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Several general approaches to optimization are as follows:
Analytical methods
Graphical methods
Experimental methods
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Several branches of mathematical programming have
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Linear programming
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Nonlinear programming
Dynamic programming
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Problem specification

Suppose we have a cost function (or objective function)

Our aim is to find values of the parameters (decision variables) x that 
minimize this function

Subject to the following constraints:

• equality:

• nonequality:

If we seek a maximum of f(x) (profit function) it is equivalent to seeking 
a minimum of –f(x)



Books to read
• Practical Optimization

– Philip E. Gill, Walter Murray, and Margaret H. 
Wright, Academic Press,
1981

• Practical Optimization: Algorithms and 
Engineering Applications
– Andreas Antoniou and Wu-Sheng Lu 

2007

• Both cover unconstrained and constrained 
optimization. Very clear and comprehensive.



Further reading and web resources
• Numerical Recipes in C (or C++) : The Art 

of Scientific Computing
– William H. Press, Brian P. Flannery, Saul A. 

Teukolsky, William T. Vetterling
– Good chapter on optimization
– Available on line at 

(1992 ed.) www.nrbook.com/a/bookcpdf.php
(2007 ed.) www.nrbook.com

• NEOS Guide
www-fp.mcs.anl.gov/OTC/Guide/

• This powerpoint presentation
www.utia.cas.cz
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Tut (best 2 out of 3) - 10

Seminars++ (3-4) - 20

TPA  - 30

Total - 100



• INTRODUCTION 
• Characteristics and Categorization of Optimization Problems, Common Optimization problems in 
Computer Vision. 

• RELEVANT OPTIMIZATION CONCEPTS AND METHODS 
• Constrained vs. unconstrained; Fibonacci and Golden-Section Search; QP, LP and NLP, Combinatorial, 
Stochastic and Semi-definite optimization algorithms; Min-Max algorithms; 

• MULTIDIMENSIONAL GRADIENT METHODS 
• Steepest-Descent, Conjugate-Gradient, Newton, Gauss-Newton, Quasi-Newton, Sub-Gradient; 
Levenberg-Marquadrt (LM) Algorithm, Basis Pursuit and LASSO. 

• CONSTRAINED OPTIMIZATION 
• Lagrange Multiplier, Karush Kuhn Tucker (KKT) conditions, First-Order and Second-Order Necessary 
Conditions for minima and maxima; Convex sets and functions, Convex optimization; Duality, IRLS. 

• MODERN METHODS 
• Few selected topics from: Accelerated Proximal Gradient, ADMM, STAMP & SPADE; Manifold based 
optimization, L*-norms, Sparse representations and BOVWs, Multiple Kernel Learning (MKL), Latent 
and Multiple Instance (MI)-learning, Streaming Algorithms. 

• IMAGE RECONSTRUCTION AND ANALYSIS 
• Denoising, Deblurring, Depth/motion from Defocus, Super-resolution, TV-ROF & Tikhonov 
regularization. 

• CORRESPONDENCE PROBLEMS 
• Rectification, RANSAC, Bundle adjustment, Stratification and Auto-calibration, Iterative Closest Point 
(ICP), Spectral Graph matching. 

• SEGMENTATION IN IMAGE/VIDEO 
• MRF, Max-flow & Min-Cut, Grab Cut, Spectral Clustering, Normalized Cut, Active contour, GMM, DPMM 
& Mean Shift Clustering, Particle filter and Subspace clustering. 

• MODERN CV APPLICATIONS 
• Few selected topics from: Intelligent Scissors, Inpainting, Stitching, Shape From X (SFX), Active 
Shape models (ASM, AAM), Saliency constraints, Retargeting, Video Stabilization, Domain Adaptation 
(Transfer Learning) for Object and event detection/categorization, Deformable part based models; 
Deep Learning: SGD, Adam, Batch Learning. 
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Introductory Items in OPTIMIZATION

- Category of Optimization methods
- Constrained vs Unconstrained
- Feasible Region

• Gradient and Taylor Series Expansion
• Necessary and Sufficient Conditions
• Saddle Point
• Convex/concave functions
• 1-D search – Dichotomous, Fibonacci – Golden Section,   

DSC;

• Steepest Descent; Newton; Gauss-Newton

• Conjugate Gradient;

• Quasi-Newton; Minimax; 
• Lagrange Multiplier; Simplex; Primal-Dual, Quadratic 

programming; Semi-definite; 



Problem specification

Suppose we have a cost function (or objective function)

Our aim is to find values of the parameters (decision variables) x that 
minimize this function

Subject to the following constraints:

• equality:

• nonequality:

If we seek a maximum of f(x) (profit function) it is equivalent to seeking 
a minimum of –f(x)



Types of minima

• which of the minima is found depends on the starting 
point

• such minima often occur in real applications

x

f(x)
strong
local

minimum

weak
local

minimum
strong
global

minimum

strong
local

minimum

feasible region



Unconstrained univariate optimization

Assume we can start close to the global minimum

How to determine the minimum?
• Search methods (Dichotomous, Fibonacci, Golden-Section)
• Approximation methods

1. Polynomial interpolation
2. Newton method

• Combination of both (alg. of Davies, Swann, and Campey) 



Search methods

• Start with the interval (“bracket”) [xL, xU] such that the 
minimum x* lies inside.

• Evaluate f(x) at two point inside the bracket.
• Reduce the bracket.
• Repeat the process.   

• Can be applied to any function and differentiability is not 
essential. 
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1-D search



1D function

As an example consider the function

(assume we do not know the actual function expression from now on)



Gradient descent
Given a starting location, x0, examine df/dx 
and move in the downhill direction 
to generate a new estimate, x1 = x0 + δx

How to determine the step size δx?



Polynomial interpolation

• Bracket the minimum.
• Fit a quadratic or cubic polynomial which 

interpolates f(x) at some points in the interval.
• Jump to the (easily obtained) minimum of the 

polynomial.
• Throw away the worst point and repeat the 

process.





Polynomial interpolation

• Quadratic interpolation using 3 points, 2 iterations
• Other methods to interpolate?

– 2 points and one gradient
– Cubic interpolation



Newton method

• Expand f(x) locally using a Taylor series.

• Find the δx which minimizes this local quadratic 
approximation.

• Update x.

Fit a quadratic approximation to f(x) using both gradient and 
curvature information at x.



Newton method

• avoids the need to bracket the root
• quadratic convergence (decimal accuracy doubles 

at every iteration)



Newton method

• Global convergence of Newton’s method is poor.
• Often fails if the starting point is too far from the minimum.

• in practice, must be used with a globalization strategy 
which reduces the step length until function decrease is 
assured



Extension to N (multivariate) dimensions

• How big N can be?
– problem sizes can vary from a handful of parameters to 

many thousands 
• We will consider examples for N=2, so that cost 

function surfaces can be visualized.



An Optimization Algorithm 

• Start at x0, k = 0.

1. Compute a search direction pk

2. Compute a step length αk, such that f(xk + αk pk ) < f(xk)

3. Update xk = xk + αk pk

4. Check for convergence (stopping criteria) 
e.g. df/dx = 0

Reduces optimization in N dimensions to a series of (1D) line minimizations

k = k+1



Taylor expansion 

A function may be approximated locally by its Taylor series 
expansion about a point x*

where the gradient   is the vector

and the Hessian H(x*) is the symmetric matrix



Summary of Eqns. Studies so far
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Quadratic functions 

• The vector g and the Hessian H are constant. 
• Second order approximation of any function by the Taylor 

expansion is a quadratic function.

We will assume only quadratic functions for a while.



Necessary conditions for a minimum 

Expand f(x) about a stationary point x* in direction p

since at a stationary point  

At a stationary point the behavior is determined by H



• H is a symmetric matrix, and so has orthogonal 
eigenvectors

• As |α| increases, f(x* + αui) increases, decreases 
or is unchanging according to whether λi is 
positive, negative or zero



Examples of quadratic functions 

Case 1: both eigenvalues positive

with 

minimum

positive 
definite



Examples of quadratic functions 

Case 2: eigenvalues have different sign

with 

saddle point

indefinite



Examples of quadratic functions 

Case 3: one eigenvalues is zero

with 

parabolic cylinder

positive 
semidefinite



Optimization for quadratic functions 

Assume that H is positive definite

There is a unique minimum at

If N is very large (huge), it is not feasible to perform this 
inversion directly.



Steepest descent 

• Basic principle is to minimize the N-dimensional function 
by a series of 1D line-minimizations:

• The steepest descent method chooses pk to be parallel to 
the gradient

• Step-size αk is chosen to minimize f(xk + αkpk).
For quadratic forms there is a closed form solution:

Prove it!



Steepest descent 

• The gradient is everywhere perpendicular to the contour 
lines.

• After each line minimization the new gradient is always 
orthogonal to the previous step direction (true of any line 
minimization).

• Consequently, the iterates tend to zig-zag down the 
valley in a very inefficient manner



Steepest descent

• The 1D line minimization must be performed using one 
of the earlier methods (usually cubic polynomial 
interpolation)

• The zig-zag behaviour is clear in the zoomed view
• The algorithm crawls down the valley











Newton method 

Expand f(x) by its Taylor series about the point xk

where the gradient is the vector

and the Hessian is the symmetric matrix



Newton method 

For a minimum we require that , and so

with solution . This gives the iterative update

• If f(x) is quadratic, then the solution is found in one step.
• The method has quadratic convergence (as in the 1D case).
• The solution is guaranteed to be a downhill direction.
• Rather than jump straight to the minimum, it is better to perform a line 

minimization which ensures global convergence

• If H=I then this reduces to steepest descent.



Without second order knowledge (ie gradient descent), you can miss the 
narrow valley entirely with fixed sized steps in the direction of the gradient (i.e. 
fixed steps are too large).  Even if you go into the valley, you would spend a great
deal of time zig zagging back and forth the steep walls because the gradient at 
those walls would simply direct the descent to each side of the valley.

Second order information (ie Hessian) allows you to take into 
account the curvature and take steps sized inverse to the 'steepness' 
(very steep -> small steps, very flat -> large steps).



Newton method 
- example

• The algorithm converges in only 18 iterations compared 
to the 98 for conjugate gradients.

• However, the method requires computing the Hessian 
matrix at each iteration – this is not always feasible



Gauss - Newton method 



Convergence 
Condition

Intermediate UpdatesAlpha (𝜶) CalculationMethod

If 𝛼𝑑 <∈,
then 𝑥∗ = 𝑥ାଵ , 𝑓 𝑥∗ = 𝑓ାଵ 
Else 𝑘 = 𝑘 + 1

ାଵ    ାଵ ାଵ
Find 𝛼, the value of 𝛼 that 
minimizes 𝑓(𝑥 + 𝛼𝑑), 
using line search

Steepest-
Descent 
Method
(Method 1)

--” ”--

ାଵ    ାଵ ାଵ
Without Using Line Search

 ் ்  
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Descent 
Method
(Method 2)

--” ”--
ାଵ    ି ଵ ାଵ ାଵ

Find 𝛼, the value of 𝛼 that 
minimizes 𝑓(𝑥 + 𝛼𝑑), 
using line search

Newton 
Method



Convergence 
Condition

Intermediate UpdatesAlpha (𝜶) CalculationMethod
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Newton 
Method

If 𝐹ାଵ − 𝐹 <∈ then 𝑥∗ = 𝑥ାଵ , 
F 𝑥∗ = 𝐹ାଵ 
Else 𝑘 = 𝑘 + 1
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Newton 
Method



Conjugate gradient 

• Each pk is chosen to be conjugate to all previous search 
directions with respect to the Hessian H:

• The resulting search directions are mutually linearly 
independent.

• Remarkably, pk can be chosen using only knowledge of 
pk-1, , and 

Prove it!





Conjugate gradient 

• An N-dimensional quadratic form can be minimized in at 
most N conjugate descent steps.

• 3 different starting points.
• Minimum is reached in exactly 2 steps.



Optimization for General functions 

Apply methods developed using quadratic Taylor series expansion



Rosenbrock’s function

Minimum at [1, 1]



Conjugate gradient

• Again, an explicit line minimization must be used at 
every step

• The algorithm converges in 98 iterations
• Far superior to steepest descent



Quasi-Newton methods 

• If the problem size is large and the Hessian matrix is 
dense then it may be infeasible/inconvenient to compute 
it directly.

• Quasi-Newton methods avoid this problem by keeping a 
“rolling estimate” of H(x), updated at each iteration using 
new gradient information.

• Common schemes are due to Broyden, Goldfarb, 
Fletcher and Shanno (BFGS), and also Davidson, 
Fletcher and Powell (DFP).

• The idea is based on the fact that for quadratic functions 
holds

and by accumulating gk’s and xk’s we can calculate H.



Quasi-Newton BFGS method 

• Set H0 = I.
• Update according to

where

• The matrix inverse can also be computed in this way.
• Directions δk‘s form a conjugate set.
• Hk+1 is positive definite if Hk is positive definite.
• The estimate Hk is used to form a local quadratic 

approximation as before



BFGS example 

• The method converges in 34 iterations, compared to 
18 for the full-Newton method



Conv. ConditionIntermediate Updates(𝜶) CalculationMethod

If 𝛼𝑑 <∈,
then 𝑥∗ = 𝑥ାଵ
, 𝑓 𝑥∗ = 𝑓ାଵ 
Else 𝑘 = 𝑘 + 1

𝑑 = −𝑔;        𝑥ାଵ = 𝑥 + 𝛼𝑑𝛽 = ೖశభ ೖశభೖೖ ;  𝑑ାଵ = −𝑔ାଵ + 𝛽𝑑𝑓ାଵ = 𝑓(𝑥ାଵ)
Without Using 
Line Search𝛼 = 𝑔்𝑔𝑑்𝐻𝑑Conjugate 

Gradient

-,,-𝛽 = ೖశభ ೖశభೖೖ ; 𝑑ାଵ = −𝑔ାଵ + 𝛽𝑑𝑓ାଵ = 𝑓(𝑥ାଵ); 𝑥ାଵ = 𝑥 + 𝛼𝑑Line search
Fletcher-
Reeves

- ,,-𝑋 = 𝑋ିଵ + 𝛼𝑑;  𝑑 = 0 0 … 0 𝑥0 … 0 ்𝑓ାଵ = 𝑓(𝑋ାଵ);  
Line search

Powell

If 𝛿 <∈,
then 𝑥∗ = 𝑥ାଵ
, 𝑓 𝑥∗ = 𝑓ାଵ 
Else 𝑘 = 𝑘 + 1
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Find 𝛼, the 
value of 𝛼 that 
minimizes𝑓(𝑥 + 𝛼𝑑), 
using line 
search

Quasi-
Newton 
Method



Convergence 
Condition

Intermediate UpdatesAlpha (𝜶)
Calculation

Method

If 𝛼𝑑 <∈,
then 𝑥∗ = 𝑥ାଵ , 𝑓 𝑥∗ = 𝑓ାଵ 
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Else 𝑘 = 𝑘 + 1

𝑥ାଵ = 𝑥 + 𝛼𝑑𝑑 = 0 0 … 0 𝑑0 … 0 ்𝑓ାଵ = 𝑓(𝑥ାଵ)
Find 𝛼, the value
of 𝛼 that minimizes𝑓(𝑥 + 𝛼𝑑), using 
line search
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Descent
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then 𝑥∗ = 𝑥ାଵ , 𝑓 𝑥∗ = 𝑓ାଵ 
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Without Using Line
Search

𝛼 = 𝑔்𝑔𝑑்𝐻𝑑
Conjugate 
Gradient

If 𝛿 <∈, then 𝑥∗ = 𝑥ାଵ , 𝑓 𝑥∗ = 𝑓ାଵ 
Else 𝑘 = 𝑘 + 1

𝑥ାଵ = 𝑥 + 𝛿𝛿 = 𝛼𝑑;   𝑑 = −𝑆𝑔𝑥ାଵ = 𝑥 − 𝛼𝑆𝑔𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑔ାଵ  /∗ = 𝑔 + 𝐻𝛿  ∗/𝑆 = 𝐼𝑆ାଵ = 𝑆 +  (𝛿−𝑆𝛾)(𝛿 − 𝑆𝛾)்   𝛾் (𝛿 − 𝑆𝛾)𝛾 = 𝑔ାଵ − 𝑔

Find 𝛼, the value
of 𝛼 that minimizes𝑓(𝑥 + 𝛼𝑑), using 
line search

Quasi-
Newton 
Method





Non-linear least squares 

• It is very common in applications for a cost 
function f(x) to be the sum of a large number of 
squared residuals

• If each residual depends non-linearly on the 
parameters x then the minimization of f(x) is a 
non-linear least squares problem.



Non-linear least squares 

• The M × N Jacobian of the vector of residuals r is defined 
as

• Consider

• Hence



Non-linear least squares 

• For the Hessian holds

• Note that the second-order term in the Hessian is multiplied by the 
residuals ri.

• In most problems, the residuals will typically be small.
• Also, at the minimum, the residuals will typically be distributed with 

mean = 0.
• For these reasons, the second-order term is often ignored.
• Hence, explicit computation of the full Hessian can again be avoided.

Gauss-Newton 
approximation



Gauss-Newton example 

• The minimization of the Rosenbrock function

• can be written as a least-squares problem with 
residual vector



Gauss-Newton example 

• minimization with the Gauss-Newton approximation with 
line search takes only 11 iterations



Convergence 
Condition

Intermediate UpdatesAlpha (𝜶) CalculationMethod

If 𝛼𝑑 <∈,
then 𝑥∗ = 𝑥ାଵ , 𝑓 𝑥∗ = 𝑓ାଵ 
Else 𝑘 = 𝑘 + 1

𝑥ାଵ = 𝑥 + 𝛼𝑑𝑑 = −𝑔𝑓ାଵ = 𝑓(𝑥ାଵ)Find 𝛼, the value of 𝛼 that 
minimizes 𝑓(𝑥 + 𝛼𝑑), 
using line search

Steepest-
Descent 
Method
(Method 1)

--” ”--

𝑥ାଵ = 𝑥 + 𝛼𝑑𝑑 = −𝑔𝑓ାଵ = 𝑓(𝑥ାଵ)Without Using Line Search𝛼 ≈ 𝑔்𝑔𝑔்𝐻𝑔
Steepest-
Descent 
Method
(Method 2)

--” ”--
𝑥ାଵ = 𝑥 + 𝛼𝑑𝑑 = −𝐻ି ଵ𝑔𝑓ାଵ = 𝑓(𝑥ାଵ)Find 𝛼, the value of 𝛼 that 

minimizes 𝑓(𝑥 + 𝛼𝑑), 
using line search

Newton 
Method

If 𝐹ାଵ − 𝐹 <∈ then 𝑥∗ = 𝑥ାଵ , 
F 𝑥∗ = 𝐹ାଵ 
Else 𝑘 = 𝑘 + 1

𝑥ାଵ = 𝑥 + 𝛼𝑑𝑑 = −𝐻ି ଵ𝑔𝑔ி = 2𝐽்𝑓𝐻 ≈ 2𝐽்𝐽 = 𝑳ି𝟏𝑫(𝑳𝑻)ି𝟏𝑥ାଵ = 𝑥 − 𝛼 𝐽்𝐽 ିଵ(𝐽்𝑓)𝑥ାଵ = 𝑥 − 𝛼𝑳𝑻𝑫𝑳𝑔𝑓(ାଵ) = 𝑓(𝑥)𝐹(ାଵ) = 𝐹(𝑥)

Find 𝛼, the value of 𝛼 that 
minimizes F 𝑥 + 𝛼𝑑 ,
using line search𝐹 = 𝑓 𝑥 ଶ = 𝑓்𝑓 

ୀଵ𝑓 = 𝑓ଵ 𝑥  𝑓ଶ 𝑥 …𝑓 𝑥 ்

Gauss-
Newton 
Method



GD





Steepest Descent vs Conjugate Gradient

Newton vs Gradient Descent



The successive steps taken by the method of the 
gradient descent for optimizing the Rosenbrock functions



Levenberg-Marquardt algorithm for 
optimizing the Rosenbrock function

Newton's method for optimizing the Rosenbrock functions. 
(a) Constant step length variant. (b) Step length determined with an optimal line search strategy



Comparison 

CG Newton

Quasi-Newton Gauss-Newton



Conv. ConditionIntermediate Updates(𝜶) CalculationMethod

If 𝛼𝑑 <∈,
then 𝑥∗ = 𝑥ାଵ
, 𝑓 𝑥∗ = 𝑓ାଵ 
Else 𝑘 = 𝑘 + 1

𝑑 = −𝑔;        𝑥ାଵ = 𝑥 + 𝛼𝑑𝛽 = ೖశభ ೖశభೖೖ ;  𝑑ାଵ = −𝑔ାଵ + 𝛽𝑑𝑓ାଵ = 𝑓(𝑥ାଵ)
Without Using Line
Search𝛼 = 𝑔்𝑔𝑑்𝐻𝑑Conjugate 

Gradient

--” ”--
𝑥ାଵ = 𝑥 + 𝛼𝑑𝑑 = −𝐻ି ଵ𝑔𝑓ାଵ = 𝑓(𝑥ାଵ)Find 𝛼, the value of 𝛼

that minimizes 𝑓(𝑥 +𝛼𝑑), using line search

Newton 
Method

If 𝐹ାଵ − 𝐹 <∈ then 𝑥∗ =𝑥ାଵ , F 𝑥∗ =𝐹ାଵ 
Else 𝑘 = 𝑘 + 1

𝑥ାଵ = 𝑥 + 𝛼𝑑;  𝑑 = −𝐻ି ଵ𝑔𝑔ி = 2𝐽்𝑓; 𝐻 ≈ 2𝐽்𝐽 = 𝑳ି𝟏𝑫(𝑳𝑻)ି𝟏𝑥ାଵ = 𝑥 − 𝛼 𝐽்𝐽 ିଵ(𝐽்𝑓)𝑥ାଵ = 𝑥 − 𝛼𝑳𝑻𝑫𝑳𝑔𝑓(ାଵ) = 𝑓(𝑥); 𝐹(ାଵ) = 𝐹(𝑥)
Use line search, for 𝛼𝐹 = 𝑓 𝑥 ଶ = 𝑓்𝑓 

ୀଵ𝑓=𝑓ଵ 𝑥  𝑓ଶ 𝑥 …𝑓 𝑥 ்
Gauss-
Newton 
Method

If 𝛿 <∈,
then 𝑥∗ = 𝑥ାଵ , 𝑓 𝑥∗ = 𝑓ାଵ 
Else 𝑘 = 𝑘 + 1

𝑥ାଵ = 𝑥 + 𝛿;          𝛿= 𝛼𝑑;   𝑑 = −𝑆𝑔;   𝑥ାଵ = 𝑥 − 𝛼𝑆𝑔 𝑔ାଵ = 𝑔 + 𝐻𝛿;  𝑆 = 𝐼𝑆ାଵ= 𝑆 +  (𝛿−𝑆𝛾)(𝛿 − 𝑆𝛾)்  𝛾் (𝛿 − 𝑆𝛾)𝛾 = 𝑔ାଵ − 𝑔
Find 𝛼, the value of 𝛼
that minimizes 𝑓(𝑥 +𝛼𝑑), using line searchQuasi-

Newton 
Method



Steepest Descent Fletcher Reeve’s 
Conjugate Gradient

Newton’s

Quasi-Newton

Powels’s
Conjugate Gradient



Steepest Descent Fletcher Reeve’s 
Conjugate Gradient

Quasi-Newton

Powels’s
Conjugate Gradient

Newton’s



Steepest Descent Fletcher Reeve’s 
Conjugate Gradient

Powels’s
Conjugate Gradient

Newton’s

Quasi-Newton







Momin Jamil and Xin-She Yang, A literature survey of 
benchmark functionsfor global optimization problems, Int. J. Math. 
Modell. Numer. Optim. 4 (No. 2)(2013) 150–194.

A. Gavana, Global Optimization Benchmarks, 2017 
http://infinity77.net.





Probability-directed random search algorithm for unconstrained 
optimization problem; Muhammed Jassem Al-Muhammeda, Raed
Abu Zitarb, Applied Soft Computing 71 (2018) 165–182, 
https://doi.org/10.1016/j.asoc.2018.06.043

The mainstream of the optimization techniques, however, are 
those that use random search as their main mechanism [5–8]. 

Examples include :
Tabu Search [9],
Simulated Annealing [10], 
Genetic Algorithms [11,12], 
Scatter Search [13], and 
particle swarm optimization [14–16], 
estimation distribution algorithm(EDA) [17], and 
imperialist competitive algorithm [18,19].

Aim is to find the global optimal values for hard functions. They 
typically lack continuity and differentiability, and have many 
local optimums.





Deep learning via Hessian-free optimization
James Martens

JMARTENS@CS.TORONTO.EDU

University of Toronto, Ontario, M5S 1A1, Canada

proceedings of the 27 th International Conference
on Machine Learning, , Haifa, Israel, 2010. Copyright 2010



Successful unconstrained optimization methods include 
Newton-Raphson’s method, BFGS methods, Conjugate Gradient
methods and Stochastic Gradient Descent methods. 

These methods are usually associated with a line search 
method to ensure that the algorithms consistently improve the 
objective function. When it comes to large scale machine 
learning, the favorite optimization method is usually SGDs.  
Recent work on SGDs focuses on adaptive strategies for the 
learning rate for improving SGD convergence by approximating
second-order information. 

In practice, plain SGDs with constant learning rates or 
learning rates of the form (α/β+t) are still popular thanks to 
their ease of implementation.  These simple methods are even 
more common in deep learning because the optimization 
problems are nonconvex and the convergence properties of 
complex methods no longer hold.

On Optimization Methods for Deep Learning
Quoc V. Le quocle@cs.stanford.edu; Jiquan Ngiam

jngiam@cs.stanford.edu; Adam Coates acoates@cs.stanford.edu; 
Abhik Lahiri alahiri@cs.stanford.edu; Bobby Prochnow
prochnow@cs.stanford.edu; Andrew Y. Ng;   ICML’11



Recent proposals for training deep networks argue for 
the use of layer-wise pre-training. Optimization techniques for 
training these models include Contrastive Divergence, 
Conjugate Gradient, stochastic diagonal Levenberg-Marquardt 
and Hessian-free optimization. Convolutional neural networks 
have traditionally employed SGDs with the stochastic diagonal 
Levenberg-Marquardt, which uses a diagonal approximation to 
the Hessian.

In this paper, it is our goal to empirically study the pros 
and cons of off-the-shelf optimization algorithms in the 
context of unsupervised feature learning and deep learning. In 
that direction, we focus on comparing L-BFGS, CG and SGDs.





"Beale's function:   Due to the large initial gradient, velocity based techniques 
shoot off and bounce around - adagrad almost goes unstable for the same 
reason. Algos that scale gradients/step sizes like adadelta and RMSProp proceed 
more like accelerated SGD and handle large gradients with more stability."

Global 
Minimum:



"Saddle point: Behavior around 
a saddle point. NAG/Momentum 
again like to explore around, 
almost taking a different path. 
Adadelta/Adagrad/RMSProp
proceed like accelerated SGD.

"Long valley: Algos without scaling 
based on gradient information really 
struggle to break symmetry here - SGD 
gets no where and Nesterov Accelerated 
Gradient / Momentum exhibits 
oscillations until they build up velocity 
in the optimization direction. Algos that 
scale step size based on the gradient 
quickly break symmetry and begin 
descent."







Constrained Optimization

Subject to:

• Equality constraints:

• Nonequality constraints:

• Constraints define a feasible region, which is nonempty.

• The idea is to convert it to an unconstrained optimization.



Equality constraints

• Minimize f(x) subject to: for

• The gradient of f(x) at a local minimizer is equal to the 
linear combination of the gradients of ai(x) with 
Lagrange multipliers as the coefficients. 



Inequality constraints

• Minimize f(x) subject to: for

• The gradient of f(x) at a local minimizer is equal to the 
linear combination of the gradients of cj(x), which are 
active ( cj(x) = 0 )

• and Lagrange multipliers must be positive, 



Lagrangien

• We can introduce the function (Lagrangien)

• The necessary condition for the local minimizer is  

and it must be a feasible point (i.e. constraints are 
satisfied). 

• These are Karush-Kuhn-Tucker conditions



General Nonlinear Optimization

• Minimize f(x)
subject to:

where the objective function and constraints are 
nonlinear.

1. For a given approximate Lagrangien by 
Taylor series → QP problem

2. Solve QP → descent direction
3. Perform line search in the direction →
4. Update Lagrange multipliers →
5. Repeat from Step 1.



General Nonlinear Optimization

Lagrangien

At the kth iterate: 
and we want to compute a set of increments:

First order approximation of and constraints:

•

•
•

These approximate KKT conditions corresponds to a QP program



Quadratic Programming (QP)

• Like in the unconstrained case, it is important to study 
quadratic functions. Why?

• Because general nonlinear problems are solved as a 
sequence of minimizations of their quadratic 
approximations.

• QP with constraints

Minimize

subject to linear constraints.

• H is symmetric and positive semidefinite.



QP with Equality Constraints

• Minimize
Subject to:

• Ass.: A is p × N and has full row rank (p<N)
• Convert to unconstrained problem by variable 

elimination:

Minimize 

This quadratic unconstrained problem can be solved, e.g., 
by Newton method.

Z is the null space of A
A+ is the pseudo-inverse.



QP with inequality constraints

• Minimize
Subject to:

• First we check if the unconstrained minimizer 
is feasible.
If yes we are done. 
If not we know that the minimizer must  be on the 
boundary and we proceed with an active-set method.

• xk is the current feasible point 
• is the index set of active constraints at xk

• Next iterate is given by



Active-set method

• How to find dk?

– To remain active thus
– The objective function at xk+d becomes

where

• The major step is a QP sub-problem

subject to:

• Two situations may occur: or 



Active-set method

•
We check if KKT conditions are satisfied

and

If YES we are done.
If NO we remove the constraint from the active set      with the most 
negative      and solve the QP sub-problem again but this time with 
less active constraints.

•
We can move to but some inactive constraints 
may be violated on the way. 
In this case, we move by till the first inactive constraint 
becomes active, update   , and solve the QP sub-problem again 
but this time with more active constraints.



SQP  (Sequential Quadratic Programming) example

Minimize 
subject to: 



Simplex



Simplex


