
CS6777: Gradient Descent and
its Variations

Outline

❏ Gradient Descent

❏ Momentum Based Gradient Descent

❏ Nesterov Accelerated Gradient Descent

❏ AdaGrad

❏ RMSProp

❏ Adam

A typical Machine Learning Setup

This brings us to a typical machine learning setup which has the following components…

● Data:|

● Model: Our approximation of the relation between x and y. For example,

● Parameters: In all the above cases, w is a parameter which needs to be learned from
the data

● Learning algorithm: An algorithm for learning the parameters (w) of the model (for
example, perceptron learning algorithm, gradient descent, etc.)

● Objective/Loss/Error function: To guide the learning algorithm - the learning
algorithm should aim to minimize the loss function

For Example:
As an illustration, consider our movie example

• Data:

• Model: Our approximation of the relation between x and y (the probability of
liking a movie).

• Parameter: w

• Learning algorithm: Gradient Descent

• Objective/Loss/Error function: One possibility is

The learning algorithm should aim to find a w which minimizes the above
function (squared error between y and)

Error
Surface

Gradient Descent

2.

Gradient Descent Continued…

Gradient Descent Continued…

Limitations of Gradient Descent

Momentum Based Gradient Descent

Comparing convergence of GD and Momentum based GD

Gradient Descent Momentum Based Gradient Descent

Observations
● Is moving fast always Good?
● Can we overshoot our target?

Observations

● Takes lots of U-
turns/oscillations before
converging.

● Despite oscillations, it is
faster than gradient descent.

● Can we do something about
it?

Nesterov Gradient Descent

Why NAG works?

Adaptive Learning Rate Based Methods

● What if instead of applying this momentum, we would have used a higher
value of learning rate like 10?

● It will blow up the gradient in both gentle and steep regions
● Ideally we would like to use a large learning rate in gentle regions and small

learning rate in steep regions.

● The gradients would be as follows:

AdaGrad (Adaptive Gradient Algorithm)

Observations

RMSProp (Root Mean Squared Propagation)

● Green: AdaGrad, Pink: RMSProp

Adam (Adaptive Moment Estimation)

Green: AdaGrad, Pink: RMSProp

Animation of 5 gradient descent
methods on a surface: gradient descent
(cyan), momentum (magenta), AdaGrad
(white), RMSProp (green), Adam (blue).

Left well is the global minimum; right
well is a local minimum

https://www.youtube.com/watch?v=ilYd4TAzNoU

https://www.youtube.com/watch?v=DwKC5S7MceU

When training a neural network, what reasons are there for choosing an
optimizer from the family consisting of stochastic gradient descent (SGD) and its
extensions (RMSProp, Adam, etc.) instead of from the family of Quasi-Newton methods
(including limited-memory BFGS, abbreviated as L-BFGS)?

https://en.wikipedia.org/wiki/Limited-memory_BFGS
https://www.dropbox.com/s/qavnl2hr170njbd/NumericalOptimization2ndedJNocedalSWright%282006%29.pdf?dl=0

When training a neural network the number of training examples is so vast
compared to the number of weights being trained that simply evaluating the gradient is a
bottleneck. SGD methods allow you to work with much cheaper approximations of the
gradient (typically, summing the contributions of a different small subset of examples at each
iteration) instead. What separates stochastic gradient descent from regular gradient descent is
that, at each iteration, you randomly sample the training data and evaluate the cost/loss function
(and its gradient) on just the sample, not all the data.

Can you still reuse the gradient information in a quasi-Newton method?
But that's what Adam is doing. Presumably it is using gradient information from previous iterations
when the cost function is changing every iteration. You can do the same with Quasi-Newton
methods ?

It's because of memory issues (e.g. LBFGS requires storing about 20-100 previous
gradient evaluations) and more importantly it does not work in stochastic setting (e.g.
minibatches which is very important since a full pass through a dataset is very expensive and a lot
of progress can be done with small minibatches). There have been many tryouts to make LBFGS
work in stochastic setting, but none that work well.

In machine learning "evaluating the gradient" means sweeping over the whole training
set. For simple models, stochastic gradient descent will have found a good fit after one or two
passes over the dataset. (For neural nets, tens to hundreds of passes over the dataset may be
needed.) It's hard for batch L-BFGS to do much in the same number of gradient and
function evaluations.

Challenge is on making stochastic or mini-batch versions of algorithms like L-BFGS. It's
possible, but not entirely straightforward, which is why "dumb" stochastic gradient descent is often
used.

Second order methods are way more complex, i.e., harder to implement without
bugs. DL systems are increasingly becoming a small part of huge data processing pipelines.
Also, harder to optimize for distributed computing on heterogeneous hardware, which is
becoming more and more common.

Another issue with Deep Learning optimization are saddle points. It's becoming
abundantly clear that "bad" local minima are not an issue in Deep Learning, but saddle points are.
Newton's method does have a tendency to be attracted to saddle points.

Instead, if just switching to distributed computing makes the first-order method as fast
as, or faster, than second-order methods, I don't see the reason to use a more complicated
optimization algorithm.

2nd order methods are way more expensive in terms of iteration cost (not number) and memory
occupation, thus they introduce a considerable overhead. Current architectures (GPUs) are
more memory-bound that computation-bound. The increase in iteration cost and memory
occupation is steeper, the more high-dimensional the problem is. Optimization in Deep
Learning is arguably one of the most high-dimensional optimization problems, so it's not clear that
second order methods would have a clear advantage in terms of computational time (not iteration
count, which is not what we really care about) wrt first-order methods.

Another issue with second order methods is that for most common loss functions, it's
easy to use mini-batches to get an estimator which converges to the actual gradient. It is
much more complicated to build a sampling-based estimator for the approximation to the inverse
of the Hessian. In other words, second order methods introduce a lot of complexity and extra
memory occupation, but stochastic second order methods introduce even more complexity.

Do we need even more extra hyperparameters, or do we need robust optimization
methods? Keep in mind that in Deep Learning, as explained very well by Shai Shalev-Shwartz [??],
when something goes wrong, it's very difficult to understand how to fix it.

Thank You!

