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ABSTRACT
Reconstuction of a line in 3-D space using arbitrary perspectve views involves the problem of obtaining the
set of parameters representing the line. This is widely used for many applications of 3-D object recognition
and machine inspection. A performance analysis of the reconstruction process in the presence of noise in the
image planes is necessary in certain applications which require a large degree of accuarcy. In this paper, a
methodology, which is based on the concept of epipolar line, for the reconstruction of a 3-D line, from two
arbitrary perspective views is given. In this problem the points in the second image plane, which correspond
to points in the first image plane are found by using epipolar line method, by considering all the points in the
first image plane. Then triangulation law is used to find the points in 3-D space. Using least square regression
in 3-D, the parameters of a line in 3-D space are found. This least square regression problem is solved by two
different methods. Simulation study results of this epipolar line based method, in presence of noise, as well as
results of error analysis are given.

Keywords: Perspective views, Least square regression, Error Analysis, Parameter, Noise

1. INTRODUCTION
Based on epipolar line method, a methodology for the reconstruction of a 3-D line from two arbitrary perspective
views is given. In this problem by considering all the points of the line in the first image plane, the corresponding
points in the second image plane are found by using epipolar line method. Then triangulation law is used to
find the points in 3-D space. Using least square regression in 3-D, the parameters of a line in 3-D space are
found. This least square regression problem is solved by two different methods. Simulation study results of this
epipolar line based method in presence of noise and results of error analysis are also given. For the detailed
study of reconstruction of lines, curves and surfaces one can refer the articles,1 3 and.4

Performance analysis of the method of reconstruction described in this paper is based on simulation studies.
Noise with Gaussian distribution is added to the pixel coordinates of the projections of the line on the pair of
image planes. This simulates the effect of noise in the sensor and signal acquisition system as well as errors
in the preprocessing tools used to detect the line segments from gray level images. Error between the original
and the reconstructed line is estimated and used as a criteria to analyze the performance of the system. These
results provide an optimal range of values of the parameters to be used for the design of the stereo-based
imaging system for best reconstruction. Certain conditions of the viewing geometry where the reconstruction
process has a poor performance are also obtained from these studies. The results presented in this paper will be
useful for both sensor design and error modelling of position measuring systems for computer vision and related
applications.
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Figure 1. Imaging system with two arbitrary perspective views of a point W in 3-D space. f1 and f2 are the focal
lengths of first and second cameras respectively.

2. BASIC MODEL OF IMAGING SETUP

Let I1 and I2 be the first and second image planes of the pair of cameras C1 and C2 respectively. Let the position
and the orientation of one camera be known with respect to another and both cameras have a common field of
view. Let OXY Z be the rectangular cartesian frame of reference with its origin O at the center of projection of
one of the cameras say C1. A point W in 3-D space, with co-ordinates (xw, yw, zw) with respect to the frame of
reference at C1, is viewed by both the cameras, C1 and C2. Let O′X ′Y ′Z ′ be the second rectangular cartesian
co-ordinate system, not necessarily parallel to OXY Z system, with its origin O′ at the center of projection of
the second camera C2. Let the co-ordinates of the second camera C2 with respect to O be (xd, yd, zd). Let
P1(X1, Y1, f1) and P2(X2, Y2, f2) be the corresponding pair of projections of the point W on the pair of image
planes I1 and I2 respectively. Let f1 and f2 be the respective focal lengths of the first and the second cameras.
The imaging set-up using two cameras is shown in figure 1.

3. THE COLLINEARITY EQUATIONS

The collinearity equations represent the mathematical process of image formation, linking the co-ordinates of a
point on an object in 3-D space to the corresponding co-ordinates of its projection in the 2-D image planes. The
collinearity equations are derived using the criteria that all the three points, namely, the center of perspective
projection, the image point and the object point lie on the same straight line.
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The relation between the coordinates of the point W (xw, yw, zw) and that of the image point P1(X1, Y1, f1)
is given by the perspective equation7:

X1 = f1
xw

zw
, Y1 = f1

yw

zw
(1)

The 3-D co-ordinates (x
′
w, y

′
w, z

′
w) of the point W (xw, yw, zw) with respect to the second camera C2, is given by


 x

′
w

y
′
w

z
′
w


 = λ


 cosα1 cosβ1 cos γ1

cosα2 cosβ2 cos γ2
cosα3 cosβ3 cos γ3





 (xw − xd)

(yw − yd)
(zw − zd)


 , (2)

where

cosα1 = cosψ cosφ− cos θ sinφ sinψ,
cosα2 = cosψ sinφ+ cos θ cosφ sinψ,
cosα3 = sinψ sin θ,
cosβ1 = − sinψ cosφ− cos θ sinφ cosψ,
cosβ2 = − sinψ sinφ+ cos θ cosφ cosψ,
cosβ3 = cosψ sin θ,
cos γ1 = sinφ sin θ,
cos γ2 = − sin θ cosφ,
cos γ3 = cos θ,

θ, φ and ψ being the Eulerian angles.6

In the above equations αj , βj , γj , (j = 1, 2, 3) are the respective direction cosines of the axes of O′X ′Y ′Z ′

with respect to OXY Z system. λ is a scale factor between the two reference frames and without loss of gener-
ality this is considered to be 1, in this work. Using equation (2), the relation between the object space point
W (xw, yw, zw) and the image point P2(X2, Y2, f2) is given by the perspective equations7:

X2 = f2
(xw − xd) cosα1 + (yw − yd) cosβ1 + (zw − zd) cos γ1
(xw − xd) cosα3 + (yw − yd) cosβ3 + (zw − zd) cos γ3

(3)

Y2 = f2
(xw − xd) cosα2 + (yw − yd) cosβ2 + (zw − zd) cos γ2
(xw − xd) cosα3 + (yw − yd) cosβ3 + (zw − zd) cos γ3

(4)

Equations (1), (3) and (4) are the collinearity equations for a pair of arbitrary perspective views.7 The pro-
cess of reconstruction of a line in 3-D space involves the formulation of a set of inverse perspective equations using
these collinearity equations. This will give the direction cosines, namely l,m, n, of the line in 3-D space as well
as the coordinates (xw, yw, zw) of the pointW on the line. This method is discussed in detail in the next section.

Definition: Epipolar line
The projection of the line joining the image point P1(X1, Y1) and the center of projection O of the first image
plane I1 on to the second image plane is called the epipolar line. For a detailed study one can refer2 and.4

4. EPIPOLAR LINE BASED METHODOLOGY OF RECONSTRUCTION

In order to obtain a line in 3-D space from 2-D perspective projections it is necessary to know the following
input parameters.

(i) A set of pixel coordinates for the line s1 on the first image plane I1: P1i(X1i, Y1i), i = 1, 2, ..., N .
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(ii) A set of pixel coordinates for the corresponding line s2 on the second image plane I2: P2i(X2i, Y2i),
i = 1, 2, ...,M , where N �= M in general.

(iii) The parameters of the imaging setup and perspective geometry: f1, f2, xd, yd, zd and (αi, βi, γi), i =
1, 2, 3.

In both the image planes use of linear least square regression is made to fit a straight line on the set of
pixels which form the line. The problem is to find the parameters of a line in 3-D space from the above input
parameters.

4.1. Finding correspondence for P1i

Using the equation of the epipolar line as given in the articles,2 4 with respect to O′ the corresponding points
P2i, i = 1, 2, ...N in the second image plane I2 can be found for each point P1i, i = 1, 2, ...N in the first
image plane. Once the correspondences are known, the discrete points in 3-D space are found by solving the
collinearity equations. Now there are N points in the 3-D space. Let these be wi(xi, yi, zi), i = 1, 2, ...N . Use
of least square regression can be made to find the parameters of a line in 3-D space. There are two methods to
solve this 3-D regression problem, which are described here.

4.2. 3-D Regression- Method I

From the set of N 3-D points Pi(xi, yi, zi), i = 1, 2, ..., N obtained in space, the centroid of these points are first
computed. Let it beG(xp, yp, zp). Fitting of a 3D line in 3D using least square method for (xi, yi, zi), i = 1, ..., N
points can be done as follows, see figure 2. The vector −−→

PiQi

!PiQi =

∣∣∣∣∣∣
ê1 ê2 ê3
l m n

xi − xp yi − yp zi − zp

∣∣∣∣∣∣
Any line in 3D space through the point G(xp, yp, zp)(centroid) having their direction cosines as l,m, n is given
by

x− xp

l
=
y − yp

m
=
z − zp
n

, l2 +m2 + n2 = 1

The perpendicular distance di from the point Pi(xi, yi, zi) to a point Qi on the above line is given by d2i =
PiQi

2 = |PiQi|2, i = 1, 2, ..., N . Let

D =
N∑

i=1

(di)2 (5)

Using the vector form of !PiQi,

(PiQi)
2 = [m(zi − zp) − n(yi − yp)]2 + [n(xi − xp) − l(zi − zp)]2

+[l(yi − yp) −m(xi − xp)]2

Expressing n2 = 1 − l2 −m2 yields

∂n

∂l
=

−l
n
,

∂n

∂m
=

−m
n

The criteria for extremum of D is given as

∂D

∂l
= 0 and

∂D

∂m
= 0 (6)
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Figure 2: Regression of a 3-D line L.

Using (6) in (5) results in the following two non-linear equations

a11l
2 − a11n2 + a12lm+ a13mn+ a14nl = 0 (7)

a12m
2 − a12n2 + a11lm+ a15mn+ a13nl = 0 (8)

where

a11 =
N∑

i=1

xizi − zp
N∑

i=1

xi − xp

N∑
i=1

zi +Nxpzp

a12 =
N∑

i=1

yizi − zp
N∑

i=1

yi − yp

N∑
i=1

zi +Nypzp

a13 = xp

N∑
i=1

yi + yp

N∑
i=1

xi −
N∑

i=1

xiyi −Nxpyp

a14 = 2xp

N∑
i=1

xi −
N∑

i=1

xi
2 −Nx2

p +
N∑

i=1

zi
2 − 2zp

N∑
i=1

zi +Nz2p

and

a15 = 2yp

N∑
i=1

yi −
N∑

i=1

y2i −Ny2p − 2zp
N∑

i=1

zi +
N∑

i=1

z2i +Nz2p (9)

Squaring (7) and (8) and using the relation l2 +m2 + n2 = 1, results in the following two non-linear equations
to be solved.

(4a211 + a214)l4 + (a211 + a213)m4 + (4a11a12 + 2a13a14)l3m+ (2a11a12 + 2a13a14)lm3

+(4a211 + a212 + a213 + a214)l2m2 + (−4a211 − a214)l2 + (−2a211 − a213)m2

+(−2a11a12 − 2a13a14)lm+ a211 = 0 (10)
(a212 + a213)l4 + (4a212 + a215)m4 + (2a11a12 + 2a13a15)l3m+ (4a11a12 + 2a13a15)lm3

+(4a212 + a211 + a215 + a213)l2m2 + (−2a212 − a213)l2 + (−4a212 − a215)m2

+(−2a11a12 − 2a13a15)lm+ a212 = 0 (11)
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From the above two non-linear equations l and m can be solved by any standard numerical method by choosing
appropriate initial values l0 and m0. The (n+ 1)th iteration is given as

[
ln+1

mn+1

]
=

[
ln
mn

]
− J−1(ln,mn)

[
f(ln,mn)
g(ln,mn)

]
(12)

where

J =



∂f(ln,mn)

∂l

∂f(ln,mn)
∂m

∂g(ln,mn)
∂l

∂g(ln,mn)
∂m


 (13)

Using the numerical values of l and m obtained, the numerical value of n can be found using the relation
l2 +m2 + n2 = 1. Thus the line is reconstructed in 3-D space. The parameters of this reconstructed line are
(xp, yp, zp, l,m, n).

4.3. 3-D Regression (Method- II)

(1) From the set of N points in 3-D in space the centroid G(xp, yp, zp) of the points are first computed.
(2) Shift the origin to this centroid.
(3) Obtain

D =
N∑

i=1

d2i =
N∑

i=1

(Axi +Byi + zi)
2
/(A2 +B2 + 1), (14)

where, the required line, which is the least square approximation to the 3-D points, is assumed to be normal
to the plane Ax + By + z = 0 (the plane is considered to be passing through the new origin G which is the
centroid). Minimizing the distance of a point from this line is equivalent to maximizing the distance of a point
from the plane Ax+By + z = 0.

(4) Using the following two criteria for minimizing D which are
∂D

∂A
= 0 and

∂D

∂B
= 0, reduces to

[
A
B

]
=

[ ∑
x2

i − λ
∑
xiyi∑

xiyi

∑
x2

i − λ
] [ −∑

xizi
−∑

xizi

]
(15)

where summation of i is taken from 1 to N , λ being the largest Eigenvalue of the matrix:



∑
x2

i −
∑
d2

∑
xiyi

∑
xizi∑

xiyi

∑
y2i − ∑

d2
∑
yizi∑

xizi
∑
yizi

∑
y2i − ∑

d2


 (16)

Using standard numerical methods, the largest eigen value as well as the values of A and B can be found.
Thus the equation of the required plane can be found. Then the equation of the line which is normal to this
plane Ax + By + z = 0 can be formed, which gives the reconstructed 3-D line. Simulation studies and error
analysis were carried out for this methodology. The results obtained are shown in figures from 3 to 10.

5. ERRORS IN THE RECONSTRUCTION PROCESS

The effect of noise is simulated by adding noise to the pixel coordinate values of the projection of the line on
the image plane. It is also assumed that this noise has a Gaussian distribution, characterised by its variance σ
with its range in [0 - 10]. The discrete set of points as projections of the line on the pair of image planes are
obtained using Bresenham’s algorithm Foley et al.,.5 The following pair of criteria for estimating the errors in
reconstruction have been used:

(i) Error θe in orientation (angle between the original and the reconstructed lines):

θe = sin−1
√

(m1n2 − n1m2)2 + (n1l2 − l1n2)2 + (l1m2 −m1l2)2,
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where (l1,m1, n1) and (l2,m2, n2) are direction cosines of the original and the reconstructed lines respectively.
If the value of θe is not small enough we use

θe = cos−1(l1l2 +m1m2 + n1n2),

to minimize errors in the computation of the inverse trigonometric functions in a digital computer.
(ii) Error De in position (Shortest Distance between the two lines):

De = (xw1 − xw2) l′′ + (yw1 − yw2) m′′ + (zw1 − zw2) n′′

(l′′,m′′, n′′) =
(

(m1n2 −m2n1)
µ

,
(n1l2 − n2l1)

µ
,

(l1m2 − l2m1)
µ

)

µ =
√

(m1n2 −m2n1)2 + (n1l2 − n2l1)2 + (l1m2 −m1l2)2

where (l1,m1, n1) and (l2,m2, n2) are the direction cosines of the original and the reconstructed lines passing
through points (xw1, yw1, zw1) and (xw2, yw2, zw2) respectively.

These errors are estimated using simulation studies for different combinations of the geometry of the imaging
setup, parameters of the line and levels of noise added to the image feature (line). Results of performance studies,
shown in figures 3-10, are obtained by taking the mean of 100 different observations of simulated experiments
conducted using the parameters as specified in each corresponding figure. Each of the 3-D plots in figures 3-10,
illustrate that errors vary non-linearly with respect (i) to the level of noise in the image planes, (ii) parameters
of the imaging setup and (iii) the parameters of the reconstructed line. Proper visualization of such non-linear
multivariate error functions, are provided by varying only one of the parameters of the imaging setup or line,
keeping all other parameters constant (unless some of them are correlated with the one that is being varied).
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Figure 3. 3-D Plot showing the errors in reconstruction, l varies from [0− 1], m = n =

√
(1−l2)

2
, σ varies from [0− 10],

α1 = β2 = 2π
3

, γ3 = π
6
, f1 = f2 = 1.0, xd = 10.0, yd = 20.0, zd = 30.0, xw = yw = 10.0, zw = 200.0 and N = 320.

Figures 3, 4, 5 and 9, illustrate the effect of the direction cosines of the line on the error in reconstruction.
For the graphs in figures 3, 4, 5 and 9, the values for the various parameters of the imaging setup are chosen as :
xw = yw = 10.0, zw = 200.0, xd = 10.0, yd = 20.0, zd = 30.0, f1 = f2 = 1.0, N = 320 (N is the resolution of
the digital image), α1 = β2 = 2 π

3 and γ3 = π
6 (given α1, β2, and γ3, the other six Eulerian angles Goldstein6

are found using the constraint of the orthogonal matrix). Only one component of the direction cosines of the
line is altered, keeping the other two identical. For example, in figure 3 as l is varied from 0 to 1 in steps of

0.05, the values of m and n are obtained as, m = n =
√

(1−l2)
2 . It is observed from figures 3, 4, 5 and 9 that

the errors are generally more in reconstruction when the values of the direction cosines are near the extreme
limits of the range [0 to 1]. Error in orientation of the line, θe, is usually more than that of the position, De,
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Figure 4. 3-D Plot showing the errors in reconstruction, m varies from [0−1], l = n =

√
(1−m2)

2
, σ varies from [0−10],

α1 = β2 = 2π
3

, γ3 = π
6
, f1 = f2 = 1.0, xd = 10.0, yd = 20.0, zd = 30.0, xw = yw = 10.0, zw = 200.0 and N = 320.

0

2

4

6

8

10

0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

σ

n

θ e in
 d

eg
re

es

Figure 5. 3-D Plot showing the errors in reconstruction, n varies from [0− 1], l = m =

√
(1−n2)

2
, σ varies from [0− 10],

α1 = β2 = 2π
3

, γ3 = π
6
, f1 = f2 = 1.0, xd = 10.0, yd = 20.0, zd = 30.0, xw = yw = 10.0, zw = 200.0 and N = 320.

as shown in figures 7 and 8 respectively. For the plots in figures 7 and 8, the value of zw is varied from 100 to
500 and l = m = n = 1√

3
. In figures 7 and 8, the parameters of the viewing geometry, αi, βi and γi, i = 1, 2, 3,

are changed simultaneously in such a manner that the 3-D line lies within the common field of view of both the
cameras.

In figure 6, the value of N (image resolution) is varied from 30 to 350 and the direction cosines are l = m =
n = 1√

3
. Figure 6 shows that errors are appreciably high when the resolution of the image is low (i.e., N � 30).

Errors are negligible when the image resolution is more than 200 (typical value, as observed using our simulation
studies). Figure 7 shows that error in orientation is very high when the value of depth zw is greater than 250
and negligible when less than 200. Figure 8 shows that the error in position is high when the depth zw, is large

(350). In Figure 9, as l is varied from 0 to 1 in steps 0.05, and m = n =
√

(1−l2)
2 , it is observed that error De

is very small. In Figure 10, as N is varied from 30 to 350, and n = m = l = 1√
3
, it is observed that error De is

very small except for small values of N(≤ 50). All 3-D graphs in figures 3-10, show that for noise levels in the
range 0 ≤ σ ≤ 10, the errors θe and De are mostly within acceptable limits (0o ≤ θe ≤ 10o and 0 ≤ De ≤ 2
respectively), except for certain specific conditions of the viewing geometry, orientation and position of the line.
The errors are negligible for small levels of noise in the range 0 ≤ σ ≤ 2, which is realistic. Negligible error in
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Figure 7. 3-D Plot showing the errors in reconstruction, zw varies from [100 − 500], l = m = n = 1√
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, σ varies from
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, f1 = f2 = 1.0, xd = 10.0, yd = 20.0, zd = 30.0, xw = yw = 10.0 and N = 640.
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[0 − 10], α1 = β2 = 2π
3

, γ3 = π
6
, f1 = f2 = 1.0, xd = 10.0, yd = 20.0, zd = 30.0, xw = yw = 10.0 and N = 320.
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Figure 9. 3-D Plot showing the errors in reconstruction, l varies from [0− 1], m = n =

√
(1−l2)

2
, σ varies from [0− 10],

α1 = β2 = 2π
3

, γ3 = π
6
, f1 = f2 = 1.0, xd = 10.0, yd = 20.0, zd = 30.0, xw = yw = 10.0, zw = 200.0 and N = 320.
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Figure 10. 3-D Plot showing the errors in reconstruction, N varies from [30 − 350], l = m = n = 1√
(3)

, σ varies from

[0 − 10], α1 = β2 = 2π
3

, γ3 = π
6
, f1 = f2 = 1.0, xd = 10.0, yd = 20.0, zd = 30.0, xw = yw = 10.0 and zw = 200.0.

the process of reconstruction of a line in the noise free case (σ = 0), is the result of digitization (sampling) of
spatial coordinate values in the digital image plane. This is more if the image has low resolution as illustrated
in figure 6. As the line tends to be parallel to one of the principle coordinate axis (l,m, n � 0 or 1), the errors
in reconstruction are large. With increase in the level of noise in the image planes the error in orientation,
θe, increases rapidly than error in position, De, of the line. Hence based on our studies, for best results we
recommend the following range of values of the parameters of the imaging setup and line to be reconstructed,
0.2 ≤ l ≤ 0.9, 0.2 ≤ m ≤ 0.7, 0.2 ≤ n ≤ 0.8, zw < 250 and N > 200. Other parameters of the line and
viewing geometry do not affect the accuracy of the reconstruction process to a larger extent. The dimensions
of all distances used in the simulation studies are normalized with respect to the focal length of the cameras
which is considered to be unity.

6. CONCLUSIONS

A software program for this method was developed in “C” language in Windows environment to verify the results
obtained using the expressions derived in this paper. A rigorous performance analysis has been provided, using
simulation studies, to illustrate the effect of noise, parameters of the line and the imaging setup on errors in
reconstruction of a line. Results of simulation studies presented in this paper are useful for the design of an
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imaging system for accurate reconstruction of lines or edges of 3-D objects, as well as to evaluate the performance
of such a system. Smaller resolution of the image, larger depth and certain orientations of the line in 3D have
been found to produce a poor performance in the process of reconstruction. It is observed that for larger levels
of noise present in the image planes, the errors in the orientation parameters of the reconstructed line are much
larger than that in the position parameters.
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