
CS6777: Gradient Descent and 
its Variations



Outline

❏ Gradient Descent

❏ Momentum Based Gradient Descent

❏ Nesterov Accelerated Gradient Descent

❏ AdaGrad

❏ RMSProp

❏ Adam



A typical Machine Learning Setup

This brings us to a typical machine learning setup which has the following components…

● Data:|

● Model: Our approximation of the relation between x and y. For example, 

● Parameters: In all the above cases, w is a parameter which needs to be learned from 
the data

● Learning algorithm: An algorithm for learning the parameters (w) of the model (for 
example, perceptron learning algorithm, gradient descent, etc.)

● Objective/Loss/Error function: To guide the learning algorithm - the learning 
algorithm should aim to minimize the loss function



For Example:
As an illustration, consider our movie example

• Data: 

• Model: Our approximation of the relation between x and y (the probability of 
liking a movie).

• Parameter: w

• Learning algorithm: Gradient Descent 

• Objective/Loss/Error function: One possibility is

The learning algorithm should aim to find a w which minimizes the above 
function (squared error between y and     )



Error 
Surface



Gradient Descent
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Gradient Descent Continued…



Gradient Descent Continued…







Limitations of Gradient Descent







Momentum Based Gradient Descent





Comparing convergence of GD and Momentum based GD

Gradient Descent Momentum Based Gradient Descent



Observations
● Is moving fast always Good?
● Can we overshoot our target?



Observations

● Takes lots of U-
turns/oscillations before
converging.

● Despite oscillations, it is
faster than gradient descent.

● Can we do something about
it?



Nesterov Gradient Descent





Why NAG works?



Adaptive Learning Rate Based Methods



● What if instead of applying this momentum, we would have used a higher 
value of learning rate like 10?

● It will blow up the gradient in both gentle and steep regions
● Ideally we would like to use a large learning rate in gentle regions and small 

learning rate in steep regions.



● The gradients would be as follows:



AdaGrad (Adaptive Gradient Algorithm) 



Observations



RMSProp (Root Mean Squared Propagation)



● Green: AdaGrad, Pink: RMSProp 





Adam ( Adaptive Moment Estimation)



Green: AdaGrad, Pink: RMSProp 







Animation of 5 gradient descent 
methods on a surface: gradient descent 
(cyan), momentum (magenta), AdaGrad
(white), RMSProp (green), Adam (blue).

Left well is the global minimum; right 
well is a local minimum



https://www.youtube.com/watch?v=ilYd4TAzNoU

https://www.youtube.com/watch?v=DwKC5S7MceU









When training a neural network, what reasons are there for choosing an 
optimizer from the family consisting of stochastic gradient descent (SGD) and its 
extensions (RMSProp, Adam, etc.) instead of from the family of Quasi-Newton methods 
(including limited-memory BFGS, abbreviated as L-BFGS)?

https://en.wikipedia.org/wiki/Limited-memory_BFGS
https://www.dropbox.com/s/qavnl2hr170njbd/NumericalOptimization2ndedJNocedalSWright%282006%29.pdf?dl=0

When training a neural network the number of training examples is so vast 
compared to the number of weights being trained that simply evaluating the gradient is a 
bottleneck. SGD methods allow you to work with much cheaper approximations of the 
gradient (typically, summing the contributions of a different small subset of examples at each 
iteration) instead. What separates stochastic gradient descent from regular gradient descent is 
that, at each iteration, you randomly sample the training data and evaluate the cost/loss function 
(and its gradient) on just the sample, not all the data.

Can you still reuse the gradient information in a quasi-Newton method? 
But that's what Adam is doing. Presumably it is using gradient information from previous iterations 
when the cost function is changing every iteration. You can do the same with Quasi-Newton 
methods ?



It's because of memory issues (e.g. LBFGS requires storing about 20-100 previous 
gradient evaluations) and more importantly it does not work in stochastic setting (e.g. 
minibatches which is very important since a full pass through a dataset is very expensive and a lot 
of progress can be done with small minibatches). There have been many tryouts to make LBFGS 
work in stochastic setting, but none that work well.

In machine learning "evaluating the gradient" means sweeping over the whole training 
set. For simple models, stochastic gradient descent will have found a good fit after one or two 
passes over the dataset. (For neural nets, tens to hundreds of passes over the dataset may be 
needed.) It's hard for batch L-BFGS to do much in the same number of gradient and 
function evaluations.

Challenge is on making stochastic or mini-batch versions of algorithms like L-BFGS. It's 
possible, but not entirely straightforward, which is why "dumb" stochastic gradient descent is often 
used.

Second order methods are way more complex, i.e., harder to implement without 
bugs. DL systems are increasingly becoming a small part of huge data processing pipelines.
Also, harder to optimize for distributed computing on heterogeneous hardware, which is 
becoming more and more common. 



Another issue with Deep Learning optimization are saddle points. It's becoming 
abundantly clear that "bad" local minima are not an issue in Deep Learning, but saddle points are. 
Newton's method does have a tendency to be attracted to saddle points. 

Instead, if just switching to distributed computing makes the first-order method as fast 
as, or faster, than second-order methods, I don't see the reason to use a more complicated 
optimization algorithm.

2nd order methods are way more expensive in terms of iteration cost (not number) and memory 
occupation, thus they introduce a considerable overhead. Current architectures (GPUs) are 
more memory-bound that computation-bound. The increase in iteration cost and memory 
occupation is steeper, the more high-dimensional the problem is. Optimization in Deep 
Learning is arguably one of the most high-dimensional optimization problems, so it's not clear that 
second order methods would have a clear advantage in terms of computational time (not iteration 
count, which is not what we really care about) wrt first-order methods.

Another issue with second order methods is that for most common loss functions, it's 
easy to use mini-batches to get an estimator which converges to the actual gradient. It is 
much more complicated to build a sampling-based estimator for the approximation to the inverse 
of the Hessian. In other words, second order methods introduce a lot of complexity and extra 
memory occupation, but stochastic second order methods introduce even more complexity. 



Do we need even more extra hyperparameters, or do we need robust optimization 
methods? Keep in mind that in Deep Learning, as explained very well by Shai Shalev-Shwartz [??], 
when something goes wrong, it's very difficult to understand how to fix it.



Thank You!




