Optimization Methods

Categorization of Optimization Problems
Continuous Optimization
Discrete Optimization
Combinatorial Optimization
Variational Optimization

Common Optimization Concepts in Computer Vision
Energy Minimization
Graphs
Markov Random Fields

Several general approaches to optimization are as follows:
Analytical methods
Graphical methods
Experimental methods
Numerical methods

Several branches of mathematical programming have
evolved, as follows:

Linear programming

Integer programming

Quadratic programming

Nonlinear programming

Dynamic programming

1. THE OPTIMIZATION PROBLEM
1.1 Introduction
1.2 The Basic Optimization Problem

2. BASIC PRINCIPLES
2.1 Introduction
2.2 Gradient Information

3. GENERAL PROPERTIES OF ALGORITHMS
3.5 Descent Functions

3.6 Global Convergence

3.7 Rates of Convergence

4. ONE-DIMENSIONAL OPTIMIZATION
4.3 Fibonacci Search

4.4 Golden-Section Search2

4.5 Quadratic Interpolation Method

5. BASIC MULTIDIMENSIONAL GRADIENT
METHODS

5.1 Introduction

5.2 Steepest-Descent Method

5.3 Newton Method

5.4 Gauss-Newton Method

CONJUGATE-DIRECTION METHODS

6.1 Introduction

6.2 Conjugate Directions

6.3 Basic Conjugate-Directions Method

6.4 Conjugate-Gradient Method

6.5 Minimization of Nonquadratic Functions

QUASI-NEWTON METHODS
7.1 Introduction
7.2 The Basic Quasi-Newton Approach

MINIMAX METHODS

8.1 Introduction

8.2 Problem Formulation
8.3 Minimax Algorithms

APPLICATIONS OF UNCONSTRAINED OPTIMIZATION
9.1 Introduction
9.2 Point-Pattern Matching

FUNDAMENTALS OF CONSTRAINED OPTIMIZATION
10.1 Introduction
10.2 Constraints

LINEAR PROGRAMMING PART I: THE SIMPLEX METHOD
11.1 Introduction
11.2 General Properties

11.3 Simplex Method

LINEAR PROGRAMMING PART I: THE SIMPLEX METHOD
11.1 Introduction
11.2 General Properties

11.3 Simplex Method

QUADRATIC AND CONVEX PROGRAMMING

13.1 Introduction

13.2 Convex QP Problems with Equality Constraints

13.3 Active-Set Methods for Strictly Convex QP Problems

GENERAL NONLINEAR OPTIMIZATION PROBLEMS
15.1 Introduction
15.2 Sequential Quadratic Programming Methods

Problem specification

Suppose we have a cost function (or objective function)

f(x):RY — R

Our aim is to find values of the parameters (decision variables) x that
minimize this function

X = arg 111Xin f(x)

Subiject to the following constraints:
- equality: ci(x) =0

* nonequality: ci(x) >0

If we seek a maximum of f(x) (profit function) it is equivalent to seeking
a minimum of —£(x)

Books to read

Practical Optimization

— Philip E. Gill, Walter Murray, and Margaret H.
Wright, Academic Press,

1981

Practical Optimization: Algorithms and
Engineering Applications
— Andreas Antoniou and Wu-Sheng Lu
2007

Both cover unconstrained and constrained
optimization. Very clear and comprehensive.

PRACTICAL
OPTIMIZATION

Philip E. Gill
ter Murr;

\.(...
£5 2
-

Practical
Optimization

Algorithms and Engineering Applications

Further reading and web resources

 Numerical Recipes in C (or C++) : The Art
of Scientific Computing

— William H. Press, Brian P. Flannery, Saul A.
Teukolsky, William T. Vetterling

— Good chapter on optimization
— Available on line at
(1992 ed.) www.nrbook.com/a/bookcpdf.php

(2007 ed.) www.nrbook.com

e NEOS Guide
www-fp.mcs.anl.gov/OTC/Guide/

 This powerpoint presentation
www.utia.cas.cz

End-sem -

Tut (best 2 out of 3) -
Seminars++ (3-4) -
TPA -

Total -

40

10

20

30

100

e INTRODUCTION
e Characteristics and Categorization of Optimization Problems, Common Optimization problems in
Computer Vision.

e RELEVANT OPTIMIZATION CONCEPTS AND METHODS
e Constrained vs. unconstrained; Fibonacci and Golden-Section Search; QP, LP and NLP, Combinatorial,
Stochastic and Semi-definite optimization algorithms; Min-Max algorithms;

MULTIDIMENSIONAL GRADIENT METHODS
o Steepest-Descent, Conjugate-Gradient, Newton, Gauss-Newton, Quasi-Newton, Sub-Gradient;
Levenberg-Marquadrt (LM) Algorithm, Basis Pursuit and LASSO.

« CONSTRAINED OPTIMIZATION
e Lagrange Multiplier, Karush Kuhn Tucker (KKT) conditions, First-Order and Second-Order Necessary
Conditions for minima and maxima; Convex sets and functions, Convex optimization; Duality, IRLS.

« MODERN METHODS
e Few selected topics from: Accelerated Proximal Gradient, ADMM, STAMP & SPADE; Manifold based
optimization, L*-norms, Sparse representations and BOVWs, Multiple Kernel Learning (MKL), Latent
and Multiple Instance (MI)-learning, Streaming Algorithms.

e IMAGE RECONSTRUCTION AND ANALYSIS
e Denoising, Deblurring, Depth/motion from Defocus, Super-resolution, TV-ROF & Tikhonov
regularization.

« CORRESPONDENCE PROBLEMS
e Rectification, RANSAC, Bundie adjustment, Stratification and Auto-calibration, Iterative Closest Point
(ICP), Spectral Graph matching.

« SEGMENTATION IN IMAGE/VIDEO
e MRF, Max-flow & Min-Cut, Grab Cut, Spectral Clustering, Normalized Cut, Active contour, GMM, DPMM
& Mean Shift Clustering, Particle filter and Subspace clustering.

e MODERN CV APPLICATIONS
* Few selected topics from: Intelligent Scissors, Inpainting, Stitching, Shape From X (SFX), Active
Shape models (ASM, AAM), Saliency constraints, Retargeting, Video Stabilization, Domain Adaptation
(Transfer Learning) for Object and event detection /categorization, Deformable part based models;
Deep Learning: SGD, Adam, Batch Learning.

Textbooks

Marco Alexander Treiber, Optimization for Computer Vision: An
Introduction to Core Concepts and Methods, Springer 2013.

Andreas Antoniou and Wu-Sheng Lu, Practical Optimization:
Algorithms and Engineering Applications, Springer 2007.

References

Richard Szeliski, Computer Vision: Algorithms and Applications,
Springer-Verlag London Limited 2011.

Alan C. Bovik, Handbook of Image and Video Processing,
ELSEVIER, ACADEMIC PRESS 2005

Introductory Items in OPTIMIZATION

- Category of Optimization methods
- Constrained vs Unconstrained
- Feasible Region
Gradient and Taylor Series Expansion
Necessary and Sufficient Conditions
Saddle Point
Convex/concave functions
1-D search - Dichotomous, Fibonacci - Golden Section,
DSC;

Steepest Descent; Newton; Gauss-Newton
Conjugate Gradient;
Quasi-Newton; Minimax;

Lagrange Multiplier; Simplex; Primal-Dual, Quadratic
programming; Semi-definite;

Problem specification

Suppose we have a cost function (or objective function)

f(x):RY — R

Our aim is to find values of the parameters (decision variables) x that
minimize this function

X = arg 111Xin f(x)

Subiject to the following constraints:
- equality: ci(x) =0

* nonequality: ci(x) >0

If we seek a maximum of f(x) (profit function) it is equivalent to seeking
a minimum of —£(x)

minimum

minimum
strong
global
minimum

minimum

c
2
(o)
@
—_
Q2
Q
7
©
QL

Unconstrained univariate optimization

Assume we can start close to the global minimum

f(z)

min f(x)

How to determine the minimum?
 Search methods (Dichotomous, Fibonacci, Golden-Section)

 Approximation methods
1. Polynomial interpolation
2. Newton method

« Combination of both (alg. of Davies, Swann, and Campey)

Search methods

« Start with the interval ("bracket”) [x, X] such that the
minimum Xx* lies inside.

» Evaluate f(x) at two point inside the bracket.

* Reduce the bracket.

 Repeat the process.

« (Can be applied to any function and differentiability is not
essential.

Figure 4.2. Construction for dichotomous search.

@) - Iy = Fn_k_l‘f k+1
- I --i J D
|

| |
i"'_ Iy _"‘: :
| |
e
: ! | |
I X x
-'L,k Ia,k .Ié‘* Iu'k
|
| |

XLks1 XU ko1
If for > fok, then 2% is in interval [x, &, 27| and so the new bounds of
r* can be updated as

TLk+1 = Tak (4.7)
TUk+1 = TUk (4.8)

Tak+1 = Tok fak+1 = fok
Thk+1 = TLk+1 + Lo

fork+1 = f(xpr+1)

Algorithm 4.1 Fibonacci search

Step 1
Input 27, 1, 21,1, and n.
Step 2
Compute Fy, Fy, ..., F;, using Eq. (4.4).
Step 3
Assign Iy = xp1 — xr,1 and compute
.
Iy = ——1I; (seeEq.(46)
T
Ta1 = zy)—12, Zvg =2zL)1+ 12
faq = f(Za1), foa = f(Ts1)
Setk = 1.
Step 4

Compute ;.o using Eq. (4.6).

If fax = fok, then update zf, 11, Tuk+1, Tak+1s Tok+1s fak+1,
and fp k+1 using Egs. (4.7) to (4.12). Otherwise, if for < fbr. update
information using Egs. (4.13) to (4.18).

Step 5

Ifk=n—2o0rzgk41 > Tp+1,0utput * = 4 41 and f* = f(2%),
and stop. Otherwise, set k = k£ + 1 and repeat from Step 4.

The condition ¥ j4+1 > Ty 41 implies that x4 41 = 2p441 Within

fx) : | Fu_k_l
’ B— -
L ‘ ol Ib—l-ﬂ = F I k+1
1 1 |
—— Ty —= ! n—
: :"" : Ty _"'"E
: : | |
' |) X
xL.k xﬂ.k x|b'k xu’k
|
|

Xak+l Xbk+l |

|
I

FL k41 XU ksl

ure 4.6. Assignments in kth iteration of the fibonacci search if f, x < fo i

if fak < fok.then * is in interval [z k., Tpz].
TLk+1 = TLk
TUk+1 = Thk
Tak+1 = TUk+1 — Tt2
Tpk+1 = Tak
= I
Jok+1 = fak f ak+1 f (a,k-l-l)

fx) : |

1 I I

r'"_ e _-1 :

1 I I

i :--—:— | P —-—-:

:) I I
1 . x

*Lk *ak xl:!.i XUk

| I |

I I

=12 !

| I |

I
i Takel Xpksl :
I !
XL k+1 XU k+1

gure 4.5. Assignments in kth iteration of the Fibonacci search if fox > fo k.

f(x) I

S
I

1 1 I

i . I I

. T X

XLk Xak If.k Uk

L |

! "-_: 1 l:+2_—':

: : : |

| Xaael kel i

XL k+1 XU k+1

4.6. Assignments in kth iteration of the fibonacci search if f, ¢ < fox

Algorithm 4.2 Golden-section search

Step 1
Input z7, 1, Ty g, and €.
Step 2
Assign I1 = 1 — z1, K = 1.618034 and compute
Iy =11/K

To1 =2Zyyr—lo, Tpy=zL1+ 12

faq = f(Za1), fo1 = f(x61)
Setk = 1. If far > fox. then update Tf, ki1, TUk+1, Tak+1s Tok+ls fak+1s
Step 3 and f 41 using Egs. (4.7) to (4.12). Otherwise, if f, 3 < fp . update
Compute information using Egs. (4.13) to (4.18).

Doy =Dt /K fft;::: £ 0r Tak+1 > Thk+1, then do:
If fak+1 > fok+1, compute
z* = H(Tphi1 + TUk+1)
If fak+1 = fok+1, compute
% = §(Tag+1 + Toks1)
If fax+1 < fog+1, compute
T* = J(TLk+1 + Tag+1)

Compute f* = f(z*).

Output z* and f*, and stop.

Step 5

Set k = k + 1 and repeat from Step 3.

Gradient descent

Given a starting location, x,, examine df/dx
and move in the downhill direction
to generate a new estimate, x, = x, + 6X

1.4 T T T T T T T !

|n|t§|al Xoé
o T e R R
04_ downhlll gr dlent O S S SR S

X, =X +3X

02|+ oo\ M X T K SO S

! ! ! ! ! 1 I I L
I -08 -06 -04 -02 0 0.2 0.4 0.6 0.8

How to determine the step size ox?

Polynomial interpolation

 Bracket the minimum.

* Fit a quadratic or cubic polynomial which
interpolates f(x) at some points in the interval.

* Jump to the (easily obtained) minimum of the
polynomial.

 Throw away the worst point and repeat the
process.

Newton method

Fit a quadratic approximation to f{x) using both gradient and
curvature information at x.

* Expand f(x) locally using a Taylor series.
f(x+dx) = f(a)+ fl(x)or + 3]" "()da® + o(da?)

* Find the ox which minimizes this local quadratic
approximation. ()

(5;1'.7 — N
J" ()

* Updatex. ., =1, —or=u,

Newton method

Iteration 3 Iteration 3

e avoids the need to bracket the root

* quadratic convergence (decimal accuracy doubles
at every iteration)

Newton method

* Global convergence of Newton’s method is poor.
« Often fails if the starting point is too far from the minimum.

Iteration 3 Iteration 3

* In practice, must be used with a globalization strategy
which reduces the step length until function decrease is
assured

Extension to N (multivariate) dimensions

* How big N can be?

— problem sizes can vary from a handful of parameters to
many thousands

* We will consider examples for N=2, so that cost
function surfaces can be visualized.

An Optimization Algorithm

« Startatx,, £=0.

1. Compute a search direction p,

2. Compute a step length o, such that f(x, + o, p,) < AX,)

3. Update x, =x, + o, p, e

4. Check for convergence (stopping criteria)
e.qg.df/dx=0

Reduces optimization in N dimensions to a series of (1D) line minimizations

Taylor expansion

A function may be approximated locally by its Taylor series
expansion about a point x*

f(x"+x) & f(x') + V' x + 5x Hx

where the gradient V/(x") is the vector
. Tor o
Vil =
T TN

and the Hessian H(x*) is the symmetric matrix

T gE o2 f]

dxq dapn

H(x") =

Summary of Eqns. Studies so far

gx)=[ZL 2 .. gJ::]T — YECNY T
—— 82 82 82
the Hessian' of f(x) is defined as or7 Fl% Eﬁ
821 el o2f
H(x) = Vg" = V{V7f(x)} H(x)= |%0m1 0z i
ot o o
f(x+8) = f(x)+g(x)"d + 36" H(x)d + o] 8]*) Oa:ngzn B::..g:m Fé

f(x+6) = f(x) +g(x)"6 + 36" H(x)d
f(x+8)=f(x)+g(x)T6+ 6TH(x + ad)s

Theorem 2.1 First-order necessary conditions for a minimum
(a) If f(x) € C' and x* is a local minimizer, then

f(x+8) = f(x) +g(x)"é

g(x"‘)Td >0

for every feasible direction d at x*.
(b) If x* is located in the interior of R then

g(x*)=0

Theorem 2.2 Second-order necessary conditions for a minimum

(a) If f(x) € C? and X" is a local minimizer, then for every feasible direction
d ar x*
(i) g(x*)'d >0
(ii) If g(x*)Td = 0, then d"H(x*)d > 0
(b) If x* is a local minimizer in the interior of R, then
(i) g(x*) =0
(ii) d"H(x)*d > 0 forall d # 0

Theorem 2.4 Second-order sufficient conditions for a minimum If f(x) € C?
and X" is located in the interior of R, then the conditions
(a) g(x*) =0
(b) H(X") is positive definite
are sufficient for X* to be a strong local minimizer.
Definition 2.6 A point X € R, where R is the feasible region, is said to be a
saddle point if
(a) g(x) =0
(b) point X is neither a maximizer nor a minimizer.

1. Find the points x; at which g(x;) = 0.
2. Obtain the Hessian H(x;).
3. Determine the character of H(x;) for each point x;.

g=1-Gj
Gaussian -
Function

Consider: g=1-Gx")=>Vg(x") =0

lgx"Td>0 g(x*) =0

d"H(x*)d > 0

Quadratic functions

(T I
]L(X) = (+ gl X + ,)Xj Hx

.
—

 The vector g and the Hessian H are constant.

* Second order approximation of any function by the Taylor
expansion is a quadratic function.

We will assume only quadratic functions for a while.

Necessary conditions for a minimum

fx)=a+g'x+ %XIHX
Expand f(x) about a stationary point x* in direction p

f(x"+ap) = f(x") + g(x"‘)l ap + 5(1'2p1 Hp
o |
= [(x7) + 3(_'12[)1 Hp

since at a stationary point g(x™) =0

At a stationary point the behavior is determined by H

 H is a symmetric matrix, and so has orthogonal
eigenvectors

Hllj —)\;_ll; ||qu =n]

T o | -
.f(Xz:: _l_ (_'}"ll,_;) —]L(X) _|_ ‘_(l_)u}l Hlll'
1

,_2)\3'

= f(X) Sl §(l

* As |ao| increases, f(x* + au,) increases, decreases
or is unchanging according to whether A. is
positive, negative or zero

Examples of quadratic functions

Case 1: both eigenvalues positive

| - |
fx)=a+g'x+ 5X1 Hx
with e _ | =50 |6 4] positive
=0, 5= —50| H = 4 G| definite

T T
10k \
S
ot _
1 1
5 0 5 10 1
X1

minimum

5

Examples of quadratic functions

Case 2: eigenvalues have different sign

| | [
fx)=a+g'x+ §x1 Hx
with - —30 6 0]
= — . : H=|
(o 2 o0 | 0 1 indefinite
) v
5 /j\ﬂn 15

saddle point

Examples of quadratic functions

Case 3: one eigenvalues is zero

with

i,

fx)=a+g'x+ EXTHX

VIR
//ljf{l,,/;;’w%

: il
Y

. i
il
i,
!
s
il

i e

1%

parabolic cylinder

l

|6 O] positive
- 0 0 semidefinite

Optimization for quadratic functions

Assume that H is positive definite

fx)=a+g'x+)Xl Hx

(4
]

V/f(x) =g+ Hx

L2

There is a unigue minimum at

x"=-H'g

If N is very large (huge), it is not feasible to perform this
iInversion directly.

Steepest descent

F+AF = f(X+0)=[f(X)+g 0+ 1]7f7‘ Ho

X jot

Basic principle is to minimize the N-dimensional function
by a series of 1D line-minimizations:

Xpt1 = Xp T+ QLPk

The steepest descent method chooses p, to be parallel to
the gradient

P, = —V f(x;)

Step-size ¢, is chosen to minimize f(x, + o, p,).
For quadratic forms there is a closed form solution:

1 = Xk + (l,i, p/{ pA
Xp = — Prove it!
" 1
L gk P, Hp;, ﬁ }

Steepest descent

15

10

0 5 10 {5
lteration 34, f =-250

* The gradient is everywhere perpendicular to the contour
lines.

« After each line minimization the new gradient is always
orthogonal to the previous step direction (true of any line
minimization).

« Consequently, the iterates tend to zig-zag down the
valley in a very inefficient manner

Steepest descent

* The 1D line minimization must be performed using one
of the earlier methods (usually cubic polynomial
interpolation)

155+

151

145+

141

1351

| | | | |
-2 -1.5 -1 0.5 0 0.5 1 1.5 2

.- 2 25 I I 1 I I
Iteration 56, f = 3.6632 13 195 12 118 11

* The zig-zag behaviour is clear in the zoomed view
* The algorithm crawls down the valley

f(z) f(z)
flz) =22 flz) =*
10 Gradient descent 1.0 Gradient descent
0.80 0.80
0.60 0.60
0.40 0.40
0.20 ‘ 0.20
0.0 P 0.0 {I0x
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 075 T -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 075 T
op =1 [Tp="1 (
A=01] A=03 [
f(z) f(z)
f(z) =2’ flz) =2’
10 Gradient descent 1.0 Gradient descent
0.80 0.80
0.60 0.60
0.40 0.40
0.20 0.20
0.0 e — 0.0 4
-1.00 -0.75 -0.50 -0.25 0.00 025 0.50 0.75 T -1.00 -0.75 -0.50 -0.25 0.00 025 0.50 0.75 T
=1 [o =1 (
A=04 | A=08

f(z) = 2*

Gradient descent

0.0
-1.00 -0.75 -0.50

xn =1 (

flz) |

flz) = 2°

i I izradient descent
4 Qe+15 1 1 { { T =

3.0e+15
2.0e+15

1.0e+15

-50000000 -50000000 -40000000 -30000000 -20000000 -10000000

11

X2 l\t_y
0.9-;\
fla1,22) = (1 - 1) + 100(<<ii::

:Eg—:ltl .

NSNS 77T

, : 0.2 0.8 1.0
006 P.A. Simionescu X1

K| ~ X

-1
= $6T(x)6(x) = § (321 ~ cos(aas) ~ §)" + (40 ~ 62503 + 200 ~ 1)" + (exp(-2122) + 205 + (107 - 3)°

o=

e

,:—:"/ / /

___Lf/’//{/
=
\\ — // / |

F(z,y) =sin (51:2 - %y’ E 3) cos(2x + 1 — €Y)

Newton method

Expand f(x) by its Taylor series about the point x,

.

Ly

f(x) +0x) ~ [(x)+ I'ox + —ox' Hox
, g 5

where the gradient is the vector
g, = Vf(xp) = {

L1

and the Hessian is the symmetric matrix

H, = H(X/f.) —

Xpi1 = Xp + 0 = X + apdy

g O_f} 1

i N

)
0=
(

—

‘|
N

e

—
€25
1

b o o o
\-.',:‘

92
o N o 1

Newton method

For a minimum we require that V f(x) = 0, and so

Vix)=g.+Hpx=0
with solution 0x = —H, 'k This gives the iterative update
X1 = X — H;lgL

 If Ax) is quadratic, then the solution is found in one step.
e The method has quadratlc convergence (as in the 1D case).
The solution 0X = —Hg 8k Is guaranteed to be a downhill direction.

. Rather than jump straight to the minimum, it is better to perform a line
minimization which ensures global convergence

N —1
X1 = x, — aprH, gy

. If H=I then this reduces to steepest descent.

Rosendrock

o

A

0.5 -1
Without second ordelj i(nowledge (ie gradient descent), you can miss the
narrow valley entirely with fixed sized steps in the direction of the gradient (i.e.
fixed steps are too large). Even if you go into the valley, you would spend a great
deal of time zig zagging back and forth the steep walls because the gradient at
those walls would simply direct the descent to each side of the valley.

Second order information (ie Hessian) allows you to take into
account the curvature and take steps sized inverse to the 'steepness’
(very steep -> small steps, very flat -> large steps).

N — Newton method
| | - example

: e M Step 2
-2 -1.5 -1 -0.5 0 0.5
teration 18, =6.85¢Compute g and Hy.

If H;. is not positive definite, force it to become positive definite.

Step 3

Compute H, ' and d; = —H, ‘.

Step 4

Find oy, the value of o that minimizes f(x; + ady), using a line search.
Step 5

Set Xi+1 = Xk + apdg.
Compute fri1 = f(Xg41).
* The algorithm converges in only 18 iterations compared
to the 98 for conjugate gradients.

 However, the method requires computing the Hessian
matrix at each iteration — this is not always feasible

Gauss - Newton method

F= fj fo(x)* = £'€
f=[fi1(x) fa(x) -+ fm(x)]" p=1

af1 af1 af
1 Oy Oz,
3 8fa Of2 of
= | Org Ora Orn
af. & Ofm
| | L Or1 Oxa Oy -
gF 2JTf Hp = 2J7]

Step 2
Compute fp; = fp(xg) forp=1,2, ..., mand Fj.
Step 3

Compute Jy., g = ﬂ{fk, and H; = 2.]’{.1]:.

Step 4

‘Compute L and Dy using Algorithm 5.4.

Compute yp = —Ligp and dj. = L{f);lyk.

Step 5

Find oy, the value of o that minimizes F(x; + ady).
Step 6

Set X311 = Xj + opdy.

Compute fyp.q)forp=1,2, ..., mand Fj. ;.

Xp+1 = X — ag(2373) 71 (237F)
= x¢ — ar(JT D)1 (ITF)

Alpha (a) Calculation Intermediate Updates Convergence
Condition

Steepest-
Descent
Method
(Method 1)

Steepest-
Descent
Method
(Method 2)

Newton
Method

Find ay, the value of a that
minimizes f(x; + ady),
using line search

Without Using Line Search
T
Ik Ik
T
Ik Mk gk

dp ~

Find ay, the value of a that
minimizes f (x; + ady),
using line search

Xp+1 = X + Qgdy
dr = — 9k
fe+1 = [(Xks1)

Xp+1 = X + apdy
d = — 9k
fre+1 = f(Xg41)

Xp+1 = X + agdy
d = —Hp ' g
fe+1 = f (Xk+1)

If ||akdk|| <E,
then x™ = x341,

f(xX*) = fr+1
Elsek=k+1

” n

” . n

Alpha (a) Calculation Intermediate Updates Convergence
Condition

Find ay, the value of a that
minimizes f(x; + ady),
using line search

Steepest-
Descent
Method
(Method 1)

Steepest- Without Using Line Search

Descent
Method
(Method 2)

IrHr g

Find a,, the value of a that
minimizes f (x; + ady),
using line search

Newton
Method

Find o, the value of a that
minimizes F(x; + ady),
using Iine search

F = Zf,,(x)Z F1f
[f1(x)f2(x) fin(]"

Gauss-
Newton
Method

Xk+1 = X + akdk f ||akdk|| <E,
dr = — 9k then x* = xp 41,
fre1 = (k1) f(x™) = fr+1
Elsek=k+1

Xp+1 = X + Qdy
dk = _gk __I’ I’__
frer1 = F (Xr41)

Xg+1 = X + Qpdy
dy = —Hy " gx - e
fre1 = (k1)
Xp41 = Xp + dy
dp = —Hi ' gk If [Fr1 — Fil| <€
gr =2J'f then x* = x3,44,
H=2]T] =L ID(LT)™! F(x*) = Feqq

Xk+1 = Xk — ak(IT]) UTf) Elsek =k + 1
X41 = X — agL"DLg,
fok+1) = fp(Xk)
Fer1y = F(x)

Conjugate gradient

 Each p, is chosen to be conjugate to all previous search
directions with respect to the Hessian H:

p, Hp, = 0. L F

 The resulting search directions are mutually linearly

Independent. \i Prove it! }

 Remarkably, p, can be chosen using only knowledge of
P, V. (Xe-1), and V f(xy)

ViV fi)
Pr—1

P/ /i (Vj,flv,f/\-—l

g::::l-l = Xk + aidj and calculate fr+1 = f(Xk+1).
If ||agdg|| < &, output X* = X1 and f(x*) = fi+1, and stop.

Step 5
Compute g;. ;1.

di+1 = — k41 + Brdi

Conjugate gradient

 An N-dimensional quadratic form can be minimized in at
most N conjugate descent steps.

« 3 different starting points.
« Minimum is reached in exactly 2 steps.

Optimization for General functions

il e A

f(l y) = (%‘-X]..'_')(.’flf)(ﬁl_.’_’l,’z -+ 23}2 == 4;_’[:-3/ L Dp -k],)

ot R e e, 7
s T L A T e T
AN
& s c#:#c{;;{a.{?. edratyiestyde T teyty
iy dug Ny oy iy
Tl I q..#. oy
L L A L
i,
AT

SNy agry

log(f(x.y))

4

X

Apply methods developed using quadratic Taylor series expansion

Rosenbrock’s function

i 4

05F |
0f |
05k i
3 2

Minimum at [1, 1]

Conjugate gradient

* Again, an explicit line minimization must be used at
every step

-2 1.5 -1 05 0 05 1 1.5 2
Iteration 98, f = 0.0012006

« The algorithm converges in 98 iterations
« Far superior to steepest descent

Quasi-Newton methods

« |f the problem size is large and the Hessian matrix is
dense then it may be infeasible/inconvenient to compute
it directly.

* Quasi-Newton methods avoid this problem by keeping a
“rolling estimate” of H(x), updated at each iteration using
new gradient information.

« Common schemes are due to Broyden, Goldfarb,
Fletcher and Shanno (BFGS), and also Davidson,
Fletcher and Powell (DFP).

 The idea is based on the fact that for quadratic functions
holds

Sr+1 — 8r = H(Xp1 — xp)

and by accumulating g,’'s and x,'s we can calculate H.

Quasi-Newton BFGS method

« SetH,=1
Update according to

N/ 7~/ :l - ~ ~ :[-

wvE Heveyi Hy
H,.,=H,+ —/— — — i

" 'H

f Az () A" () /1., l\,-‘ () L,-'

where
Ve = 8Bh+1 — 8k Op = Xjy1 — Xpy
 The matrix inverse can also be computed in this way.
« Directions J,'s form a conjugate set.
« H,,, is positive definite if H, is positive definite.

 The estimate H, is used to form a local quadratic
approximation as before

BFGS example

-2 ki = k5 0 05 1l 15 2
lteration 34, f = 3.4588e-008

 The method converges in 34 iterations, compared to
18 for the full-Newton method

W (ax) Calculation Intermediate Updates

Conjugate
Gradient

Fletcher-
Reeves

Powell

Quasi-

Newton
Method

Without Using
Line Search

o GkYk
T AT Hydy

Line search

Line search

Find a, the
value of a that
minimizes
f(xp + ady),
using line
search

do = —9o; Xp+1 = X T Qgdy
917;+1gk+1
P == drs1 = —Gr+1 T Brdy
99k

fr+1 = (k1)

T
_ Ik+19Y9k+1 , _
Prx = 7 drs1 = —Gr+1 T Brdy
IrIk

frer1 = f(Xga1), w1 = X + agdy
Xk = Xk—l + akdk; dk = [0 0 ..0 xkO O]T

Xps1 = X + Op; O = aidy,
dr = —Sk9K; Xk+1 = Xk — XSk Gk
Compute gipy /* = gi + Hy, */
So = I
(0k—SkVi) Ok — Ska)T
Vi (6k — Sk¥i)
Yk = Yk+1 — Yk

Sk+1 = Sk +

If ||akdk|| <E,
then x* = xp41

Lf(xﬁ) =:fk+1

Elsek=k+1

124

144

If 16| <€,
then x* = xp41

Lf(x}) =:fk+1
Elsek=k+1

Alpha (a) Intermediate Updates Convergence
Calculation Condition

Find ay, the value Xp41 = X + apdy |f ||akdk|| <E,
of a that minimizes then x™ = x3,41,
Coordinate [(x; + ady), using d, =100 ..0d,0 ...0]7 f(x*) = frs1
Descent |ine search Elseif k==n, then
fk+1 — f(xk+1) X1 = xk+1,k =1
Elsek =k+1
do = —Jo If |lard|| <€,
Without Using Line Xp41 = X + apdy then x* = X471,
] Search _ Jicr19k+1 fx*) = frsa
Conjugate Br = T
Gradient T Ik Yk
= Ik Yk di+1 = —Gr+1 T Prdk EE = e L
dy Hydy fre1 = f(Xr41)
Xpt1 = X + Oy If |6k|| <E, then
Find ay, the value O = aidy, dy = —Si9gx X5 = Xpy1,
of a that minimizes Xp41 = Xk — XSk i f(x™) = frs1
Quasi- f(x, +ady),using Compute guv1 /*= g+ HE */ Eisek=k+1
ewton : _
Method line search So = I,

(Br—=SkVi) (O — Skvi)"
Vi (8x — Sk¥i)
Yk = 9k+1 — Yk

Sk+1 = Sk Tt

is used to update the approximate Hessian B 1. or directly its inverse [}, = Bk' _*1_1 using the Sherman-Morrison formula.

= A key property of the BFGS and DFP updates is that if 3, is positive definite and (. is chosen fo satisfy the Wolfe
conditions then By, 4 is also positive definite.

The most popular update formulas are:

Method Bk+1 = Hk+1 = __:1 =

DEP (I— Yk A.'L‘Z) B, (I_ Aa:ky{) M H + AxkAa:{ B Hkyky',’;H,'{
Y Az, yp Az) yf Azy Yp Ay Yi Hiyi

BFGS |Bj + ykyz = BkAmk(BkAIk)T T y"AI{ i H. |\I- ykAx{ 1L AI}:AZI:’{
yidze Axf By Ay yfAz,) °\ yfAx) T yf A
e — By \ 1 (Azy — Hyy)Azf Hy

Broyden | B Ax H

royden | Dy + AT Azy k k+ N

Brovd

oy |~ HBoL + @Bl €]

SR1 Bk -L (yk — Bk Azk)(yk _ Bk Axk)T Hk + (Axk _ Hkyk)(Axk — Hkyk)T

(yk — Bk A.'z:k)T Aa:k (A:Ek -— Hk'yk)Tyk

Non-linear least squares

« |tis very common in applications for a cost
function f(x) to be the sum of a large number of
squared residuals

M ._
fx) = Z 1 (x)

* |f each residual depends non-linearly on the
parameters x then the minimization of f(x) is a
non-linear least squares problem.

Non-linear least squares

« The M x N Jacobian of the vector of residuals r is defined
as

B ()I] 0‘7":[0
o I C (',:);'I,"Ar
J(x) =
Orag Orap

- o 1 C ('_")J_"‘\r _

« Consider - .f
0,]‘ 0 5 5 o1y
O _ 0 523,
();_"I_?’A c)z I : - Oy

 Hence

Non-linear least squares

. For the Hessian holds

0* f dr, Or, O
— =2 4+ 2 ;=
ATROAY Z oy Oxy Z O} 0 v

N Gauss-Newton
@X) ~ 2 J) ~ approximation

 Note that the second-order term in the Hessian is multiplied by the
residuals ..

. In most problems, the residuals will typically be small.
 Also, at the minimum, the residuals will typically be distributed with

mean = 0.
. For these reasons, the second-order term is often ignored.
. Hence, explicit computation of the full Hessian can again be avoided.

Gauss-Newton example

« The minimization of the Rosenbrock function

fla,y) = 100(y — 22 + (1 —)

* can be written as a least-squares problem with
residual vector
. .l.(‘)(_y)
(1 —)

—(l,:)'?"]_ ()J| i N\ L
I s Y S R

Gauss-Newton example

_ rr-l A
Xp+1 = X — o H, gy, H,=2J.J

-2 1.5 = 0.5 ' 05 1 15 2
lteration 11, f = 2.8678e-012

* minimization with the Gauss-Newton approximation with
line search takes only 11 iterations

Alpha (a) Calculation Intermediate Updates Convergence
Condition

Find ay, the value of a that
minimizes f(x; + ady),
using line search

Steepest-
Descent
Method
(Method 1)

Steepest- Without Using Line Search

Descent
Method
(Method 2)

IrHr g

Find a,, the value of a that
minimizes f (x; + ady),
using line search

Newton
Method

Find o, the value of a that
minimizes F(x; + ady),
using Iine search

F = Zf,,(x)Z F1f
[f1(x)f2(x) fin(]"

Gauss-
Newton
Method

Xk+1 = X + akdk f ||akdk|| <E,
dr = — 9k then x* = xp 41,
fre1 = (k1) f(x™) = fr+1
Elsek=k+1

Xp+1 = X + Qdy
dk = _gk __I’ I’__
frer1 = F (Xr41)

Xg+1 = X + Qpdy
dy = —Hy " gx - e
fre1 = (k1)
Xp41 = Xp + dy
dp = —Hi ' gk If [Fr1 — Fil| <€
gr =2J'f then x* = x3,44,
H=2]T] =L ID(LT)™! F(x*) = Feqq

Xk+1 = Xk — ak(IT]) UTf) Elsek =k + 1
X41 = X — agL"DLg,
fok+1) = fp(Xk)
Fer1y = F(x)

W2 -— Mewton's direction

- —— (rachent descent

/ / \\\\\e eeeeeeeeeeeeeeeeee :
@‘ aaaaaaaa ient
N

Levenberg-Marquardt algorithm for
optimizing the Rosenbrock function

1 05 0 0.5 1
Newton's method for optimizing the Rosenbrock functions.
(a) Canstant step length variant. (b) Step length determined with an optimal line search strategy

] _ —— | -] T e

-'-.-.

Comparison

= I L I I L
-2 -15 -1 05 0 05 1 15 2

Iteration 98, f = 0.00120086

CG

L
-2 -1.8 -1 058 0 05 1 15 2

= ! ! !

lteration 34, f = 3.4588e-008

Quasi-Newton

0.3 0 0.5 1 15 2
lteration 18, f = 6.8551e-015

Newton

1
05 1 1.5

lteration 11, f = 2.8678e-012

Gauss-Newton

W (a) Calculation Intermediate Updates

Conjugate
Gradient

Newton
Method

Gauss-
Newton
Method

Quasi-
Newton
Method

Without Using Line
Search

kY
T diHydy

Find a, the value of a
that minimizes f(x; +
ady), using line search

Use line search, for a;,
F=) 0% =ff
p=1

f:
[f1(x) f2(x) ---fm(x)]T

Find ay, the value of
that minimizes f (x; +
ady), using line search

= —Yo’

_ gk+1gk+1 .
Br =7 —

dk+1 —

xk+1 = Xy + agdy

J

gt g

—Ok+1 T Brdk

fre1 = f (k1)

Xk+1 = Xg +1akdk
dy = —H, " gk
fre+1 = f (Xk41)

Xps1 = X + apdy, di = —Hg ' gy,
gr=2JTf;H=2JT] =L D)1

Xprr =X — ax JTDTJTS)

Xk+1 = X — agL"DLgy

fp(k+1)

Xp+1 = X + O;

d = =Sk, Xk+1 = Xk — A Sk Gk

= fo(xk); Fresn)

= F(xx)

O = aydy,

Jk+1 = gk T Hoy; So = I

Sk+1

(0 =Sk Vi) 6k — Skvi)"

=Sk+

YV, =

V;z Ok — Skvi)

(1+. . 4

—_ (1

If ||akdk|| <E,
then x* = xj41

;f(x*) =fk+1
Elsek=k+1

” . n

If [Frep1 — Fil <

€ then x™ =
Xk+1 » F(x*) =
Fi+1
Elsek=k+1
If |16, 1| <€,
then

X" = Xp41,
f(X) = frs
Elsek=k+1

Powels’s
Conjugate Gradient

o
S

)

c ()
0@ z
S® @
.09 3

[0 o
T2
Oeg IS
£ 2 -

d S
90 3
O)
Z

Steepest Descent

in(1 2% =1 /4y +3 cos(2x+1- exp[].-'}i}

*

.13 SEE A WOHLD IN A GRAIN OF SAND, AND A HEAVEN IN A FLOWER... {by Yihui, 2005)

30 |

AW HE

Bohachevsky function Ackley function

Y
12 W O

Schwefel function Damavandi function

1

-20 - 0 "‘----__“‘___- ,----"""6—'
N 0 _107- R - 10 ‘\---"a-t“-d_--- - lO
1 - 40 -20 -20
Griewank XinSheYang03

Momin Jamil and Xin-She Yang, A literature survey of

benchmark functionsfor global optimization problems, Int. J. Math.
Modell. Numer. Optim. 4 (No. 2)(2013) 150-194.

A. Gavana, Global Optimization Benchmarks, 2017
http://infinity77.net.

T

is used to update the approximate Hessian By, . or directly its inverse H,, 1=B

-1

k1 using the Sherman-Morrison formula.

m A key property of the BFGS and DFP updates is that if 3, is positive definite and ¥, is chosen to satisfy the Wolfe

conditions then B.l:+1 1s also positive definite.

The most popular update formulas are;

Method Bk+1 = Hk+1 = B!c_-|1-1 =
T T T T T T
DEP (. y;Amk) Bk (I . Akayk) + gkyk Hk i A:ikA:Bk _ Hkgk'yk Hk
Yp Axy, Yp AT) Y Azy Yi Az i Hiyi
T
—1 z{kyf - 15;,,&:1:;(f;n.c.r:u:,c)T P BATN e (wbal | Andr
Y Az, Axy By Az, yr Ay, i Az, yl Az,
Yr — BrAxy T (Aﬂ:k - Hkyk)ﬁﬂ:IHk
Broyden | B + Ax H
royden | D AdT Azy k K+ Azl H, r
Broyd
ety (L= 20BET + @By, pe 0]
SR1 B, + (yx — Br Azy)(yr — By A:rk)T H o+ (Azy, — Hyye) (Azy, — Hkyk)T
(yx — Br Axy)T Ay, (Azy — Heyr) Tys

Probability-directed random search algorithm for unconstrained
optimization problem; Muhammed Jassem Al-Muhammeda, Raed
Abu Zitarb, Applied Soft Computing 71 (2018) 165-182,
https://doi.org/10.1016/j.2as0c.2018.06.043

The mainstream of the optimization techniques, however, are
those that use random search as their main mechanism [5-8].

Examples include :

Tabu Search [9],

Simulated Annealing [10],

Genetic Algorithms [11,12],

Scatter Search [13], and

particle swarm optimization [14-16],

estimation distribution algorithm(EDA) [17], and
imperialist competitive algorithm [18,19].

Aim is to find the global optimal values for hard functions. They
typically lack continuity and differentiability, and have many
local optimums.

2 Momentum and Nesterov's On the importance of initialization and momentum in deep learning

Accelerated Gradient

. . Ilya Sutskever! ILYASURGOOGLE.COM

I1hE momentum mﬁthﬂd {P{J]}-"{lkj 19{'}4].. W James Martens JMARTENSGCS. TORONTO.EDU
R, (. / 5 1.. George Dahl GDANLECS. TORONTO.EDU

to as classical momentum {:{_ﬂ"u[)._. is a tech Geoffrey Hinton T ONEICS T ORONTO

celerating gradient descent that accumulates a velocity
vector in directions ol persistent reduection in the ob-
jective across iterations. Given an objective function
f(f) to be minimized, classical momentum is given by:

vppr = gy — eV [(0) (1)
i1 = O +vi (2)

where £ > 0 is the learning rate, u € [0, 1] is the mo-
mentum coefficient, and V f(#,) is the gradient at @,.

Since directions d of low-curvature have, by defini-
tion, slower local change in their rate of reduction (i.e.,
d' V), they will tend to persist across iterations and
be amplified by CM. Second-order methods also am-

plify steps in low-curvature directions, but instead of n. While NAC is not typically thought of as a
accumulating changes they reweight the update along [momentum, it indeed turns out to be closely re-
each eigen-direction of the curvature matrix by the in- Jassical mome liffer: lv in the.

o classical momentum, differing only in the pre-

verse of the associated curvature. And just as second- , . , T
wow update of the velocity vector v, the significance of

which we will discuss in the next sub-section. Specifi-
cally, as shown in the appendix, the NAG update may
be rewritten as:

Proceedings of the 30'" International Conference on Ma- U1 = HUt — E?f(&; + !.1-”1) (d)
chine Learming, Atlanta, Georgia, USA, 2013, JMLR: 0 — 9) 4
WE&CP volume 28. Copyright 2013 by the author(s). L+1 — ¢+ Ur 41 ()

Deep learning via Hessian-free optimization

ugorithm 1 The Hessian-free optimization method In the standard Newton’s method, gy(p) is optimized by
- for n=1.2.... do computing the N x N matrix B and then solving the system
2 g 4 vj'{ﬁn} Bp = —V f(#). This is prohibitively expensive when N is
3. compute/adjust A by some method large, as it is with even modestly sized neural networks. In-
4: define the function B, (d) = H(#,)d + \d stead, HF optimizes ga(p) by exploiting two simple ideas.
5: pn + CG-Minimize(B,,, —g,) The first is that for an NV-dimensional vector d, Hd can be
6: Opy1 < Oy + pr easily computed using finite differences at the cost of a sin-
7- end for ele extra gradient evaluation via the identity:
Hd {“]ﬂ) V(o r..:u:j V(o)

Deep learning via Hessian-free optimization
James Martens

JMARTENS@CS.TORONTO.EDU
University of Toronto, Ontario, M5S 1A1, Canada

proceedings of the 27 th International Conference
on Machine Learning, , Haifa, Israel, 2010. Copyright 2010

On Optimization Methods for Deep Learning
Quoc V. Le quocle@cs.stanford.edu; Jiquan Ngiam
jngiam@cs.stanford.edu; Adam Coates acoates@cs.stanford.edu;
Abhik Lahiri alahiri@cs.stanford.edu; Bobby Prochnow
prochnow@cs.stanford.edu; Andrew Y. Ng; ICML'11

Successful unconstrained optimization methods include
Newton-Raphson’s method, BFGS methods, Conjugate Gradient
methods and Stochastic Gradient Descent methods.

These methods are usually associated with a line search
method to ensure that the algorithms consistently improve the
objective function. When it comes to large scale machine
learning, the favorite optimization method is usually SGDs.
Recent work on SGDs focuses on adaptive strategies for the
learning rate for improving SGD convergence by approximating
second-order information.

In practice, plain SGDs with constant learning rates or
learning rates of the form (a/pB+t) are still popular thanks to
their ease of implementation. These simple methods are even
more common in deep learning because the optimization
problems are nonconvex and the convergence properties of
complex methods no longer hold.

Recent proposals for training deep networks argue for
the use of layer-wise pre-training. Optimization techniques for
training these models include Contrastive Divergence,
Conjugate Gradient, stochastic diagonal Levenberg-Marquardt
and Hessian-free optimization. Convolutional neural networks
have traditionally employed SGDs with the stochastic diagonal

Levenberg-Marquardt, which uses a diagonal approximation to
the Hessian.

In this paper, it is our goal to empirically study the pros
and cons of off-the-shelf optimization algorithms in the
context of unsupervised feature learning and deep learning. In
that direction, we focus on comparing L-BFGS, CG and SGDs.

sgd

momentum

nag

adagrad k

adadelta
5

rms | ro ﬁ
3 4

1

40 60 80 100 120

omparison of a few optimization methods (animation by Alec Radford). The star denotes the
global minimum on the error surface. Notice that stochastic gradient descent (5GD) without
momentum is the slowest method to converge in this example. We're using Nesterov's
Accelerated Gradient Descent (NAG) throughout this tutorial.

- sgd

- momentum ||
nag ;

- adagrad
adadelta N

- MSProp \\\

i)

N

2

3 4

(o))
o
T

N
o
T

20

40

60

80

100

120

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop

150000~

100000~

50000~

"Beale's function: Due to the large initial gradient, velocity based techniques
shoot off and bounce around - adagrad almost goes unstable for the same
reason. Algos that scale gradients/step sizes like adadelta and RMSProp proceed
more like accelerated SGD and handle large gradients with more stability."

f(x)= (15 -z +z25)° 4+ (2.25 — 2y + z,25)° + (2.625 — z; + z,25)°
Global .
Minimum; Jf (X*) = 0, at x* = (3,0.5)

— SGD " : :

— Momentum | 2addle point: Behavior around

L a saddle point. NAG/Momentum
Wiy), NAG .1

W0 iy again like to explore around,

il

4

- Adagrad

ity
/}’2; %‘q Adadelta almost taking a different path.
4 ! Rmsprop | Adadelta/Adagrad/RMSProp
2 iy) proceed like accelerated SGD.
0 55
-2
-4
i — SGD
- Momentum
— NAG
— Adagrad
_15 Adadelta
"Long valley: Algos without scaling Rmspfop
based on gradient information really L
struggle to break symmetry here - SGD
gets no where and Nesterov Accelerated s
Gradient / Momentum exhibits 10

oscillations until they build up velocity S o
in the optimization direction. Algos that
scale step size based on the gradient
quickly break symmetry and begin
descent."

-1.0
0.5 1_0—1.0

Function Curve Error Surface

g -
Bias = 1.03

ooo

ca/~aharley/neural-networks Elw Search * B8 9

With no further changes, the algorithm can iterate toward a solution, arriving at w = —0.2365, b = 1.1449. This solution is plotted in Figure 12.

Function Curve Error Surface

1
Fiteratiag = 100

Waight = 047

0.8 Bias =1.03

Figure 12 (interactive). Gradient descent on a one-node network, with multiple input/target pairs. Hover your cursor over either of the plots to watch the
progress of the gradient descent algorithm. The left plot shows the curve of the network, and the four targets (in red). Simultaneously, the right plot shows the position of

the network on its error surface.

We can make several observations in Figure 12.
» First, note that the four input,/target pairs do not fit a sigmoid line, so there is no perfect solution to the problem. At best, we can expect gradient
descent to find a curve somewhere in between all of the points.
» Second, note that the error surface appears to have a single deep valley, so gradient descent should be able to descend into it.

» Finally, when watching the function curve move toward the targets, note that its movement becomes erratic as it nears the targets. This is an example
of the "overstepping” problem, where the algorithm misses a good solution because its step size is too large. We can address this by introducing a step
coefficient. In the context of ANNS, this coefficient is often called a "learning rate". Typically, the coefficient is set up to decrease over time, so that the

Constrained Optimization

f(x) : RY — R

X = arg 1’1211 f(x)
Subject to:
« Equality constraints: a;(x) =0 1=1.2..
 Nonequality constraints; ¢;(x) =0 = 1.2

« Constraints define a feasible region, which is nonempty.

The idea is to convert it to an unconstrained optimization.

P

o]

Equality constraints

« Minimize f{x) subject to: «;(x)=0 for i=1.,2,....p

* The gradient of f{x) at a local minimizer is equal to the
linear combination of the gradients of a(x) with

Lagrange multipliers as the coefficients.

P
Vi) => AVa(x)
=1

Inequality constraints

« Minimize f{x) subjectto: ¢;(x) >0 for) =1.2,...

* The gradient of f{x) at a local minimizer is equal to the
linear combination of the gradients of ¢,(x), which are
active (¢(x)=0)

» and Lagrange multipliers must be positive, /; = 0. j € A

Vi) =) 15Ve(x)

jeA

»

Lagrangien

* We can introduce the function (Lagrangien)

q
L(x. .) Z i Z/lj(‘j(X)
=

* The necessary condition for the local minimizer is

V. L(x. A,) =0

and it must be a feasible point (i.e. constraints are
satisfied).

e These are Karush-Kuhn-Tucker conditions

General Nonlinear Optimization

oA W N

Minimize AX)
subject to: a;(x) = 0
ci(x) >0
where the objective function and constraints are
nonlinear.

For a given {x.. . 1.} approximate Lagrangien by
Taylor series — QP problem

Solve QP — descent direction {4..,.9,,}
Perform line search in the direction 6, — X«+1
Update Lagrange multipliers — {X1-#41}
Repeat from Step 1.

General Nonlinear Optimization

q
Lagrangien L(x, . p) Z Nl Zﬂj(--'j(x)

At the kth iterate: {x;. A.. ;. }
and we want to compute a set of increments:{9,.0,.6,}

First order approximation of V. L and constraints:

o VoL(Xpp1: A1 Myy1) = Vo L(xp. M. fy,)+
+ V2 L(Xpe A i) V2 L (X4 Ao) Oa+ V7 L(X4e Ape gy) 6, = O

o (i(x,0,) ~ ci(xp)+ 5{V, ci(xp) = 0
o (;(X1.0,) & a;(X) + 5:{_..'Vt,_..(_‘zj(x/\..) = ()

These approximate KKT conditions corresponds to a QP program

Quadratic Programming (QP)

» Like in the unconstrained case, it is important to study
quadratic functions. \Why?

* Because general nonlinear problems are solved as a
sequence of minimizations of their quadratic
approximations.

QP with constraints

1.
Minimize /(x) = =x' Hx +x'p

¢

subject to linear constraints.

« H is symmetric and positive semidefinite.

QP with Equality Constraints

e Minimize [(x)= §X1HX+XIP

Subjectto: Ax=0b

* Ass.: Ais p x Nand has full row rank (p<N)

« Convert to unconstrained problem by variable

elimination: .
Z is the null space of A

_ 4
x=2¢+A'b A* is the pseudo-inverse.
L -7z
= —-¢ Hop + T
Minimize f(¢)= ¢ Hé+ ¢ p b= ZI(HA*b + p)

This quadratic unconstrained problem can be solved, e.g.,
by Newton method.

QP with inequality constraints

,. 1 .
+ Minimize f(x) = 5x Hx+x'p
Subjectto: Ax>b

« First we check if the unconstrained minimizer x* = —H 'p
IS feasible.
If yes we are done.

If not we know that the minimizer must be on the
boundary and we proceed with an active-set method.

* x, is the current feasible point
- A is the index set of active constraints at x,
 Next iterate is given by x;41 = x5 + ad,

Active-set method

X1 = X + apd, How to find d,?

— To remain active af Xpal — b‘.,- = () thus

— The objective function at x,+d becomes

3 1 .. - _
fild) = sd"Hd + d'g; + f(x)

The major step is a QP sub-problem

where & = V [(Xi)

- "
d;, = argmin —d’ Hd + d’ g,

d 2

s

subjectto: a'd=0 je A4,

Two situations may occur: d, = 0

or

d, # 0

AT — [al .

Lay]

Active-set method

- dA =0
We check if KKT conditions are satisfied

V.L(x,p) =Hx, +p — Z ja; =0 and ;=0

JEAL
If YES we are done.

If NO we remove the constraint from the active set .A: with the most
negative //; and solve the QP sub-problem again but this time with
less active constraints.

e d;, #0

We can move to X, = x5 + d,. but some inactive constraints
may be violated on the way.

In this case, we move by «,.d, till the first inactive constraint
becomes active, update .4, , and solve the QP sub-problem again
but this time with more active constraints.

SQP (Sequential Quadratic Programming) example

Minimize [f(x.y)=100(y — 22) + (1 — ;'z':-)2
subjectto: 1.5 —af— 135>0

0 0.5 1 1.5
Iteration 16, f = 0.0086157

Simplex

ol \

"]
. .
(2]
5 L2}
1]
3 .
o
~ o
(1]
L .
o
"
. L]
.
o
G
("]
L .
L]
Jun
. 1=
(=4 o Lo
. "
e
1=
4
1
Ju
"
[
o .
-
o
1=
"
~ -
i
- .
(=]
- o
L .
o
"
R "
. " . " "
] .

