CS6777: Gradient Descent and
Its Variations

Outline

Gradient Descent

Momentum Based Gradient Descent
Nesterov Accelerated Gradient Descent
AdaGrad

RMSProp

Adam

I I I By MO

A typical Machine Learning Setup

This brings us to a typical machine learning setup which has the following components. ..

Data:| {%: i Heq

Model: Our approximation of the relation between x and y. For example,

1

1 + e—(Wx)

or §=w'x

Parameters: In all the above cases, w 1s a parameter which needs to be learned from
the data

N

Learning algorithm: An algorithm for learning the parameters (w) of the model (for
example, perceptron learning algorithm, gradient descent, etc.)

Objective/Loss/Error function: To guide the learning algorithm - the learning
algorithm should aim to minimize the loss function

For Example:

As an illustration, consider our movie example
. Data: {x; = movie,y; = like/dislike}!_,
* Model: Our approximation of the relation between x and y (the probability of
liking a movie). A 1
y=7 + o—(wWx)

 Parameter: w

 Learning algorithm: Gradient Descent .

- Objective/Loss/Error function: One possibility is Z(w) = Z@; —yi)?
i=1

The learning algorithm should aim to find a w which minimizes the above
function (squared error between y and \'))

0.08 0.16 0.24 0.32 040 0.48 0.56 0.64

[1.0
05

Error
Surface

Gradient Descent

vector of pa rameters,

say, randomly initialized
/" We moved in the direction

e " of AG

AO = [Aw, Ab] . 4
2, (n-A0 A6 Let us be a bit conservat-

change in the
Onow = 0 + 1 - AO /_\

Question: What is the right A# to use ?

ive: move only by a small

values of w, b
amount 7

The answer comes from Taylor series

Gradient Descent Continued...

For ease of notation, let Af = u, then from Taylor series, we have,

2 3 4
L0+ nu) = L(6) + 1 x UV L(0) + % £ UV2L(0)u + Z_I " Z_' ...

= 2(0) + nxu"VeZ(0) [nis typically small, son?. 7>, .. — 0]
Note that the move (nu) would be favorable only if,

L0+ nu) — Z£(0) <0 [ie, if the new loss is less than the previous loss]

This implies,

UTVQ‘;%(H) <0

Gradient Descent Continued...

what is the range of u'V.£(6) ?

Let 3 be the angle between uand Vy.Z(#), then we know that,

UTV()Z((Q)

—1 < cos(B) = ul| * || V£ (0)

1=t

multiply throughout by k = ||u|| * || V¢-Z(0)|

—k < kxcos(B) =u'VyL(0) <k

Thus, Z(0 + nu) — £(0) = u"VyZ£(0) = k x cos(3) will be most negative when
cos(3) = —1ie., when [3is 180°

Gradient Descent Rule
The direction u that we intend to move in should be at 180° w.r.t. the gradient

In other words, move in a direction opposite to the gradient

Parameter Update Equations

Wit1 = Wy — NV Wy
br+1 = br — Vb
0.%(w, b) oy _ 9Z(w.b)
O e P S)) B S G (i o

where, Vw; =

Gradient descent on the error surface

I

0.08 0.16 0.24 0.32 0.40 048 0.56 0.64

Limitations of Gradient Descent

;_)V

@ When the curve is steep the gradient

(23{11) is large

@ When the curve is gentle the gradient
(%) is small

@ Recall that our weight updates are
proportional to the gradient w = w —
nVuw

e Hence in the areas where the curve is
gentle the updates are small whereas
in the areas where the curve is steep
the updates are large

avts
.......
.e
.

e ; L, Trajectory of Gradient
Pl R = TR Descent

- Pathological
| | Curvature

Minima

Some observations about gradient descent
e It takes a lot of time to navigate regions having a gentle slope
e This is because the gradient in these regions is very small
e Can we do something better 7

@ Yes, let’s take a look at “‘Momentum based gradient descent’

Momentum Based Gradient Descent

Update rule for momentum based gradient descent

update; = v - update;_q + nVwy

Wiy = Wy — update;

e In addition to the current update, also look at the history of updates.

updateg = 0
update; = vy
updatey =y
updates = vy

=7
updatey = y
update; = -y

update; = v - update;—1 + nVwy

Wiy = Wy — updatey

-updateg +nVw, = nVw,

-update; +nVwy = v - nVwy + nVws

-updates +nVws = vy(v - nVwy + nVws) + nVws

-updates + nVws = ,}/2 -nVw; + v -nVwy +nVws

-updates +nVwy = '\/3 -nVwy + f\/Q -nVwa + v - nVws + nVwy

-update;_1 +nVwy = AL nVwi + A2 nVwy + ... + nVuy

Comparing convergence of GD and Momentum based GD

W — W —

Gradient Descent Momentum Based Gradient Descent

Observations

e |s moving fast always Good?
e Can we overshoot our target?

| i

0.000 0.045 0.090 0.135 0.180 0.225 0.270 0.315 0.360

| I

0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36

Observations

® Takes lots of U-
turns/oscillations before
converging.

® Despite oscillations, it is
faster than gradient descent.

® (Can we do something about
it?

0.000 0.045 0.090 0.135 0.180 0.225 0.270 0.315 0.360

Nesterov Gradient Descent

Intuition
@ Look before you leap
@ Recall that update; = v - updatei—1 + nVwy

@ So we know that we are going to move by at least by v - update;—1 and then a
bit more by nVwy

e Why not calculate the gradient (Vwjook ahead) at this partially updated value
of w (Wipok_ahead = Wt — 7y - updates—1) instead of calculating it using the current
value wy

v

Update rule for NAG

wlook‘_ahead — Wy — 7 - upda’tet-l

update; = vy - updatei—1 +nVw, . ., .

w1 = wy — updatey

We will have similar update rule for by

Why NAG works?

Momentum NAG

g6y + uv,)
“Lookahead”

Adaptive Learning Rate Based Methods

What if instead of applying this momentum, we would have used a higher
value of learning rate like 10?

It will blow up the gradient in both gentle and steep regions

|ldeally we would like to use a large learning rate in gentle regions and small
learning rate in steep regions.

& e The gradients would be as follows:
22 o Vw' = (f(x) —y) * f(x) * (1 - f(x)) '

o Vw? = (f(x) —y) * f(x) * (1 — f(x)) *2? ... so on
A o What happens if the feature z* is very sparse?

e Vw? will be 0 for most inputs (see formula) and hence w?

will not get enough updates

1
y = f(2) = o=w= . .
(%) I+e=(WxHD) o Can we have a different learning rate for each parameter

which takes care of the frequency of features 7

2‘34}

x = {z! 2% 27 2

- s 4}

w = {w!,w?, v, w

AdaGrad (Adaptive Gradient Algorithm)

Intuition
@ Decay the learning rate for parameters in proportion to their update history
(more updates means more decay)

>

Update rule for Adagrad

Vi = Vp—1 + (th)2
i * V’wt

Uf't_l_]_ = Wt —
\/ Ut —+ €

Observations

e Initially, all three algorithms are moving mainly GD (black) momentum (red) and NAG (blue)
along the vertical (b) axis and there is very little ’

movement along the horizontal (w) axis

e Why? Because in our data, the feature corres-
ponding to w is sparse and hence w undergoes
very few updates ...on the other hand b is very
dense and undergoes many updates

e What's the flipside? over time the effective
learning rate for b will decay to an extent that 40 55 70 85 100 115 130 145 160
there will be no further updates to b

RMSProp (Root Mean Squared Propagation)

Intuition
e Adagrad decays the learning rate very aggressively (as the denominator grows)
@ As a result after a while the frequent parameters will start receiving very small
updates because of the decayed learning rate

e To avoid this why not decay the denominator and prevent its rapid growth

Update rule for RMSProp

Vg = 3 * Vi_1 — (]_ — 3)(vu,f)2
1
/ * Vwy

v/ Ut -+ €

Wt+1 Wt —

. and a similar set of equations for by

e Green: AdaGrad, Pink: RMSProp
GD (black), momentum (red) and NAG (blue)

e RMSProp overcomes this problem by
being less aggressive on the decay

40 55 7.0 8.5 10.0 11.5 13.0 14.5 16.0

Mg TR e Ve TN

- SGD
- Momentum
m NAG

- Adagrad
- Adadelta
Rmsprop

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop

1.0

Adam (Adaptive Moment Estimation)

Intuition

@ Do everything that RMSProp does to solve the decay problem of Adagrad
@ Plus use a cumulative history of the gradients
@ In practice, 31 = 0.9 and B2 = 0.999

Update rule for Adam

my = 81 * My_1 T+ (1 — 31) * th

Vy = ._32 X Ut—1 -+ (1 = 82) X (th)g

A m x Ut
my = VUt = .
Ty 174

U

\ ’f)t AF &

Wil = W — X My

Green: AdaGrad, Pink: RMSProp
| GD (black), momentum (red) and NAG (blue)

40 55 7.0 85 10.0 11.5 13.0 14.5 16.0

Gradient descent optimization algorithms Update equations
Update equations

Method Update equation
2t = thJ(Qt)
SGD Ab; = —17 * Bt
9t — Qt = A915
Momentum Af; = —vy vi_1 — gt
NAG AQt = = Vt7—71 - WVOJ(O - fYVt—l)
Adagrad Ny = ———— O
g | R/\%[Zee] 3
Adadelt A, = — a—
adelta t RMg[g]t 8t
RMSprop Af; = — 8t
\/lz;7[g2]f t¢

Adam Aé’t = —

my

V0 + €

Table: Update equations for the gradient descent optimization algorithms.

Sebastian Ruder Optimization for Deep Learning 24.11.17 26 / 49

SGD(Iy,n:)

Ory1 = 0p — 1 VE(O;)

MOMENTUM (Iy, 7,)

NESTEROV (I, 17:,7)

vg = 0
Vi1 = YU + VE(Oy)
Or11 = 01 — mpvpq

RMSPROP(I;,1¢,7, p, €)

vg = 0
Vi1 = Yvs + VE(0;)
Or 11 = O0p — ne (Yver1 + V(1))

RMSTEROV (I, 04, ¥, p. €)

vg = 1L,mg =20
vir1 = pue + (1 — p)VE(0)?
M1 = Y + LV‘?(&)

VUt41 T €

Or41 = 0 — mypa

ADAM (Iy, o, B1, B2, €)

vg = 1,mg =20
vip1 = pog + (1 — p)VE(0;)?
My = Yy + ng(gt)

VU1 T €

Tt
0, 1 —0, — + —————— V(O
t+1 t Y41 i1 T € (t)]

NADAM(I;, o, 81, B2, €)

mqg = 0,v9g =0
M1 = Bimye + (1 — 51)VE(O)

Vig1 = Poavg + (1 — ﬁg)Vﬁ(ﬁt)Q

\/1— Bitt

bt+1 - t+1
L =5
mt+1
9t+1 = Ht - Oft—bt-l-l
VUt41 T €

mo — U, Vo — U
myp1 = Bimy + (1 — 51)VE(0;)
Vi1 = ;82?33 + (]— - ﬁ?)v‘é(gt)g

t+1 —
1 — gitt

Bimiyr + (1 — B1)VE(Oy)
N

9t+1 = 9t — ¥y lbi:-|—1

Animation of 5 gradient descent
methods on a surface: gradient descent
(cyan), momentum (magenta), AdaGrad
(white), RMSProp (green), Adam (blue).
\

Left well is the global minimum; righ
well is a local minimum

o

............

.....

Optimizer Comparison

sSDG

SGD with Momentum
AdaGrad

RMSprop

Adam

£

|
o
veva | []]

https://www.youtube.com/watch?v=ilYd4TAzNoU

https://www.youtube.com/watch?v=DwKC5S7MceU

— Momentum

— AdaGrad
— RMSProp
— AdaDelta

——— Adam

—0.5

!th&hhh& A
iy

mentum
Mo

SGD
NAG

d
aGra

Alc\i/ISProp
idaDelta

Adam

(L7 7
AL

{/
ﬁﬁﬁ.\\ L]

.-.-:5..

.........ﬁ.
.........n.....h.....

...........

_‘—=—'

12— gradient descent
" —OMentum

— d
1) 4 e

When training a neural network, what reasons are there for choosing an
optimizer from the family consisting of stochastic gradient descent (SGD) and its
extensions (RMSProp, Adam, etc.) instead of from the family of Quasi-Newton methods
(including limited-memory BFGS, abbreviated as L-BFGS)?

https://en.wikipedia.org/wiki/Limited-memory BFGS

https://www.dropbox.com/s/qgavni2hr170njbd/NumericalOptimization2ndedINocedalSWright%282006%29.pdf?dI=0

When training a neural network the number of training examples is so vast
compared to the number of weights being trained that simply evaluating the gradient is a
bottleneck. SGD methods allow you to work with much cheaper approximations of the
gradient (typically, summing the contributions of a different small subset of examples at each
iteration) instead. What separates stochastic gradient descent from regular gradient descent is
that, at each iteration, you randomly sample the training data and evaluate the cost/loss function
(and its gradient) on just the sample, not all the data.

Can you still reuse the gradient information in a quasi-Newton method?
But that's what Adam is doing. Presumably it is using gradient information from previous iterations
when the cost function is changing every iteration. You can do the same with Quasi-Newton
methods ?

It's because of memory issues (e.g. LBFGS requires storing about 20-100 previous
gradient evaluations) and more importantly it does not work in stochastic setting (e.g.
minibatches which is very important since a full pass through a dataset is very expensive and a lot
of progress can be done with small minibatches). There have been many tryouts to make LBFGS
work in stochastic setting, but none that work well.

In machine learning "evaluating the gradient” means sweeping over the whole training
set. For simple models, stochastic gradient descent will have found a good fit after one or two
passes over the dataset. (For neural nets, tens to hundreds of passes over the dataset may be
needed.) It's hard for batch L-BFGS to do much in the same number of gradient and
function evaluations.

Challenge is on making stochastic or mini-batch versions of algorithms like L-BFGS. It's

possible, but not entirely straightforward, which is why "dumb" stochastic gradient descent is often
used.

Second order methods are way more complex, i.e., harder to implement without
bugs. DL systems are increasingly becoming a small part of huge data processing pipelines.
Also, harder to optimize for distributed computing on heterogeneous hardware, which is
becoming more and more common.

Another issue with Deep Learning optimization are saddle points. It's becoming
abundantly clear that "bad" local minima are not an issue in Deep Learning, but saddle points are.
Newton's method does have a tendency to be attracted to saddle points.

Instead, if just switching to distributed computing makes the first-order method as fast
as, or faster, than second-order methods, I don't see the reason to use a more complicated
optimization algorithm.

2" order methods are way more expensive in terms of iteration cost (not number) and memory
occupation, thus they introduce a considerable overhead. Current architectures (GPUs) are
more memory-bound that computation-bound. The increase in iteration cost and memory
occupation is steeper, the more high-dimensional the problem is. Optimization in Deep
Learning is arguably one of the most high-dimensional optimization problems, so it's not clear that
second order methods would have a clear advantage in terms of computational time (not iteration
count, which is not what we really care about) wrt first-order methods.

Another issue with second order methods is that for most common loss functions, it's
easy to use mini-batches to get an estimator which converges to the actual gradient. 1t is
much more complicated to build a sampling-based estimator for the approximation to the inverse
of the Hessian. In other words, second order methods introduce a lot of complexity and extra
memory occupation, but stochastic second order methods introduce even more complexity.

Do we need even more extra hyperparameters, or do we need robust optimization
methods? Keep in mind that in Deep Learning, as explained very well by Shai Shalev-Shwartz [??],
when something goes wrong, it's very difficult to understand how to fix it.

Thank Youl!

