Optimization Methods

Categorization of Optimization Problems Continuous Optimization Discrete Optimization Combinatorial Optimization Variational Optimization

> Common Optimization Concepts in Computer Vision Energy Minimization Graphs Markov Random Fields

Several general approaches to optimization are as follows: Analytical methods Graphical methods Experimental methods Numerical methods

Several branches of mathematical programming have evolved, as follows:

Linear programming Integer programming Quadratic programming Nonlinear programming Dynamic programming **1. THE OPTIMIZATION PROBLEM**

1.1 Introduction

1.2 The Basic Optimization Problem

2. BASIC PRINCIPLES 2.1 Introduction 2.2 Gradient Information

3. GENERAL PROPERTIES OF ALGORITHMS
3.5 Descent Functions
3.6 Global Convergence
3.7 Rates of Convergence

4. ONE-DIMENSIONAL OPTIMIZATION
4.3 Fibonacci Search
4.4 Golden-Section Search2
4.5 Quadratic Interpolation Method

5. BASIC MULTIDIMENSIONAL GRADIENT METHODS

5.1 Introduction

5.2 Steepest-Descent Method

5.3 Newton Method

5.4 Gauss-Newton Method

CONJUGATE-DIRECTION METHODS

6.1 Introduction
6.2 Conjugate Directions
6.3 Basic Conjugate-Directions Method
6.4 Conjugate-Gradient Method
6.5 Minimization of Nonquadratic Functions

QUASI-NEWTON METHODS 7.1 Introduction 7.2 The Basic Quasi-Newton Approach

MINIMAX METHODS 8.1 Introduction 8.2 Problem Formulation 8.3 Minimax Algorithms

APPLICATIONS OF UNCONSTRAINED OPTIMIZATION 9.1 Introduction 9.2 Point-Pattern Matching

FUNDAMENTALS OF CONSTRAINED OPTIMIZATION 10.1 Introduction 10.2 Constraints

LINEAR PROGRAMMING PART I: THE SIMPLEX METHOD 11.1 Introduction 11.2 General Properties 11.3 Simplex Method

LINEAR PROGRAMMING PART I: THE SIMPLEX METHOD 11.1 Introduction 11.2 General Properties 11.3 Simplex Method

QUADRATIC AND CONVEX PROGRAMMING

13.1 Introduction13.2 Convex QP Problems with Equality Constraints13.3 Active-Set Methods for Strictly Convex QP Problems

GENERAL NONLINEAR OPTIMIZATION PROBLEMS 15.1 Introduction 15.2 Sequential Quadratic Programming Methods

Problem specification

Suppose we have a cost function (or objective function)

$$f(\mathbf{x}): \mathrm{I\!R}^N \longrightarrow \mathrm{I\!R}$$

Our aim is to find values of the parameters (decision variables) x that minimize this function

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} f(\mathbf{x})$$

Subject to the following constraints:

- equality: $c_i(\mathbf{x}) = 0$
- nonequality: $c_j(\mathbf{x}) \ge 0$

If we seek a maximum of $f(\mathbf{x})$ (profit function) it is equivalent to seeking a minimum of $-f(\mathbf{x})$

Books to read

Practical Optimization

 Philip E. Gill, Walter Murray, and Margaret H. Wright, Academic Press, 1981

- Practical Optimization: Algorithms and Engineering Applications
 - Andreas Antoniou and Wu-Sheng Lu 2007

• Both cover unconstrained and constrained optimization. Very clear and comprehensive.

Practical Optimization

Algorithms and Engineering Applications

Andreas Antoniou Wu-Sheng Lu

Further reading and web resources

- Numerical Recipes in C (or C++) : The Art of Scientific Computing
 - William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling
 - Good chapter on optimization
 - Available on line at

(1992 ed.) <u>www.nrbook.com/a/bookcpdf.php</u> (2007 ed.) <u>www.nrbook.com</u>

- NEOS Guide
 <u>www-fp.mcs.anl.gov/OTC/Guide/</u>
- This powerpoint presentation
 <u>www.utia.cas.cz</u>

Introductory Items in OPTIMIZATION

- Category of Optimization methods
- Constrained vs Unconstrained
- Feasible Region
- Gradient and Taylor Series Expansion
- Necessary and Sufficient Conditions
- Saddle Point
- Convex/concave functions
- 1-D search Dichotomous, Fibonacci Golden Section, DSC;
- Steepest Descent; Newton; Gauss-Newton
- Conjugate Gradient;
- Quasi-Newton; Minimax;
- Lagrange Multiplier; Simplex; Prinal-Dual, Quadratic programming; Semi-definite;

Types of minima

- which of the minima is found depends on the starting point
- such minima often occur in real applications

Unconstrained univariate optimization

Assume we can start close to the global minimum

How to determine the minimum?

 $\min_{x} f(x)$

- Search methods (Dichotomous, Fibonacci, Golden-Section)
- Approximation methods
 - 1. Polynomial interpolation
 - 2. Newton method
- Combination of both (alg. of Davies, Swann, and Campey)

Search methods

- Start with the interval ("bracket") [x_L, x_U] such that the minimum x* lies inside.
- Evaluate f(x) at two point inside the bracket.
- Reduce the bracket.
- Repeat the process.

Can be applied to any function and differentiability is not essential.

Algorithm 4.1 Fibonacci search Step 1 Input $x_{L,1}$, $x_{U,1}$, and n. Step 2 Compute F_1, F_2, \ldots, F_n using Eq. (4.4). Step 3 Assign $I_1 = x_{U,1} - x_{L,1}$ and compute $I_2 = \frac{F_{n-1}}{F_n} I_1$ (see Eq. (4.6)) $x_{a,1} = x_{U,1} - I_2, \quad x_{b,1} = x_{L,1} + I_2$ $f_{a,1} = f(x_{a,1}), \quad f_{b,1} = f(x_{b,1})$ Set k = 1. Step 4 Compute I_{k+2} using Eq. (4.6). If $f_{a,k} \ge f_{b,k}$, then update $x_{L,k+1}$, $x_{U,k+1}$, $x_{a,k+1}$, $x_{b,k+1}$, $f_{a,k+1}$, and $f_{b,k+1}$ using Eqs. (4.7) to (4.12). Otherwise, if $f_{a,k} < f_{b,k}$, update information using Eqs. (4.13) to (4.18). Step 5 If k = n - 2 or $x_{a,k+1} > x_{b,k+1}$, output $x^* = x_{a,k+1}$ and $f^* = f(x^*)$, and stop. Otherwise, set k = k + 1 and repeat from Step 4. The condition $x_{a,k+1} > x_{b,k+1}$ implies that $x_{a,k+1} \approx x_{b,k+1}$ within

$$x_{L,k+1} = x_{L,k}$$

 $x_{U,k+1} = x_{b,k}$
 $x_{a,k+1} = x_{U,k+1} - I_{k+2}$
 $x_{b,k+1} = x_{a,k}$
 $f_{b,k+1} = f_{a,k}$

$$f_{a,k+1} = f(x_{a,k+1})$$

$$\frac{I_{k+2}}{F_{n-k}} = \frac{F_{n-k-1}}{F_{n-k}} I_{k+1}$$

ure 4.6. Assignments in kth iteration of the fibonacci search if $f_{a,k} < f_{b,k}$

Algorithm 4.2 Golden-section search Step 1	
Input $x_{L,1}$, $x_{U,1}$, and ε .	
Step 2 Assign $I_1 = x_{U,1} - x_{L,1}$, $K = 1.618034$ and	l compute
$I_{2} = I_{1}/K$ $x_{a,1} = x_{U,1} - I_{2}, x_{b,1} = I_{a,1}$ $f_{a,1} = f(x_{a,1}), f_{b,1} = f(x_{a,1})$	$\frac{x_{L,1} + I_2}{x_{b,1}}$
Set $k = 1$. Step 3 Compute $I_{k+2} = I_{k+1}/K$	If $f_{a,k} \ge f_{b,k}$, then update $x_{L,k+1}$, $x_{U,k+1}$, $x_{a,k+1}$, $x_{b,k+1}$, $f_{a,k+1}$, and $f_{b,k+1}$ using Eqs. (4.7) to (4.12). Otherwise, if $f_{a,k} < f_{b,k}$, update information using Eqs. (4.13) to (4.18). Step 4 If $I_k < \varepsilon$ or $x_{a,k+1} > x_{b,k+1}$, then do:
	$x^* = \frac{1}{2}(x_{b,k+1} + x_{U,k+1})$
	If $f_{a,k+1} = f_{b,k+1}$, compute
	$x^* = \frac{1}{2}(x_{a,k+1} + x_{b,k+1})$
	If $f_{a,k+1} < f_{b,k+1}$, compute
	$x^* = \frac{1}{2}(x_{L,k+1} + x_{a,k+1})$
	Compute $f^* = f(x^*)$. Output x^* and f^* , and stop. Step 5 Set $k = k + 1$ and repeat from Step 3.

Optimization Methods

Search methods

Fibonacci: 1 1 2 3 5 8 ... $I_{k+5} I_{k+4} I_{k+3} I_{k+2} I_{k+1} I_{k}$ $I_{k} = I_{k+1} + I_{k+2}$

Golden-Section Search divides intervals by K = 1.6180

$$\frac{I_k}{I_{k+1}} = K$$

1-D search

$$I_n = \frac{I_1}{F_n}$$

$$\frac{I_k}{I_{k+1}} = \frac{I_{k+1}}{I_{k+2}} = \frac{I_{k+2}}{I_{k+3}} = \dots = K \qquad K = \frac{1 \pm \sqrt{5}}{2}$$

1D function

As an example consider the function

$$f(x) = 0.1 + 0.1x + \frac{x^2}{0.1 + x^2}$$

(assume we do not know the actual function expression from now on)

Gradient descent

Given a starting location, x_0 , examine df/dx and move in the *downhill* direction to generate a new estimate, $x_1 = x_0 + \delta x$

How to determine the step size δx ?

Polynomial interpolation

- Bracket the minimum.
- Fit a quadratic or cubic polynomial which interpolates *f*(*x*) at some points in the interval.
- Jump to the (easily obtained) minimum of the polynomial.
- Throw away the worst point and repeat the process.

Polynomial interpolation

- Quadratic interpolation using 3 points, 2 iterations
- Other methods to interpolate?
 - 2 points and one gradient
 - Cubic interpolation

Newton method

Fit a quadratic approximation to f(x) using both gradient and curvature information at x.

• Expand *f*(*x*) locally using a Taylor series.

$$f(x + \delta x) = f(x) + f'(x)\delta x + \frac{1}{2}f''(x)\delta x^2 + o(\delta x^2)$$

• Find the δx which minimizes this local quadratic approximation. f'(x)

$$\delta x = -\frac{f'(x)}{f''(x)}$$

• Update *x*.
$$x_{n+1} = x_n - \delta x = x_n - \frac{f'(x)}{f''(x)}$$

Newton method

- · avoids the need to bracket the root
- quadratic convergence (decimal accuracy doubles at every iteration)

Newton method

- Global convergence of Newton's method is poor.
- Often fails if the starting point is too far from the minimum.

 in practice, must be used with a globalization strategy which reduces the step length until function decrease is assured

Extension to N (multivariate) dimensions

- How big N can be?
 - problem sizes can vary from a handful of parameters to many thousands
- We will consider examples for N=2, so that cost function surfaces can be visualized.

An Optimization Algorithm

- Start at \mathbf{x}_0 , k = 0.
- 1. Compute a search direction \mathbf{p}_k
- 2. Compute a step length α_k , such that $f(\mathbf{x}_k + \alpha_k \mathbf{p}_k) < f(\mathbf{x}_k)$

k = k + 1

3. Update
$$\mathbf{x}_k = \mathbf{x}_k + \alpha_k \mathbf{p}_k$$

4. Check for convergence (stopping criteria) e.g. df/dx = 0

Reduces optimization in N dimensions to a series of (1D) line minimizations

Taylor expansion

A function may be approximated locally by its Taylor series expansion about a point x^*

$$f(\mathbf{x}^* + \mathbf{x}) \approx f(\mathbf{x}^*) + \nabla f^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \mathbf{H} \mathbf{x}$$

where the gradient $\nabla f(\mathbf{x}^*)$ is the vector

$$\nabla f(\mathbf{x}^*) = \left[\frac{\partial f}{x_1} \dots \frac{\partial f}{x_N}\right]^T$$

and the Hessian $H(x^*)$ is the symmetric matrix

$$\mathbf{H}(\mathbf{x}^*) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_N} \\ \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_N \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_N^2} \end{bmatrix}$$

(a) If $f(\mathbf{x}) \in C^2$ and \mathbf{x}^* is a local minimizer, then for every feasible direction \mathbf{d} at \mathbf{x}^* (i) $\mathbf{g}(\mathbf{x}^*)^T \mathbf{d} \ge 0$ (ii) If $\mathbf{g}(\mathbf{x}^*)^T \mathbf{d} = 0$, then $\mathbf{d}^T \mathbf{H}(\mathbf{x}^*) \mathbf{d} \ge 0$ (b) If \mathbf{x}^* is a local minimizer in the interior of \mathcal{R} , then (i) $\mathbf{g}(\mathbf{x}^*) = \mathbf{0}$ (ii) $\mathbf{d}^T \mathbf{H}(\mathbf{x})^* \mathbf{d} \ge 0$ for all $\mathbf{d} \ne \mathbf{0}$

Theorem 2.4 Second-order sufficient conditions for a minimum If $f(x) \in C^2$ and x^* is located in the interior of \mathcal{R} , then the conditions (a) $g(x^*) = 0$ (b) $H(x^*)$ is positive definite are sufficient for x^* to be a strong local minimizer. **Definition 2.6** A point $\bar{x} \in \mathcal{R}$, where \mathcal{R} is the feasible region, is said to be a

saddle point if (a) $\mathbf{g}(\bar{\mathbf{x}}) = \mathbf{0}$

(b) point $\bar{\mathbf{x}}$ is neither a maximizer nor a minimizer.

Stationary points can be located and classified as follows:

1. Find the points x_i at which $g(x_i) = 0$.

- 2. Obtain the Hessian $H(x_i)$.
- 3. Determine the character of $H(x_i)$ for each point x_i .

Quadratic functions

$$f(\mathbf{x}) = a + \mathbf{g}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \mathbf{H} \mathbf{x}$$

- The vector \mathbf{g} and the Hessian \mathbf{H} are constant.
- Second order approximation of any function by the Taylor expansion is a quadratic function.

We will assume only quadratic functions for a while.
Necessary conditions for a minimum

$$f(\mathbf{x}) = a + \mathbf{g}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \mathbf{H} \mathbf{x}$$

Expand $f(\mathbf{x})$ about a stationary point \mathbf{x}^* in direction \mathbf{p}

$$f(\mathbf{x}^* + \alpha \mathbf{p}) = f(\mathbf{x}^*) + \mathbf{g}(\mathbf{x}^*)^T \alpha \mathbf{p} + \frac{1}{2} \alpha^2 \mathbf{p}^T \mathbf{H} \mathbf{p}$$
$$= f(\mathbf{x}^*) + \frac{1}{2} \alpha^2 \mathbf{p}^T \mathbf{H} \mathbf{p}$$

since at a stationary point $g(x^*) = 0$

At a stationary point the behavior is determined by H

 H is a symmetric matrix, and so has orthogonal eigenvectors

$$\mathbf{H}\mathbf{u}_i = \lambda_i \mathbf{u}_i \qquad \|\mathbf{u}_i\| = 1$$

$$f(\mathbf{x}^* + \alpha \mathbf{u}_i) = f(\mathbf{x}^*) + \frac{1}{2} \alpha^2 \mathbf{u}_i^T \mathbf{H} \mathbf{u}_i$$
$$= f(\mathbf{x}^*) + \frac{1}{2} \alpha^2 \lambda_i$$

 As |α| increases, f(x* + αu_i) increases, decreases or is unchanging according to whether λ_i is positive, negative or zero

Examples of quadratic functions

Case 1: both eigenvalues positive

$$f(\mathbf{x}) = a + \mathbf{g}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \mathbf{H} \mathbf{x}$$

th $a = 0, \quad \mathbf{g} = \begin{bmatrix} -50 \\ -50 \end{bmatrix}, \quad \mathbf{H} = \begin{bmatrix} 6 & 4 \\ 4 & 6 \end{bmatrix}$ positive definite

with

minimum

Examples of quadratic functions

Case 2: eigenvalues have different sign

$$f(\mathbf{x}) = a + \mathbf{g}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \mathbf{H} \mathbf{x}$$

$$\mathbf{n} \qquad a = 0, \qquad \mathbf{g} = \begin{bmatrix} -30\\ 20 \end{bmatrix}, \qquad \mathbf{H} = \begin{bmatrix} 6 & 0\\ 0 & -4 \end{bmatrix} \text{ indefinite}$$

with

saddle point

Examples of quadratic functions

Case 3: one eigenvalues is zero

$$f(\mathbf{x}) = a + \mathbf{g}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \mathbf{H} \mathbf{x}$$
$$a = 0, \qquad \mathbf{g} = \begin{bmatrix} 0\\0 \end{bmatrix}, \qquad \mathbf{H} = \begin{bmatrix} 6 & 0\\0 & 0 \end{bmatrix} \text{ positive semidefinite}$$

with

parabolic cylinder

Optimization for quadratic functions

Assume that H is positive definite

$$f(\mathbf{x}) = a + \mathbf{g}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \mathbf{H} \mathbf{x}$$

 $\nabla f(\mathbf{x}) = \mathbf{g} + \mathbf{H}\mathbf{x}$

There is a unique minimum at

$$\mathbf{x}^* = -\mathbf{H}^{-1}\mathbf{g}$$

If N is large, it is not feasible to perform this inversion directly.

Steepest descent

$$F + \Delta F = f(\mathbf{x} + \delta) \approx f(\mathbf{x}) + \mathbf{g}^T \delta + \frac{1}{2} \delta^T \mathbf{H} \delta$$

• Basic principle is to minimize the N-dimensional function by a series of 1D line-minimizations:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$$

- The steepest descent method chooses \boldsymbol{p}_k to be parallel to the gradient

$$\mathbf{p}_k = -\nabla f(\mathbf{x}_k)$$

• Step-size α_k is chosen to minimize $f(\mathbf{x}_k + \alpha_k \mathbf{p}_k)$. For quadratic forms there is a closed form solution:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$$

$$\alpha_k = \frac{\mathbf{p}_k^T \mathbf{p}_k}{\mathbf{p}_k^T \mathbf{H} \mathbf{p}_k}$$
Prove it!

Steepest descent

- The gradient is everywhere perpendicular to the contour lines.
- After each line minimization the new gradient is always *orthogonal* to the previous step direction (true of any line minimization).
- Consequently, the iterates tend to zig-zag down the valley in a very inefficient manner

Steepest descent

 The 1D line minimization must be performed using one of the earlier methods (usually cubic polynomial interpolation)

- The zig-zag behaviour is clear in the zoomed view
- The algorithm crawls down the valley

$$F(x,y) = \sin\left(\frac{1}{2}x^2 - \frac{1}{4}y^2 + 3\right)\cos(2x + 1 - e^y)$$

Newton method

Expand $f(\mathbf{x})$ by its Taylor series about the point \mathbf{x}_k

$$f(\mathbf{x}_k + \delta \mathbf{x}) \approx f(\mathbf{x}_k) + \mathbf{g}_k^T \delta \mathbf{x} + \frac{1}{2} \delta \mathbf{x}^T \mathbf{H}_k \delta \mathbf{x}$$

where the gradient is the vector

$$\mathbf{g}_k = \nabla f(\mathbf{x}_k) = \left[\frac{\partial f}{x_1} \dots \frac{\partial f}{x_N}\right]^T$$

and the Hessian is the symmetric matrix

$$\mathbf{H}_k = \mathbf{H}(\mathbf{x}_k) =$$

$$\frac{\partial^2 f}{\partial x_1^2} \quad \cdots \quad \frac{\partial^2 f}{\partial x_1 \partial x_N}$$
$$\vdots \quad \ddots \quad \vdots$$
$$\frac{\partial^2 f}{\partial x_1 \partial x_1} \quad \cdots \quad \frac{\partial^2 f}{\partial x_N^2}$$

-T

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{o}_k = \mathbf{x}_k + \alpha_k \mathbf{d}$$

$$\mathbf{d}_k = -\mathbf{H}_k^{-1}\mathbf{g}_k$$

Newton method

For a minimum we require that $\nabla f(\mathbf{x}) = \mathbf{0}$, and so

$$\nabla f(\mathbf{x}) = \mathbf{g}_k + \mathbf{H}_k \delta \mathbf{x} = \mathbf{0}$$

with solution $\delta \mathbf{x} = -\mathbf{H}_k^{-1}\mathbf{g}_k$. This gives the iterative update

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{H}_k^{-1} \mathbf{g}_k$$

- If $f(\mathbf{x})$ is quadratic, then the solution is found in one step.
- The method has quadratic convergence (as in the 1D case).
- The solution $\delta \mathbf{x} = -\mathbf{H}_k^{-1}\mathbf{g}_k$ is guaranteed to be a downhill direction.
- Rather than jump straight to the minimum, it is better to perform a line minimization which ensures global convergence

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \mathbf{H}_k^{-1} \mathbf{g}_k$$

• If H=I then this reduces to steepest descent.

- The algorithm converges in only 18 iterations compared to the 98 for conjugate gradients.
- However, the method requires computing the Hessian matrix at each iteration – this is not always feasible

Gauss - Newton	$F = \sum_{p=1}^{m} f_p(\mathbf{x})^2 = \mathbf{f}^T \mathbf{f}$			
$\mathbf{f} = [f_1(\mathbf{x}) \ f_2(\mathbf{x}) \ \cdots \ f_m(\mathbf{x})]^T$	$\mathbf{J} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} \\ \frac{\partial f_2}{\partial x_1} \\ \vdots \\ \frac{\partial f_m}{\partial x_1} \end{bmatrix}$	$\frac{\frac{\partial f_1}{\partial x_2}}{\frac{\partial f_2}{\partial x_2}}$ \vdots $\frac{\frac{\partial f_m}{\partial x_2}}{\frac{\partial f_m}{\partial x_2}}$	$ \begin{array}{c} & \frac{\partial f_1}{\partial x_n} \\ & \frac{\partial f_2}{\partial x_n} \\ & \vdots \\ & \vdots \\ & \frac{\partial f_m}{\partial x_n} \end{array} $	p=1
$\mathbf{g}_F = 2\mathbf{J}^T \mathbf{f}$				$\mathbf{H}_F \approx 2 \mathbf{J}^T \mathbf{J}$
Step 2			$\mathbf{x}_{k+1} =$	$\mathbf{x}_{\mu} = \alpha_{\mu} (2\mathbf{J}^T \mathbf{J})^{-1} (2\mathbf{J}^T \mathbf{f})$
Compute $f_{pk} = f_p(\mathbf{x}_k)$ for $p = 1$,	$2,\ldots,m$ and	F_k .		$\mathbf{x}_{k} = \alpha_{k} (\mathbf{I}^{T} \mathbf{I})^{-1} (\mathbf{I}^{T} \mathbf{f})$
Step 5 Compute L. $\alpha_1 = 2\mathbf{I}^T \mathbf{f}_1$ and \mathbf{H}_2	$-2\mathbf{I}^T\mathbf{I}$	- L	_	$\mathbf{x}_k = \frac{\alpha_k (\mathbf{J} \ \mathbf{J})}{(\mathbf{J} \ \mathbf{I})}$
Step 4 Step 4	$-\frac{23}{k}\frac{3}{k}$	_		
Compute L_k and \hat{D}_k using Algorit	hm 5.4.	_		
Compute $\mathbf{y}_k = -\mathbf{L}_k \mathbf{g}_k$ and $\mathbf{d}_k = 1$	$\mathbf{L}_{k}^{T} \hat{\mathbf{D}}_{k}^{-1} \mathbf{y}_{k}$	_		
Step 5				
Find α_k , the value of α that minim	izes $F(\mathbf{x}_k + \boldsymbol{\alpha})$	$(\alpha \mathbf{d}_k)$.		
Step 6		_		
Compute $f_{p(k+1)}$ for $p = 1, 2,$, m and F_{k+1}			

Method	Alpha ($lpha$) Calculation	Intermediate Updates	Convergence Condition
Steepest- Descent Method (Method 1)	Find α_k , the value of α that minimizes $f(x_k + \alpha d_k)$, using line search	$x_{k+1} = x_k + \alpha_k d_k$ $d_k = -g_k$ $f_{k+1} = f(x_{k+1})$	If $ \alpha_k d_k < \epsilon$, then $x^* = x_{k+1}$, $f(x^*) = f_{k+1}$ Else $k = k + 1$
Steepest- Descent Method (Method 2)	Without Using Line Search $\alpha_k \approx \frac{g_k^T g_k}{g_k^T H_k g_k}$	$x_{k+1} = x_k + \alpha_k d_k$ $d_k = -g_k$ $f_{k+1} = f(x_{k+1})$	" "
Newton Method	Find α_k , the value of α that minimizes $f(x_k + \alpha d_k)$, using line search	$x_{k+1} = x_k + \alpha_k d_k$ $d_k = -H_k^{-1} g_k$ $f_{k+1} = f(x_{k+1})$	" "
Gauss- Newton Method	Find α_k , the value of α that minimizes $F(x_k + \alpha d_k)$, using line search $F = \sum_{p=1}^m f_p(x)^2 = f^T f$ $f = [f_1(x) f_2(x) \dots f_m(x)]^T$	$\begin{aligned} x_{k+1} &= x_k + \alpha_k d_k \\ d_k &= -H_k^{-1} g_k \\ g_F &= 2J^T f \\ H &\approx 2J^T J = L^{-1} D (L^T)^{-1} \\ x_{k+1} &= x_k - \alpha_k (J^T J)^{-1} (J^T f) \\ x_{k+1} &= x_k - \alpha_k L^T D L g_k \\ f_{p(k+1)} &= f_p(x_k) \\ F_{(k+1)} &= F(x_k) \end{aligned}$	If $ F_{k+1} - F_k < \in$ then $x^* = x_{k+1}$, $F(x^*) = F_{k+1}$ Else $k = k + 1$

Conjugate gradient

 Each p_k is chosen to be conjugate to all previous search directions with respect to the Hessian H:

$$\mathbf{p}_i^T \mathbf{H} \mathbf{p}_j = 0, \qquad i \neq j$$

The resulting search directions are mutually linearly independent.

Prove it!

• Remarkably, \mathbf{p}_k can be chosen using only knowledge of \mathbf{p}_{k-1} , $\nabla f(\mathbf{x}_{k-1})$, and $\nabla f(\mathbf{x}_k)$

$$\mathbf{p}_{k} = \nabla f_{k} + \left(\frac{\nabla f_{k}^{\top} \nabla f_{k}}{\nabla f_{k-1}^{\top} \nabla f_{k-1}}\right) \mathbf{p}_{k-1}$$

Conjugate-gradient algorithm

Step 3 Input H_k , i.e., the Hessian at x_k . Compute

$$\alpha_k = \frac{\mathbf{g}_k^T \mathbf{g}_k}{\mathbf{d}_k^T \mathbf{H}_k \mathbf{d}_k}$$

Set $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$ and calculate $f_{k+1} = f(\mathbf{x}_{k+1})$. Step 4 If $\|\alpha_k \mathbf{d}_k\| < \varepsilon$, output $\mathbf{x}^* = \mathbf{x}_{k+1}$ and $f(\mathbf{x}^*) = f_{k+1}$, and stop. Step 5 Compute \mathbf{g}_{k+1} .

$$\frac{\beta_k}{\mathbf{g}_k^T} = \frac{\mathbf{g}_{k+1}^T \mathbf{g}_{k+1}}{\mathbf{g}_k^T \mathbf{g}_k}$$

Generate new direction

$$\mathbf{d}_{k+1} = -\mathbf{g}_{k+1} + \beta_k \mathbf{d}_k$$

Conjugate gradient

• An N-dimensional quadratic form can be minimized in at most N conjugate descent steps.

- 3 different starting points.
- Minimum is reached in exactly 2 steps.

Optimization for General functions

$$f(x,y) = \exp(x)(4x^2 + 2y^2 + 4xy + 2x + 1)$$

Apply methods developed using quadratic Taylor series expansion

Rosenbrock's function

 $f(x,y) = 100(y - x^2)^2 + (1 - x)^2$

Minimum at [1, 1]

Conjugate gradient

 Again, an explicit line minimization must be used at every step

- The algorithm converges in 98 iterations
- Far superior to steepest descent

Quasi-Newton methods

- If the problem size is large and the Hessian matrix is dense then it may be infeasible/inconvenient to compute it directly.
- Quasi-Newton methods avoid this problem by keeping a "rolling estimate" of H(x), updated at each iteration using new gradient information.
- Common schemes are due to Broyden, Goldfarb, Fletcher and Shanno (BFGS), and also Davidson, Fletcher and Powell (DFP).
- The idea is based on the fact that for quadratic functions holds $\mathbf{g}_{k+1} - \mathbf{g}_k = \mathbf{H}(\mathbf{x}_{k+1} - \mathbf{x}_k)$

and by accumulating g_k 's and x_k 's we can calculate **H**.

Quasi-Newton BFGS method

- Set $\mathbf{H}_0 = \mathbf{I}$.
- Update according to

$$\mathbf{H}_{k+1} = \mathbf{H}_k + \frac{\gamma_k \gamma_k^T}{\gamma_k^T \delta_k} - \frac{\mathbf{H}_k \gamma_k \gamma_k^T \mathbf{H}_k}{\delta_k^T \mathbf{H}_k \delta_k}$$

where

$$\gamma_k = \mathbf{g}_{k+1} - \mathbf{g}_k \qquad \delta_k = \mathbf{x}_{k+1} - \mathbf{x}_k$$

- The matrix inverse can also be computed in this way.
- Directions δ_k 's form a conjugate set.
- \mathbf{H}_{k+1} is positive definite if \mathbf{H}_k is positive definite.
- The estimate \mathbf{H}_k is used to form a local quadratic approximation as before

BFGS example

 The method converges in 34 iterations, compared to 18 for the full-Newton method

Optimization Methods for Computer Vision Applications

Method	Alpha ($lpha$) Calculation	Intermediate Updates	Convergence Condition
Steepest- Descent Method (Method 1)	Find α_k , the value of α that minimizes $f(x_k + \alpha d_k)$, using line search	$x_{k+1} = x_k + \alpha_k d_k$ $d_k = -g_k$ $f_{k+1} = f(x_{k+1})$	If $ \alpha_k d_k < \epsilon$, then $x^* = x_{k+1}$, $f(x^*) = f_{k+1}$ Else $k = k + 1$
Steepest- Descent Method (Method 2)	Without Using Line Search $\alpha_k \approx \frac{g_k^T g_k}{g_k^T H_k g_k}$	$x_{k+1} = x_k + \alpha_k d_k$ $d_k = -g_k$ $f_{k+1} = f(x_{k+1})$	" "
Newton Method	Find α_k , the value of α that minimizes $f(x_k + \alpha d_k)$, using line search	$x_{k+1} = x_k + \alpha_k d_k$ $d_k = -H_k^{-1} g_k$ $f_{k+1} = f(x_{k+1})$	" "
Gauss- Newton Method	Find α_k , the value of α that minimizes $F(x_k + \alpha d_k)$, using line search $F = \sum_{p=1}^m f_p(x)^2 = f^T f$ $f = [f_1(x) f_2(x) \dots f_m(x)]^T$	$\begin{aligned} x_{k+1} &= x_k + \alpha_k d_k \\ d_k &= -H_k^{-1} g_k \\ g_F &= 2J^T f \\ H &\approx 2J^T J = L^{-1} D (L^T)^{-1} \\ x_{k+1} &= x_k - \alpha_k (J^T J)^{-1} (J^T f) \\ x_{k+1} &= x_k - \alpha_k L^T D L g_k \\ f_{p(k+1)} &= f_p(x_k) \\ F_{(k+1)} &= F(x_k) \end{aligned}$	If $ F_{k+1} - F_k < \in$ then $x^* = x_{k+1}$, $F(x^*) = F_{k+1}$ Else $k = k + 1$

Method	Alpha ($lpha$) Calculation	Intermediate Updates	Convergence Condition
Coordinate Descent	Find α_k , the value of α that minimizes $f(x_k + \alpha d_k)$, using line search	$x_{k+1} = x_k + \alpha_k d_k$ $d_k = [0 \ 0 \ \dots 0 \ d_k 0 \ \dots 0]^T$ $f_{k+1} = f(x_{k+1})$	If $ \alpha_k d_k < \epsilon$, then $x^* = x_{k+1}$, $f(x^*) = f_{k+1}$ Elseif k==n, then $x_1 = x_{k+1}, k = 1$ Else $k = k + 1$
Conjugate Gradient	Without Using Line Search $\alpha_k = \frac{g_k^T g_k}{d_k^T H_k d_k}$	$d_0 = -g_0$ $x_{k+1} = x_k + \alpha_k d_k$ $\beta_k = \frac{g_{k+1}^T g_{k+1}}{g_k^T g_k}$ $d_{k+1} = -g_{k+1} + \beta_k d_k$ $f_{k+1} = f(x_{k+1})$	If $ \alpha_k d_k < \epsilon$, then $x^* = x_{k+1}$, $f(x^*) = f_{k+1}$ Else $k = k + 1$
Quasi- Newton Method	Find α_k , the value of α that minimizes $f(x_k + \alpha d_k)$, using line search	$\begin{aligned} x_{k+1} &= x_k + \delta_k \\ \delta_k &= \alpha_k d_k; \ d_k &= -S_k g_k \\ x_{k+1} &= x_k - \alpha_k S_k g_k \\ Compute \ g_{k+1} \ /* &= g_k + H \delta_k \ */ \\ S_0 &= I_n \\ S_{k+1} &= S_k + \frac{(\delta_k - S_k \gamma_k)(\delta_k - S_k \gamma_k)^T}{\gamma_k^T (\delta_k - S_k \gamma_k)} \\ \gamma_k &= g_{k+1} - g_k \end{aligned}$	If $ \delta_k < \epsilon$, then $x^* = x_{k+1}$, $f(x^*) = f_{k+1}$ Else $k = k + 1$

Non-linear least squares

 It is very common in applications for a cost function f(x) to be the sum of a large number of squared residuals

$$f(\mathbf{x}) = \sum_{i=1}^{M} r_i^2(\mathbf{x})$$

 If each residual depends non-linearly on the parameters x then the minimization of f(x) is a non-linear least squares problem.

Non-linear least squares

$$f(\mathbf{x}) = \sum_{i=1}^{M} r_i^2(\mathbf{x})$$

 The M × N Jacobian of the vector of residuals r is defined as

$$I(\mathbf{x}) = \begin{bmatrix} \frac{\partial r_1}{\partial x_1} & \cdots & \frac{\partial r_1}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial r_M}{\partial x_1} & \cdots & \frac{\partial r_M}{\partial x_N} \end{bmatrix}$$

• Consider

$$\frac{\partial f}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_i r_i^2 = \sum_i 2r_i \frac{\partial r_i}{\partial x_k}$$

• Hence

 $\nabla f(\mathbf{x}) = 2\mathbf{J}^T \mathbf{r}$

Non-linear least squares

• For the Hessian holds

- Note that the second-order term in the Hessian is multiplied by the residuals r_i .
- In most problems, the residuals will typically be small.
- Also, at the minimum, the residuals will typically be distributed with mean = 0.
- For these reasons, the second-order term is often ignored.
- Hence, explicit computation of the full Hessian can again be avoided.

Gauss-Newton example

• The minimization of the Rosenbrock function

$$f(x,y) = 100(y - x^2)^2 + (1 - x)^2$$

 can be written as a least-squares problem with residual vector

$$\mathbf{r} = \begin{bmatrix} 10(y - x^2) \\ (1 - x) \end{bmatrix}$$
$$\mathbf{J} = \begin{bmatrix} \frac{\partial r_1}{\partial x} & \frac{\partial r_1}{\partial y} \\ \frac{\partial r_2}{\partial x} & \frac{\partial r_2}{\partial y} \end{bmatrix} = \begin{bmatrix} -20x & 10 \\ -1 & 0 \end{bmatrix}$$

Gauss-Newton example

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \mathbf{H}_k^{-1} \mathbf{g}_k \qquad \mathbf{H}_k = 2 \mathbf{J}_k^T \mathbf{J}$$

 minimization with the Gauss-Newton approximation with line search takes only 11 iterations
Comparison

Newton

Gauss-Newton

Quasi-Newton

Simplex

Constrained Optimization

$$f(\mathbf{x}) : \mathbb{R}^N \longrightarrow \mathbb{R}$$
$$\mathbf{x}^* = \arg\min_{\mathbf{x}} f(\mathbf{x})$$

Subject to:

- Equality constraints: $a_i(\mathbf{x}) = 0$ i = 1, 2, ..., p
- Nonequality constraints: $c_j(\mathbf{x}) \ge 0$ $j = 1, 2, \dots, q$
- Constraints define a feasible region, which is nonempty.
- The idea is to convert it to an unconstrained optimization.

Equality constraints

- Minimize $f(\mathbf{x})$ subject to: $a_i(\mathbf{x}) = 0$ for $i = 1, 2, \dots, p$
- The gradient of *f*(**x**) at a local minimizer is equal to the linear combination of the gradients of *a_i*(**x**) with
 Lagrange multipliers as the coefficients.

$$\nabla f(\mathbf{x}^*) = \sum_{i=1}^p \lambda_i^* \nabla a_i(\mathbf{x}^*)$$

 $f_3 > f_2 > f_1$

 $\nabla a(\mathbf{x}^*)$

 $a(\mathbf{x}) = 0$

 $\nabla f(\mathbf{x}^*)$

 x^{*} is a minimizer, $\lambda^{*}\!\!<\!\!0$

3D Example

3D Example

$$f(\mathbf{x}) = x_1^2 + x_2^2 + \frac{1}{4}x_3^2$$

 $f(\mathbf{x}) = 3$

Gradients of constraints and objective function are linearly independent.

3D Example

$$f(\mathbf{x}) = x_1^2 + x_2^2 + \frac{1}{4}x_3^2$$

 $f(\mathbf{x}) = 1$

Gradients of constraints and objective function are linearly dependent.

Inequality constraints

- Minimize $f(\mathbf{x})$ subject to: $c_j(\mathbf{x}) \ge 0$ for $j = 1, 2, \dots, q$
- The gradient of *f*(**x**) at a local minimizer is equal to the linear combination of the gradients of *c_j*(**x**), which are active (*c_j*(**x**) = 0)
- and Lagrange multipliers must be positive, $\mu_j \ge 0, j \in A$

$$\nabla f(\mathbf{x}^*) = \sum_{j \in A} \mu_j^* \nabla c_j(\mathbf{x}^*)$$

No active constraints at x*, $\nabla f(\mathbf{x}) = \mathbf{0}$

x* is not a minimizer, $\mu < 0$

Lagrangien

• We can introduce the function (Lagrangien)

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) - \sum_{i=1}^{p} \lambda_{i} a_{i}(\mathbf{x}) - \sum_{j=1}^{q} \mu_{j} c_{j}(\mathbf{x})$$

• The necessary condition for the local minimizer is

$$\nabla_x L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \mathbf{0}$$

and it must be a feasible point (i.e. constraints are satisfied).

These are Karush-Kuhn-Tucker conditions

Quadratic Programming (QP)

- Like in the unconstrained case, it is important to study quadratic functions. Why?
- Because general nonlinear problems are solved as a sequence of minimizations of their quadratic approximations.
- QP with constraints

Minimize
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{H}\mathbf{x} + \mathbf{x}^T \mathbf{p}$$

subject to linear constraints.

• H is symmetric and positive semidefinite.

QP with Equality Constraints

- Minimize $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{H}\mathbf{x} + \mathbf{x}^T \mathbf{p}$ Subject to: $\mathbf{A}\mathbf{x} = \mathbf{b}$
- Ass.: A is p × N and has full row rank (p<N)
- Convert to unconstrained problem by variable elimination:

$$\mathbf{x} = \mathbf{Z}\boldsymbol{\phi} + \mathbf{A}^+\mathbf{b}$$

Z is the null space of A A^+ is the pseudo-inverse.

Minimize
$$\hat{f}(\boldsymbol{\phi}) = \frac{1}{2}\boldsymbol{\phi}^T \hat{\mathbf{H}} \boldsymbol{\phi} + \boldsymbol{\phi}^T \hat{\mathbf{p}}$$

 $\hat{\mathbf{H}} = \mathbf{Z}^T \mathbf{H} \mathbf{Z}$ $\hat{\mathbf{p}} = \mathbf{Z}^T (\mathbf{H} \mathbf{A}^+ \mathbf{b} + \mathbf{p})$

This quadratic unconstrained problem can be solved, e.g., by Newton method.

QP with inequality constraints

- Minimize $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{H}\mathbf{x} + \mathbf{x}^T \mathbf{p}$ Subject to: $\mathbf{A}\mathbf{x} \ge \mathbf{b}$
- First we check if the unconstrained minimizer $\mathbf{x}^* = -\mathbf{H}^{-1}\mathbf{p}$ is feasible.

If yes we are done.

If not we know that the minimizer must be on the boundary and we proceed with an active-set method.

- **x**_k is the current feasible point
- \mathcal{A}_k is the index set of active constraints at \mathbf{x}_k
- Next iterate is given by $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$

Active-set method

•
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$$
 How to find \mathbf{d}_k ?

– To remain active
$$\mathbf{a}_j^T \mathbf{x}_{k+1} - b_j = 0$$
 thus

- The objective function at \mathbf{x}_k +d becomes

$$f_k(\mathbf{d}) = \frac{1}{2}\mathbf{d}^T\mathbf{H}\mathbf{d} + \mathbf{d}^T\mathbf{g}_k + f(\mathbf{x}_k)$$

$$\mathbf{A}^T = [\mathbf{a}_1 \dots \mathbf{a}_p]$$
$$\mathbf{d}_k = 0 \quad j \in \mathcal{A}_k$$

where
$$\mathbf{g}_k = \nabla f(\mathbf{x}_k)$$

 \mathbf{a}_{i}^{T}

• The major step is a QP sub-problem

$$\mathbf{d}_{k} = \arg\min_{\mathbf{d}} \frac{1}{2} \mathbf{d}^{T} \mathbf{H} \mathbf{d} + \mathbf{d}^{T} \mathbf{g}_{k}$$

subject to: $\mathbf{a}_{j}^{T} \mathbf{d} = 0 \quad j \in \mathcal{A}_{k}$

• Two situations may occur: $\mathbf{d}_k = \mathbf{0}$ or $\mathbf{d}_k \neq \mathbf{0}$

Active-set method

• $\mathbf{d}_k = \mathbf{0}$

We check if KKT conditions are satisfied

$$abla_x L(\mathbf{x}, \boldsymbol{\mu}) = \mathbf{H}\mathbf{x}_k + \mathbf{p} - \sum_{j \in \mathcal{A}_k} \mu_j \mathbf{a}_j = \mathbf{0} \quad \text{and} \quad \mu_j \ge 0$$

If YES we are done.

If NO we remove the constraint from the active set A_k with the most negative μ_j and solve the QP sub-problem again but this time with less active constraints.

• $\mathbf{d}_k \neq \mathbf{0}$

We can move to $x_{k+1} = x_k + d_k$ but some inactive constraints may be violated on the way.

In this case, we move by $\alpha_k \mathbf{d}_k$ till the first inactive constraint becomes active, update \mathcal{A}_k , and solve the QP sub-problem again but this time with more active constraints.

General Nonlinear Optimization

• Minimize $f(\mathbf{x})$ subject to: $a_i(\mathbf{x}) = 0$

 $c_j(\mathbf{x}) \ge 0$

where the objective function and constraints are nonlinear.

- 1. For a given $\{x_k, \lambda_k, \mu_k\}$ approximate Lagrangien by Taylor series \rightarrow QP problem
- 2. Solve QP \rightarrow descent direction { $\delta_x, \delta_\lambda, \delta_\mu$ }
- 3. Perform line search in the direction $\delta_{x_1} \rightarrow \mathbf{x}_{k+1}$
- 4. Update Lagrange multipliers $\rightarrow \{\lambda_{k+1}, \mu_{k+1}\}$
- 5. Repeat from Step 1.

General Nonlinear Optimization

Lagrangien
$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) - \sum_{i=1}^{p} \lambda_{i} a_{i}(\mathbf{x}) - \sum_{j=1}^{q} \mu_{j} c_{j}(\mathbf{x})$$

At the *k*th iterate: $\{\mathbf{x}_k, \boldsymbol{\lambda}_k, \boldsymbol{\mu}_k\}$ and we want to compute a set of increments: $\{\boldsymbol{\delta}_x, \boldsymbol{\delta}_\lambda, \boldsymbol{\delta}_\mu\}$

First order approximation of $\nabla_x L$ and constraints:

•
$$\nabla_x L(\mathbf{x}_{k+1}, \boldsymbol{\lambda}_{k+1}, \boldsymbol{\mu}_{k+1}) \approx \nabla_x L(\mathbf{x}_k, \boldsymbol{\lambda}_k, \boldsymbol{\mu}_k) +$$

+ $\nabla_x^2 L(\mathbf{x}_k, \boldsymbol{\lambda}_k, \boldsymbol{\mu}_k) \boldsymbol{\delta}_x + \nabla_{x\lambda}^2 L(\mathbf{x}_k, \boldsymbol{\lambda}_k, \boldsymbol{\mu}_k) \boldsymbol{\delta}_\lambda + \nabla_{x\mu}^2 L(\mathbf{x}_k, \boldsymbol{\lambda}_k, \boldsymbol{\mu}_k) \boldsymbol{\delta}_\mu = \mathbf{0}$

- $c_i(\mathbf{x}_k \boldsymbol{\delta}_x) \approx c_i(\mathbf{x}_k) + \boldsymbol{\delta}_x^T \nabla_x c_i(\mathbf{x}_k) \ge 0$
- $a_i(\mathbf{x}_k \boldsymbol{\delta}_x) \approx a_i(\mathbf{x}_k) + \boldsymbol{\delta}_x^T \nabla_x a_i(\mathbf{x}_k) = 0$

These approximate KKT conditions corresponds to a QP program

SQP example

Minimize
$$f(x,y) = 100(y-x^2)^2 + (1-x)^2$$

subject to: $1.5 - x_1^2 - x_2^2 \ge 0$

Linear Programming (LP)

- LP is common in economy and is meaningful only if it is with constraints.
- Two forms: ullet
 - 1. Minimize $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x}$

subject to: Ax = b $\mathbf{x} \ge 0$

A is $p \times N$ and has full row rank (*p*<*N*)

Prove it!

- $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x}$ 2. Minimize subject to: $Ax \ge b$
- QP can solve LP.
- If the LP minimizer exists it must be one of the vertices of the feasible region.
- A fast method that considers vertices is the Simplex ulletmethod.