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Model fitting




Measure distances
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Count inliers
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Another trial
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The best model

/!
J,f’
/’/'
/
e .
A . . @

c=1)5



Feature matching
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Feature matching

 Exhaustive search

» for each feature in one image, look at all the other features in
the other image(s)

* Hashing
» compute a short descriptor from each feature vector, or hash
longer descriptors (randomly)

* Nearest neighbor techniques
» k-trees and their variants



What about outliers?




Feature-space outlier rejection

Let’s not match all features, but only these that have
“similar enough” matches?

How can we do it?
« SSD(patch1,patch2) < threshold
« How to set threshold?

correct matches | :
— — —incorrect matches | :

probability density

Z 1 1 - - 2zl
0 10 20 30 40 50 60
1-NN squared error



Feature-space outlier rejection

A better way [Lowe, 1999].
* 1-NN: SSD of the closest match
« 2-NN: SSD of the second-closest match
« Look at how much better 1-NN is than 2-NN, e.g. 1-NN/2-NN
 Thatis, is our best match so much better than the rest?

; comect matches
: — — —lincorrect matches | :

probability density
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RANSAC




Feature-space outliner rejection

Can we now compute H from the blue points?
« No! Still too many outliers...
* What can we do?



Matching features
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What do we do about the “bad” matches?




RAndom SAmple Consensus

Select one match, count inliers




RAndom SAmple Consensus

Select one match, count inliers




Least squares fit
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RANSAC for estimating homography

OO B WODN -

RANSAC loop:

. Select four feature pairs (at random)

. Compute homography H (exact — DLT ?)
. Compute inliers where SSD(p,’, H p)< ¢

. Record the largest set of inliers so far

. Re-compute least-squares H estimate on

the largest set of the inliers



RANSAC in general

« RANSAC = Random Sample Consensus

 an algorithm for robust fitting of models in the
presence of many data outliers

« Compare to robust statistics

» Given N data points x;, assume that majority
of them are generated from a model with
parameters 0O, try to recover G.



Bias strategy Model b2
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Termination

RANSAC AP jteration (keep the best CS) criterion

The RANSAC algorithm is essentially composed of two steps
that are repeated in an iterative fashion (hypothesize{and{test framework):
¢ Hypothesize. First minimal sample sets (MSSs) are randomly selected from the input
dataset and the model parameters are computed using only the elements of the MSS. The
cardinality of the MSS is the smallest sufficient to determine the model parameters (as opposed
to other approaches, such as least squares, where the parameters are estimated using all the
data available, possibly with appropriate weights).
e Test. Inthe second step RANSAC checks which elements of the entire dataset are
consistent with the model instantiated with the parameters estimated in the rst step. The set of
such elements is called consensus set (CS).




1. Sample Data Randomly
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RANSAC converts a estimation problem in the continuous domain into a selection prob-
lem in the discrete domain. For example, there are 200 points to find a line and least square
method uses 2 points. There are 700C, = 19,900 available pairs. The problem is now to select
the most suitable pair among huge number of pairs.

2.2 Hypothesis Evaluation

RANSAC finally chooses the most probable hypothesis, which is supported by the most
inlier candidates (Step 5 and 6). A datum is recognized as the inlier candidate, whose error
from a hypothesis is within a predefined threshold (Step 4). In case of line fitting, error
can be geometric distance from the datum to the estimated line. The threshold is the second
tuning variable, which is highly related with magnitude of noise which contaminates inliers
(shortly the magnitude of noise). However, the magnitude of noise is also unknown in almost
all application.
RANSAC solves the selection problem as an optimization problem. It is formulated as

Z Loss(Err(d;M)) } , (2)

M = argmin
M de2
where ¥ is data, Loss is a loss function, and Err is a error function such as geometric dis-

tance. The loss function of least square method is represented as Loss(e) = €. In contrast,

RANSAC uses
0 |ej<e
const otherwise

Loss(e) = { (3)

where ¢ is the threshold. Figure 3 shows difference of two loss functions. RANSAC has
constant loss at large error while least square method has huge loss. Outliers disturb least
squares because they usually have large error.



RANSAC algorithm

)

(2) fit parameters © with these n» samples

(3) for each of other N-n points, calculate
its distance to the fitted model, count the

Output ® with the largest ¢

How to define?
Depends on the problem.



How to determine k

n: number of samples drawn each iteration

p: probability of real inliers
P: probability of at least 1 success after k trials

P=1-(1-p")"

— -
n samples are all inliers
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Applications



Feature Matching and RANSAC

© Krister Parmstrand

with a lot of slides stolen from 15-463: Computational Photography
Steve Seitz and Rick Szeliski Alexei Efros, CMU, Fall 2005



Automatic image stitching




Automatic image stitching




Automatic image stitching




Automatic image stitching




Automatic image stitching




Correspondence Results
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Object Recognition Results

Brown & Lowe 2005



Object Recognition Results

Nister & Stewenius 2006



Object Classification Results

Grauman & Darrell 2006, Dorko & Schmid 2004



Geometry Estimation Results

Snavely, Seitz, & Szeliski 2006



RANSAC for Homography




RANSAC for Homography




RANSAC for Homography




robabilistic model for verification




Plane perspective mosaics

— 8-parameter generalization of affine motion

« works for pure rotation or planar surfaces
— Limitations:

* |local minima

* slow convergence




Revisit Homography
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Estimate f from H?
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The drifting problem

 Error accumulation
— small errors accumulate over time



Bundle Adjustment

Associate each image 1 with K, R,

Each image 1 has features P

Trying to minimize total matching residuals

E(all £, andR.) = ZZ\ P, KRRIKumJH

(i,m) j

Derive the above, from fundamentals (egns. 2 slides back).



Rotations

 How do we represent rotation matrices?

1. Axis / angle (n,0)
R =1+ sinf [n], + (1- cosb) [n].>
(Rodriguez Formula), with
[n], be the cross product matrix.

0 — 3 Lo E'Jl
axb=|al.b=| a; 0 —ay| |bs




Incremental rotation update

1. Small angle approximation
AR =1 + sinf [n], + (1- cosb) [n].>
"1 +0 [n], = I+ o],
linear in w= 6n

2. Update original R matrix
R<— R /AR



Recognizing Panoramas

[Brown & Lowe,
ICCV'03]



Finding the panoramas




Finding the panoramas




Algorithm overview

Algorithm: Panoramic Recognition

Input: n unordered images
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Algorithm: Panoramic Recognition

Input: n unordered images
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ITI. For each image:
(1) Select m candidate matching images (with the

maximum number of feature matches to this im-
age)




Algorithm overview

Algorithm: Panoramic Recognition

Input: n unordered images

I

1L

I1I.

Extract SIFT features from all n images

Find £ nearest-neighbours for each feature using a k-d
tree

For each image:
(1) Select m candidate matching images (with the
maximum number of feature matches to this im-
age)

(ii) Find geometrically conisistent feature matches
using RANSAC to solve for the homography be-
tween pairs of images



Algorithm overview

Algorithm: Panoramic Recognition

Input: n unordered images

I. Extract SIFT features from all n images

II. Find k nearest-neighbours for each feature using a k-d
tree

ITI. For each image:
(1) Select m candidate matching images (with the
maximum number of feature matches to this im-

age)

(ii) Find geometrically conisistent feature matches
using RANSAC to solve for the homography be-
tween pairs of images

(ii1) Verify image matches using probabilistic model

I'V. Find connected components of image matches



Finding the panoramas




Finding the panoramas




Algorithm overview

Algorithm: Panoramic Recognition

Input: n unordered images

I. Extract SIFT features from all n images

II. Find k nearest-neighbours for each feature using a k-d
tree

ITI. For each image:
(1) Select m candidate matching images (with the

maximum number of feature matches to this im-
age)

(ii) Find geometrically conisistent feature matches
using RANSAC to solve for the homography be-
tween pairs of images

(ii1) Verify image matches using probabilistic model

I'V. Find connected components of image matches



Algorithm overview

Algorithm: Panoramic Recognition

Input: n unordered images

I. Extract SIFT features from all n images

II. Find k nearest-neighbours for each feature using a k-d
tree

ITI. For each image:
(1) Select m candidate matching images (with the

maximum number of feature matches to this im-
age)

(ii) Find geometrically conisistent feature matches
using RANSAC to solve for the homography be-
tween pairs of images

(ii1) Verify image matches using probabilistic model
I'V. Find connected components of image matches
V. For each connected component:

(1) Perform bundle adjustment to solve for the rota-
tion #,, #;, #3 and focal length f of all cameras



Algorithm overview

Algorithm: Panoramic Recognition

Input: n unordered images

I. Extract SIFT features from all n images

II. Find k nearest-neighbours for each feature using a k-d
tree

ITI. For each image:
(1) Select m candidate matching images (with the

maximum number of feature matches to this im-
age)

(ii) Find geometrically conisistent feature matches
using RANSAC to solve for the homography be-
tween pairs of images

(ii1) Verify image matches using probabilistic model

I'V. Find connected components of image matches

V. For each connected component:
(1) Perform bundle adjustment to solve for the rota-
tion #,, #;, #3 and focal length f of all cameras

(i1) Render panorama using multi-band blending

Output: Panoramic image(s)



Why “Recognising Panoramas”™?

1D Rotations (0)

* Ordering = matching images
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1D Rotations (0)

* Ordering = matching images

e 2D Rotations (0, ¢)
— Ordering % matching images




Why “Recognising Panoramas”™?

1D Rotations (0)

» Ordering = matching images

e 2D Rotations (0, ¢)
— Ordering % matching images




Homography for Rotation

Parameterise each camera by rotation and focal length
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Bundle Adjustment

New images initialised with rotation, focal length of best
matching image




Bundle Adjustment

New images initialised with rotation, focal length of best
matching image




Multi-pband Blending

Burt & Adelson 1983

» Blend frequency bands over range o« A




Results










Get you own copy!

@1 Amazon.com: Software: Microsoft Picture It! Digital Image Pro 10.0 - Microsoft Internet Explorer E]@
Fle Edit View Favorites Tools Help Address g'] http: ff'.f-.".i\".i\'.amazon.com;‘execfobidos,‘tg;‘dE["] !.;'
-~
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- Price: $78.99
@ List Price: $39-99 Availability: Usuwally shipsin 24
Price: $78.09 hours
You Save: $11.00 (12%) @ Add to Shopping Cart ]
_ Availability: Usually ships within 24 hours or
Explore this item Sign in to turn on 1-Click
buying info want it delivered Thursday, August 197 eI
system Order it in the next 22 ho_urs.and 45 minutes, WOEEITTTNEIENGIEES
requirements and choose One-Day Shipping at checkout.
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|[Brown & Lowe, ICCV 2003]
[Brown, Szeliski, Winder, CVPR’05]



How well does this work?

Test on 100s of examples...



How well does this work?

Test on 100s of examples...

...still too many failures (5-10%)
for consumer application










Matching Mistakes: Ealse Negat

* Moving objects: large areas of disagreement




Matching Mistakes

* Accidental alignment
— repeated / similar regions
» Failed alignmentS ~ — <&
— moving objects /fparallax
— low overlap
— “feature-less” regions

 No 100% reliable
algorithm?




How can we fix these?

* Tune the feature detector

* Tune the feature matcher (cost metric)

* Tune the RANSAC stage (motion model)
* Tune the verification stage

» Use “higher-level” knowledge
— e.g., typical camera motions

* Need a large training/test data set
(panoramas)



Object Tracking Results

Gordon & Lowe 2005



Robotics: Sony Aibo

SIFT is used for
» Recognizing

AIBO® Entertainment Robot

Official U.5. Resources and Online Destinations

charging station
» Communicating

with visual cards|=

» Teaching object
recognition

> soccer

—
ERS-7 with:
— Wireless LAN
AIBD MIMND software
Energy Station
AIBRCRe
Fink Ball
AIBD Cards (15)
WLAM Manager C0
Battery 2 AC Adapter



Image Alignment

Cylinder:
Translation
2 DoF

Plane:
Homography
8 DoF



