SD

VS

GD

Gradient descent

$$egin{aligned} \mathbf{x}_{n+1} &= \mathbf{x}_n - \gamma_n
abla F(\mathbf{x}_n), \ n \geq 0. \ \gamma_n &= rac{\left| \left(\mathbf{x}_n - \mathbf{x}_{n-1}
ight)^T \left[
abla F(\mathbf{x}_n) -
abla F(\mathbf{x}_{n-1})
ight]
ight|}{\left\|
abla F(\mathbf{x}_n) -
abla F(\mathbf{x}_{n-1})
ight\|^2} \end{aligned}$$

Gradient descent

THE METHOD OF STEEPEST DESCENT

The method of steepest descent is a gradient algorithm where the step size a_k is chosen to achieve the maximum amount of decrease of the objective function at each individual step. Specifically, α_k is chosen to minimize $\phi_k(\alpha) \triangleq f(x^{(k)} - \alpha \nabla f(x^{(k)}))$. In other words.

$$\alpha_k = \operatorname*{arg\,min}_{\alpha \geq 0} f(\boldsymbol{x}^{(k)} - \alpha \nabla f(\boldsymbol{x}^{(k)})).$$

To summarize, the steepest descent algorithm proceeds as follows: at each step, starting from the point $x^{(k)}$ we conduct a line search in the direction $-\nabla f(x^{(k)})$ until a minimizer, $x^{(k+1)}$, is found. A typical sequence resulting from the method of steepest