
Optimization Methods



Categorization of Optimization Problems 
Continuous Optimization
Discrete Optimization
Combinatorial Optimization 
Variational Optimization

Common Optimization Concepts in Computer Vision 
Energy Minimization 
Graphs 
Markov Random Fields

Several general approaches to optimization are as follows:
Analytical methods
Graphical methods
Experimental methods
Numerical methods

Several branches of mathematical programming have
evolved, as follows:

Linear programming
Integer programming
Quadratic programming
Nonlinear programming
Dynamic programming
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Problem specification

Suppose we have a cost function (or objective function)

Our aim is to find values of the parameters (decision variables) x that 
minimize this function

Subject to the following constraints:

• equality:

• nonequality:

If we seek a maximum of f(x) (profit function) it is equivalent to seeking 
a minimum of –f(x)



Books to read
• Practical Optimization

– Philip E. Gill, Walter Murray, and Margaret H. 
Wright, Academic Press,
1981

• Practical Optimization: Algorithms and 
Engineering Applications
– Andreas Antoniou and Wu-Sheng Lu 

2007

• Both cover unconstrained and constrained 
optimization. Very clear and comprehensive.



Further reading and web resources
• Numerical Recipes in C (or C++) : The Art 

of Scientific Computing
– William H. Press, Brian P. Flannery, Saul A. 

Teukolsky, William T. Vetterling
– Good chapter on optimization
– Available on line at 

(1992 ed.) www.nrbook.com/a/bookcpdf.php
(2007 ed.) www.nrbook.com

• NEOS Guide
www-fp.mcs.anl.gov/OTC/Guide/

• This powerpoint presentation
www.utia.cas.cz



Introductory Items in OPTIMIZATION

- Category of Optimization methods
- Constrained vs Unconstrained
- Feasible Region

• Gradient and Taylor Series Expansion
• Necessary and Sufficient Conditions
• Saddle Point
• Convex/concave functions
• 1-D search – Dichotomous, Fibonacci – Golden 

Section, DSC;

• Steepest Descent; Newton; Gauss-Newton

• Conjugate Gradient;

• Quasi-Newton; Minimax; 
• Lagrange Multiplier; Simplex; Prinal-Dual, 

Quadratic programming; Semi-definite; 



Types of minima

• which of the minima is found depends on the starting 
point

• such minima often occur in real applications
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Unconstrained univariate optimization

Assume we can start close to the global minimum

How to determine the minimum?
• Search methods (Dichotomous, Fibonacci, Golden-Section)
• Approximation methods

1. Polynomial interpolation
2. Newton method

• Combination of both (alg. of Davies, Swann, and Campey) 



Search methods

• Start with the interval (“bracket”) [xL, xU] such that the 
minimum x* lies inside.

• Evaluate f(x) at two point inside the bracket.
• Reduce the bracket.
• Repeat the process.   

• Can be applied to any function and differentiability is not 
essential. 



XL XU X1 Criteria
0 1 1/2 FA > FB

1/2 1 3/4 FA < FB
1/2 3/4 5/8 FA < FB
1/2 5/8 9/16 FA > FB

9/16 5/8 19/32 FA < FB
9/16 19/32 37/64

XL XU RANGE
0 1 1

1/2 1 1/2
1/2 3/4 1/4
1/2 5/8 1/8

9/16 5/8 1/16
9/16 19/32 1/32













Optimization Methods



Search methods
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Dichotomous

Fibonacci: 
1    1    2    3    5    8 …
Ik+5 Ik+4 Ik+3 Ik+2 Ik+1 Ik

Golden-Section Search
divides intervals by 
K = 1.6180





1-D search



1D function

As an example consider the function

(assume we do not know the actual function expression from now on)



Gradient descent
Given a starting location, x0, examine df/dx 
and move in the downhill direction 
to generate a new estimate, x1 = x0 + δx

How to determine the step size δx?



Polynomial interpolation

• Bracket the minimum.
• Fit a quadratic or cubic polynomial which 

interpolates f(x) at some points in the interval.
• Jump to the (easily obtained) minimum of the 

polynomial.
• Throw away the worst point and repeat the 

process.



Polynomial interpolation

• Quadratic interpolation using 3 points, 2 iterations
• Other methods to interpolate?

– 2 points and one gradient
– Cubic interpolation



Newton method

• Expand f(x) locally using a Taylor series.

• Find the δx which minimizes this local quadratic 
approximation.

• Update x.

Fit a quadratic approximation to f(x) using both gradient and 
curvature information at x.



Newton method

• avoids the need to bracket the root
• quadratic convergence (decimal accuracy doubles 

at every iteration)



Newton method

• Global convergence of Newton’s method is poor.
• Often fails if the starting point is too far from the minimum.

• in practice, must be used with a globalization strategy 
which reduces the step length until function decrease is 
assured



Extension to N (multivariate) dimensions

• How big N can be?
– problem sizes can vary from a handful of parameters to 

many thousands 
• We will consider examples for N=2, so that cost 

function surfaces can be visualized.



An Optimization Algorithm 

• Start at x0, k = 0.

1. Compute a search direction pk

2. Compute a step length αk, such that f(xk + αk pk ) < f(xk)

3. Update xk = xk + αk pk

4. Check for convergence (stopping criteria) 
e.g. df/dx = 0

Reduces optimization in N dimensions to a series of (1D) line minimizations

k = k+1



Taylor expansion 

A function may be approximated locally by its Taylor series 
expansion about a point x*

where the gradient   is the vector

and the Hessian H(x*) is the symmetric matrix



Summary of Eqns. Studies so far
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Quadratic functions 

• The vector g and the Hessian H are constant. 
• Second order approximation of any function by the Taylor 

expansion is a quadratic function.

We will assume only quadratic functions for a while.



Necessary conditions for a minimum 

Expand f(x) about a stationary point x* in direction p

since at a stationary point  

At a stationary point the behavior is determined by H



• H is a symmetric matrix, and so has orthogonal 
eigenvectors

• As |α| increases, f(x* + αui) increases, decreases 
or is unchanging according to whether λi is 
positive, negative or zero



Examples of quadratic functions 

Case 1: both eigenvalues positive

with 

minimum

positive 
definite



Examples of quadratic functions 

Case 2: eigenvalues have different sign

with 

saddle point

indefinite



Examples of quadratic functions 

Case 3: one eigenvalues is zero

with 

parabolic cylinder

positive 
semidefinite



Optimization for quadratic functions 

Assume that H is positive definite

There is a unique minimum at

If N is large, it is not feasible to perform this inversion directly.



Steepest descent 

• Basic principle is to minimize the N-dimensional function 
by a series of 1D line-minimizations:

• The steepest descent method chooses pk to be parallel to 
the gradient

• Step-size αk is chosen to minimize f(xk + αkpk).
For quadratic forms there is a closed form solution:

Prove it!



Steepest descent 

• The gradient is everywhere perpendicular to the contour 
lines.

• After each line minimization the new gradient is always 
orthogonal to the previous step direction (true of any line 
minimization).

• Consequently, the iterates tend to zig-zag down the 
valley in a very inefficient manner



Steepest descent

• The 1D line minimization must be performed using one 
of the earlier methods (usually cubic polynomial 
interpolation)

• The zig-zag behaviour is clear in the zoomed view
• The algorithm crawls down the valley











Newton method 

Expand f(x) by its Taylor series about the point xk

where the gradient is the vector

and the Hessian is the symmetric matrix



Newton method 

For a minimum we require that , and so

with solution . This gives the iterative update

• If f(x) is quadratic, then the solution is found in one step.
• The method has quadratic convergence (as in the 1D case).
• The solution is guaranteed to be a downhill direction.
• Rather than jump straight to the minimum, it is better to perform a line 

minimization which ensures global convergence

• If H=I then this reduces to steepest descent.



Newton method 
- example

• The algorithm converges in only 18 iterations compared 
to the 98 for conjugate gradients.

• However, the method requires computing the Hessian 
matrix at each iteration – this is not always feasible



Gauss - Newton method 



Method Alpha (ࢻ) Calculation Intermediate Updates Convergence 
Condition

Steepest-
Descent 
Method
(Method 1)

Find ߙ, the value of ߙ that 
minimizes ݔ)݂ +  ,(݀ߙ
using line search

ାଵݔ = ݔ + ݀݀ߙ = −݂݃ାଵ = (ାଵݔ)݂ If ߙ݀ <∈,
then ݔ∗ = ାଵݔ , ݂ ∗ݔ = ݂ାଵ 
Else ݇ = ݇ + 1

Steepest-
Descent 
Method
(Method 2)

Without Using Line Searchߙ ≈ ்݃ ்݃݃ ݃ܪ
ାଵݔ = ݔ + ݀݀ߙ = −݂݃ାଵ = (ାଵݔ)݂ --” ”--

Newton 
Method

Find ߙ, the value of ߙ that 
minimizes ݔ)݂ +  ,(݀ߙ
using line search

ାଵݔ = ݔ + ݀݀ߙ = ିܪ− ଵ݂݃ାଵ = (ାଵݔ)݂ --” ”--

Gauss-
Newton 
Method

Find ߙ, the value of ߙ that 
minimizes F ݔ + ݀ߙ ,
using line searchܨ =  ݂ ݔ ଶ = ்݂݂ 

ୀଵ݂ = ଵ݂ ݔ  ଶ݂ ݔ … ݂ ݔ ்

ାଵݔ = ݔ + ݀݀ߙ = ିܪ− ଵ݃݃ி = ܪ்݂ܬ2 ≈ ܬ்ܬ2 = ାଵݔି(ࢀࡸ)ࡰିࡸ = ݔ − ߙ ܬ்ܬ ିଵ(்݂ܬ)ݔାଵ = ݔ − ݂(ାଵ)݃ࡸࡰࢀࡸߙ = ݂(ݔ)ܨ(ାଵ) = (ݔ)ܨ

If ܨାଵ − ܨ <∈ then ݔ∗ = ାଵݔ , 
F ∗ݔ =  ାଵܨ
Else ݇ = ݇ + 1





Conjugate gradient 

• Each pk is chosen to be conjugate to all previous search 
directions with respect to the Hessian H:

• The resulting search directions are mutually linearly 
independent.

• Remarkably, pk can be chosen using only knowledge of 
pk-1, , and 

Prove it!





Conjugate gradient 

• An N-dimensional quadratic form can be minimized in at 
most N conjugate descent steps.

• 3 different starting points.
• Minimum is reached in exactly 2 steps.



Optimization for General functions 

Apply methods developed using quadratic Taylor series expansion



Rosenbrock’s function

Minimum at [1, 1]



Conjugate gradient

• Again, an explicit line minimization must be used at 
every step

• The algorithm converges in 98 iterations
• Far superior to steepest descent



Quasi-Newton methods 

• If the problem size is large and the Hessian matrix is 
dense then it may be infeasible/inconvenient to compute 
it directly.

• Quasi-Newton methods avoid this problem by keeping a 
“rolling estimate” of H(x), updated at each iteration using 
new gradient information.

• Common schemes are due to Broyden, Goldfarb, 
Fletcher and Shanno (BFGS), and also Davidson, 
Fletcher and Powell (DFP).

• The idea is based on the fact that for quadratic functions 
holds

and by accumulating gk’s and xk’s we can calculate H.



Quasi-Newton BFGS method 

• Set H0 = I.
• Update according to

where

• The matrix inverse can also be computed in this way.
• Directions δk‘s form a conjugate set.
• Hk+1 is positive definite if Hk is positive definite.
• The estimate Hk is used to form a local quadratic 

approximation as before



BFGS example 

• The method converges in 34 iterations, compared to 
18 for the full-Newton method



Optimization Methods for 
Computer Vision Applications



Method Alpha (ࢻ) Calculation Intermediate Updates Convergence 
Condition

Steepest-
Descent 
Method
(Method 1)

Find ߙ, the value of ߙ that 
minimizes ݔ)݂ +  ,(݀ߙ
using line search

ାଵݔ = ݔ + ݀݀ߙ = −݂݃ାଵ = (ାଵݔ)݂ If ߙ݀ <∈,
then ݔ∗ = ାଵݔ , ݂ ∗ݔ = ݂ାଵ 
Else ݇ = ݇ + 1

Steepest-
Descent 
Method
(Method 2)

Without Using Line Searchߙ ≈ ்݃ ்݃݃ ݃ܪ
ାଵݔ = ݔ + ݀݀ߙ = −݂݃ାଵ = (ାଵݔ)݂ --” ”--

Newton 
Method

Find ߙ, the value of ߙ that 
minimizes ݔ)݂ +  ,(݀ߙ
using line search

ାଵݔ = ݔ + ݀݀ߙ = ିܪ− ଵ݂݃ାଵ = (ାଵݔ)݂ --” ”--

Gauss-
Newton 
Method

Find ߙ, the value of ߙ that 
minimizes F ݔ + ݀ߙ ,
using line searchܨ =  ݂ ݔ ଶ = ்݂݂ 

ୀଵ݂ = ଵ݂ ݔ  ଶ݂ ݔ … ݂ ݔ ்

ାଵݔ = ݔ + ݀݀ߙ = ିܪ− ଵ݃݃ி = ܪ்݂ܬ2 ≈ ܬ்ܬ2 = ାଵݔି(ࢀࡸ)ࡰିࡸ = ݔ − ߙ ܬ்ܬ ିଵ(்݂ܬ)ݔାଵ = ݔ − ݂(ାଵ)݃ࡸࡰࢀࡸߙ = ݂(ݔ)ܨ(ାଵ) = (ݔ)ܨ

If ܨାଵ − ܨ <∈ then ݔ∗ = ାଵݔ , 
F ∗ݔ =  ାଵܨ
Else ݇ = ݇ + 1



Method Alpha (ࢻ)
Calculation

Intermediate Updates Convergence 
Condition

Coordinate 
Descent

Find ߙ, the value
of ߙ that minimizes݂(ݔ +  ), using݀ߙ
line search

ାଵݔ = ݔ + ݀݀ߙ = 0 0 … 0 ݀0 … 0 ்
݂ାଵ = (ାଵݔ)݂

If ߙ݀ <∈,
then ݔ∗ = ାଵݔ , ݂ ∗ݔ = ݂ାଵ 
Elseif k==n, then ݔଵ = ,ାଵݔ ݇ = 1
Else ݇ = ݇ + 1

Conjugate 
Gradient

Without Using Line
Search

ߙ = ்݃ ்݃݀ ݀ܪ

݀ = −݃ݔାଵ = ݔ + ߚ݀ߙ = ݃ାଵ் ݃ାଵ்݃ ݃݀ାଵ = −݃ାଵ + ݂݀ାଵߚ = (ାଵݔ)݂
If ߙ݀ <∈,
then ݔ∗ = ାଵݔ , ݂ ∗ݔ = ݂ାଵ 
Else ݇ = ݇ + 1

Quasi-
Newton 
Method

Find ߙ, the value
of ߙ that minimizes݂(ݔ +  ), using݀ߙ
line search

ାଵݔ = ݔ + ߜߜ = ݀;   ݀ߙ = −ܵ݃ݔାଵ = ݔ − = ∗/  ାଵ݃ ݁ݐݑ݉ܥܵ݃ߙ ݃ + ߜܪ  ∗/ܵ = ܵାଵܫ = ܵ + ߜ)(ߛ−ܵߜ) − ܵߛ)்  ߛ் ߜ) − ܵߛ)ߛ = ݃ାଵ − ݃

If ߜ <∈, then ݔ∗ = ାଵݔ , ݂ ∗ݔ = ݂ାଵ 
Else ݇ = ݇ + 1



Non-linear least squares 

• It is very common in applications for a cost 
function f(x) to be the sum of a large number of 
squared residuals

• If each residual depends non-linearly on the 
parameters x then the minimization of f(x) is a 
non-linear least squares problem.



Non-linear least squares 

• The M × N Jacobian of the vector of residuals r is defined 
as

• Consider

• Hence



Non-linear least squares 

• For the Hessian holds

• Note that the second-order term in the Hessian is multiplied by the 
residuals ri.

• In most problems, the residuals will typically be small.
• Also, at the minimum, the residuals will typically be distributed with 

mean = 0.
• For these reasons, the second-order term is often ignored.
• Hence, explicit computation of the full Hessian can again be avoided.

Gauss-Newton 
approximation



Gauss-Newton example 

• The minimization of the Rosenbrock function

• can be written as a least-squares problem with 
residual vector



Gauss-Newton example 

• minimization with the Gauss-Newton approximation with 
line search takes only 11 iterations



Comparison 

CG Newton

Quasi-Newton Gauss-Newton



Simplex



Constrained Optimization

Subject to:

• Equality constraints:

• Nonequality constraints:

• Constraints define a feasible region, which is nonempty.

• The idea is to convert it to an unconstrained optimization.



Equality constraints

• Minimize f(x) subject to: for

• The gradient of f(x) at a local minimizer is equal to the 
linear combination of the gradients of ai(x) with 
Lagrange multipliers as the coefficients. 



f3  > f2 > f1

f3  > f2 > f1

f3  > f2 > f1

is not a minimizer

x* is a minimizer, λ*>0

x* is a minimizer, λ*<0

x* is not a minimizer



3D Example 



3D Example 

f(x) = 3
Gradients of constraints and objective function are linearly independent.



3D Example 

f(x) = 1
Gradients of constraints and objective function are linearly dependent.



Inequality constraints

• Minimize f(x) subject to: for

• The gradient of f(x) at a local minimizer is equal to the 
linear combination of the gradients of cj(x), which are 
active ( cj(x) = 0 )

• and Lagrange multipliers must be positive, 



f3  > f2 > f1

f3  > f2 > f1

f3  > f2 > f1

No active constraints 
at x*,

x* is not a minimizer, μ<0

x* is a minimizer, μ>0



Lagrangien

• We can introduce the function (Lagrangien)

• The necessary condition for the local minimizer is  

and it must be a feasible point (i.e. constraints are 
satisfied). 

• These are Karush-Kuhn-Tucker conditions



Quadratic Programming (QP)

• Like in the unconstrained case, it is important to study 
quadratic functions. Why?

• Because general nonlinear problems are solved as a 
sequence of minimizations of their quadratic 
approximations.

• QP with constraints

Minimize

subject to linear constraints.

• H is symmetric and positive semidefinite.



QP with Equality Constraints

• Minimize
Subject to:

• Ass.: A is p × N and has full row rank (p<N)
• Convert to unconstrained problem by variable 

elimination:

Minimize 

This quadratic unconstrained problem can be solved, e.g., 
by Newton method.

Z is the null space of A
A+ is the pseudo-inverse.



QP with inequality constraints

• Minimize
Subject to:

• First we check if the unconstrained minimizer 
is feasible.
If yes we are done. 
If not we know that the minimizer must  be on the 
boundary and we proceed with an active-set method.

• xk is the current feasible point 
• is the index set of active constraints at xk

• Next iterate is given by



Active-set method

• How to find dk?

– To remain active thus
– The objective function at xk+d becomes

where

• The major step is a QP sub-problem

subject to:

• Two situations may occur: or 



Active-set method

•
We check if KKT conditions are satisfied

and

If YES we are done.
If NO we remove the constraint from the active set      with the most 
negative      and solve the QP sub-problem again but this time with 
less active constraints.

•
We can move to but some inactive constraints 
may be violated on the way. 
In this case, we move by till the first inactive constraint 
becomes active, update   , and solve the QP sub-problem again 
but this time with more active constraints.



General Nonlinear Optimization

• Minimize f(x)
subject to:

where the objective function and constraints are 
nonlinear.

1. For a given approximate Lagrangien by 
Taylor series → QP problem

2. Solve QP → descent direction
3. Perform line search in the direction →
4. Update Lagrange multipliers →
5. Repeat from Step 1.



General Nonlinear Optimization

Lagrangien

At the kth iterate: 
and we want to compute a set of increments:

First order approximation of and constraints:

•

•
•

These approximate KKT conditions corresponds to a QP program



SQP  example
Minimize 
subject to: 



Linear Programming (LP)

• LP is common in economy and is meaningful only if it 
is with constraints.

• Two forms:
1. Minimize 

subject to:

2. Minimize
subject to:

• QP can solve LP.
• If the LP minimizer exists it must be one of the vertices 

of the feasible region.
• A fast method that considers vertices is the Simplex 

method.   

A is p × N and has 
full row rank (p<N)

Prove it!


