\theta k \times v$ (5)

Rodrigues' Rotation Formula

- $k \times v$ can be expressed as a matrix product $\begin{bmatrix}
 (k \times v)_{x} \\
 (k \times v)_{y} \\
 (k \times v)_{z}
 \end{bmatrix} =
 \begin{bmatrix}
 0 & -k_{z} & k_{y} \\
 k_{z} & 0 & -k_{x} \\
 -k_{y} & k_{x} & 0
 \end{bmatrix}
 \begin{bmatrix}
 v_{x} \\
 v_{y} \\
 v_{z}
 \end{bmatrix} = [k]_{X}v$
- So, $[k]_X v = k \times v$ • $(k.v)k = v + k \times (k \times v)$ $= v + [k]_X([k]_X v) = v + [k]_X^2 v$
- Putting in Eq.5

$$v_{rot} = cos\theta v + (1 - cos\theta)(v + [k]_X^2 v) + sin\theta k \times v$$

= $v + (sin\theta)[k]_X v + (1 - cos\theta)[k]_X^2 v$
= Rv
where. $\mathbf{R} = \mathbf{I} + (sin\theta)[k]_V + (1 - cos\theta)[k]_V^2$

Monasse 3-step Rectification

• INPUT : Fundamental Matrix, F by DLT.

 $e = (e_x, e_y, l)^T$ Applying, Fe = 0, find e.

$$e' = (e'_x, e'_y, l)^T$$
 Applying, $e'^T F = 0$, find e' .

• Orientation of a camera can be adjusted by,

 $H = KRK^{-1}$

• Since the image is not calibrated,

$$K = \begin{bmatrix} f & 0 & \frac{w}{2} \\ 0 & f & \frac{h}{2} \\ 0 & 0 & 1 \end{bmatrix} \quad \text{where,} \quad w = \text{width of the image}$$

h = height of the image.

Monasse 3-step Rectification

• <u>Step 1:</u>

$$H_{1}e = (e_{x}, e_{y}, 0)^{T} = e_{1}$$
 where, $H_{1} = KR_{1}K^{-1}$

$$H'_{l}e' = (e'_{x}, e'_{y}, 0) = e'_{l}$$

where,
$$H'_1 = KR'_1K^{-1}$$

$$H_{I}e = (e_{x}, e_{y}, \theta)^{T}$$
$$KR_{I}K^{-1}e = (e_{x}, e_{y}, \theta)^{T}$$
$$R_{I}K^{-1}e = K^{-1}(e_{x}, e_{y}, \theta)^{T}$$
$$R_{I}\mathbf{a} = \mathbf{b}$$

According to Rodrigues' formulae, $R_{I}(\theta, t) = I + \sin \theta [t]_{\times} + (1 - \cos \theta) [t]_{\times}^{2}$ where,

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$
 and
rotation axis, $t = \frac{\mathbf{a} \cdot \mathbf{x} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$

Monasse 3-step Rectification

• <u>Step 2</u>:

 $H_2 e_1 = (1,0,0)^T = e_2$ where, $H_2 = K R_2 K^{-1}$

 $H'_2 e'_1 = (1,0,0)^T = e'_2$ where, $H'_2 = K R'_2 K^{-1}$

 $\therefore H_1, H'_1, H_2, H'_2$ are all parameterized by f.

• <u>Step 3:</u>

The remaining relationship between the two cameras of the rectified image is characterized by a rotation, \hat{R} around the baseline.

Finding the Essential Matrix

• According to Zisserman and Hartley,

 \hat{F} of a rectified image is given by $\hat{F} = K^{-T} [i]_{\times} \hat{R} K^{-1} = K^{-T} \hat{E} K^{-1}$ $\hat{F} = [i]_{\times} \hat{P}$

 $\therefore \hat{E} = [i]_{\times} \hat{R}$

 \hat{E} is also parameterized by f. Now, \hat{E} is decomposed into $\hat{E} = UDV^T$ Following the definition of Essential Matrix,

$$\hat{\widetilde{E}} = U \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} V^T$$

$$\therefore \hat{\widetilde{F}} = K^{-T} \hat{\widetilde{E}} K^{-1}$$

The optimization step

$$e'_{2}\hat{\widetilde{F}}e_{2} = 0$$

$$(H'_{2}H'_{1}e')^{T}\hat{\widetilde{F}}(H_{2}H_{1}e) = 0$$

$$e'^{T}H'_{1}^{T}H'_{2}^{T}\hat{\widetilde{F}}H_{2}H_{1}e = 0 \quad \text{and, } e'^{T}\widetilde{F}e = 0$$

$$\therefore \widetilde{F} = H'_{1}^{T}H'_{2}^{T}\hat{\widetilde{F}}H_{2}H_{1}$$

Now an optimization function, S is defined as :

 $S(f) = \sum_{i=1}^{N} d(\mathbf{x}'_{i}, \widetilde{F}\mathbf{x}_{i}) + d(\mathbf{x}_{i}, \widetilde{F}^{T}\mathbf{x}'_{i}) \quad \text{where, } N \text{ is the no. of pixels in the image.}$

d(p,q) is the Euclidean distance between p and q.

A minimization of S(f) is done to estimate K in terms of f.

From K, P and P' is estimated.

$$\therefore \mathbf{X} = P^+ \mathbf{x} \quad \text{or} \quad \mathbf{X} = P'^+ \mathbf{x}'$$

MONASSE et al.: THREE-STEP IMAGE RECTIFICATION BMVC 2010 doi:10.5244/C.24.89

The idea is to transform both images so that the fundamental matrix gets the form $[\mathbf{i}]_{\times}$. Unlike the other methods which directly parameterize the homographies from the constraints $\mathbf{H}\mathbf{e} = \mathbf{i}$, $\mathbf{H}'\mathbf{e}' = \mathbf{i}$ and $\mathbf{H}'^T[\mathbf{i}]_{\times}\mathbf{H} = \mathbf{F}$ and find an optimal pair by minimizing a measure of distortion, we shall compute the homography by explicitly rotating each camera around its optical center. The algorithm is decomposed into three steps (Fig. 1):

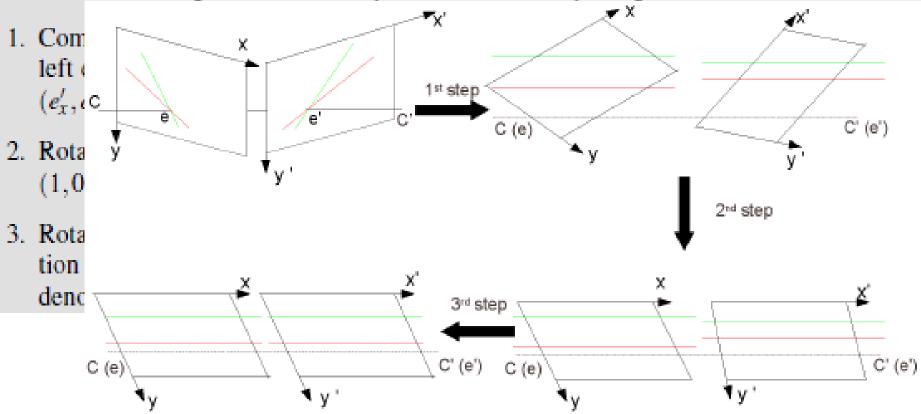


Figure 1: Three-step rectification. First step: the image planes become parallel to CC'. Second step: the images rotate in their own plane to have their epipolar lines also parallel to CC'. Third step: a rotation of one of the image planes around CC' aligns corresponding epipolar lines in both images. Note how the pairs of epipolar lines become aligned.

THREE-STEP IMAGE RECTIFICATION BMVC 2010 doi:10.5244/C.24.89 Input: F, computed using correspondences; which gives epipoles e and e'; Let, $\mathbf{x}_1 = K [\mathbf{I} \mid 0] \mathbf{X}; \Longrightarrow K^{-1} \mathbf{x}_1 = [\mathbf{I} \mid 0] \mathbf{X}$ $\mathbf{x}_2 = K \cdot \mathbf{R} [\mathbf{I} \mid \mathbf{0}] \mathbf{X};$ Steps: 1 & 2: \Rightarrow **x**₂ = K.**R**K⁻¹**x**₁ = H**x**₁; $\mathbf{H}_{1}\mathbf{e} = (e_{x}, e_{y}, 0)^{T}$ and $\mathbf{H}'_{1}\mathbf{e}' = (e'_{x}, e'_{y}, 0)^{T}$ where, **Homography is**: $\mathbf{H}_1 = \mathbf{K}\mathbf{R}\mathbf{K}^{-1}$ and $\mathbf{H}'_1 = \mathbf{K}\mathbf{R}'\mathbf{K}^{-1}$ $H = K \cdot \mathbf{R} K^{-1}$ $\mathbf{R}\mathbf{K}^{-1}\mathbf{e} = \mathbf{K}^{-1}(e_x, e_y, 0)^T$ rotates the vector $\mathbf{a} = \mathbf{K}^{-1} \mathbf{e}$ to $\mathbf{b} = \mathbf{K}^{-1} (e_x, e_y, 0)^T$ $\mathbf{K} = \begin{bmatrix} f & 0 & \frac{w}{2} \\ 0 & f & \frac{h}{2} \\ 0 & 0 & 1 \end{bmatrix}$ $\mathbf{R}(\boldsymbol{\theta}, \mathbf{t}) = \mathbf{I} + \sin \boldsymbol{\theta} [\mathbf{t}]_{\times} + (1 - \cos \boldsymbol{\theta}) [\mathbf{t}]_{\times}^2$ minimal angle θ is $acos(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|})$ and the rotation axis t is $\frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$ $\mathbf{H}_1, \mathbf{H}_1', \mathbf{H}_2$ and \mathbf{H}_2' are all parametrized by f

Step 3: Rotation R[^], of one camera about baseline: $\hat{\mathbf{F}} = \mathbf{K}^{-T}[\mathbf{i}]_{\times}\hat{\mathbf{R}}\mathbf{K}^{-1}$ H₃ is obtained after obtaining optimal K (or f)

Examples

Image-1

Image-2

Rectified Image