CS6350: Computer Vision

July - November, 2024

Course Contents

Computer Vision Handout Download Slide

  • Objectives:
    • Computer Vision focuses on development of algorithms and techniques to analyze and interpret the visible world around us. This requires understanding of the fundamental concepts related to multi-dimensional signal processing, feature extraction, pattern analysis visual geometric modeling, stochastic optimization etc. Knowledge of these concepts is necessary in this field, to explore and contribute to research and further developments in the field of computer vision. Applications range from Biometrics, Medical diagnosis, document processing, mining of visual content, to surveillance, advanced rendering etc.
  • References

    Textbooks
    Richard Szeliski, Computer Vision: Algorithms and Applications, Springer-Verlag London Limited 2011.

    Computer Vision: A Modern Approach, D. A. Forsyth, J. Ponce, Pearson Education, 2003.


    References
    Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision, Second Edition, Cambridge University Press, March 2004.

    Christopher M. Bishop; Pattern Recognition and Machine Learning, Springer, 2006

    R.C. Gonzalez and R.E. Woods, Digital Image Processing, Addison- Wesley, 1992.
    K. Fukunaga; Introduction to Statistical Pattern Recognition, Second Edition, Academic Press, Morgan Kaufmann, 1990.

    Journals
    IEEE-T-PAMI (IEEE Transactions on Pattern Analysis and Machine Intelligence).
    IJCV (International Journal of Computer Vision) - Springer.

    Lecture Slides

    Topic-Wise References

    1 Introduction  Download Slide
    2 Neighborhood and Connectivity of pixels Download Slide
    3 Fourier Theory and Filtering in spatial and spectral domains Download Slide
    4 (i)Enhancement & (ii)Restoration Download Slide
    5 Histogram based image processing Download Slide
    6 3D transformations and projection

    Download Slide

    7 Concepts in Edge Detection Download Slide
    8 Hough Transform Download Slide
    9 Image segmentation Download Slide
    10 Pattern Recognition Download Slide
    11 Motion Detection and Tracking Download Slide
    12 Shape from Shading Download Slide
    13 Texture analysis using Gabor filters Download Slide
    14 SCALE-SPACE - Theory and Applications Download Slide
    15 Local Feature Detectors and Descriptors Download Slide
    13 Motion Download Slide
    17 Wavelet transform Download Slide
    18 Morphology Download Slide
    19 Image Restoration Download Slide

    Additional Resources


  • Video Lectures Links:

  • Github Links:
  • Interesting links:
  • Term Project Assignment



    Term Project Allotment List: To be Decided

    Term Project Assignment List
    SL No. Problem Statement Performance based marks (indicative) Group IDs Alloted
    Details
    Satisfactory Good Excellent
    1 Domain Adaptation for Object Detection in target domain using weakly-supervised / self-supervised or semi-supervised settings 17 30 41 -- Download Slide
    2 Comparison of the performance of few SOTA stereo depth estimation techniques (both shallow and deep) for a foreground object, to achieve high accuracy 15 28 40 -- Download Slide
    3 YOLOv5++ for overlap object detection from cluttered indoor shots, invariant to sensor, lighting and affine transformation 17 30 41 -- Download Slide
    4 Video Analytics: Prediction, affordances; or any new/novel ideas/tasks yet unheard of in CV/DL paradigm * 15 31 43 -- Download Slide
    5 Tiny object Detection/Segmentation in Cluttered Images 17 30 41 -- Download Slide
    6 Scene Segmentation of indoor Panorama 16 28 42 -- Download Slide
    7 Joint Image Deblurring/Super-Resolution and Low-light Image Enhancement 17 27 38 -- Download Slide
    8 Learn image auto-correction (brush restoration) and auto-enhancement from few training samples # 17 30 41 -- Download Slide
    9 Exploration of efficient shallow learning methods for object recognition, face recognition, image classification, etc. as alternative to deep learning (training time, dataset size) # 19 32 42 -- Download Slide
    10 Real (True) depth estimation from indoor scenes, given a model (DL tool) for virtual depth estimation 16 30 42 -- Download Slide
    11 3D Topologically-Aware Semantic Scene reconstruction and depth map / wireframe / Point-Cloud from single RGB panorama scene (or Two views) 16 28 43 -- Download Slide
    12 Synthesis(Generation) of adversarial (image) datasets to prove null hypothesis on DL systems (pick any SOA: OR, FR, Segmentation) 17 28 41 -- Download Slide
    13 Compute change in pose (3D) of a small object (coin, key, mobile phone, purse, clock, plate, checkerboard etc.) with very high accuracy from two successive views (arbitrary) of the same object (objects can have a near planar surface) # 20 33 43 -- Download Slide
    14 Face Recognition in the Wild 17 30 41 -- Download Slide
    15 Student Distillation for high-end compute-intensive DL process to run on low-end GPU 17 28 41 -- Download Slide
    16 DL based Depth estimation of landmarks/salient points and Scene Reconstruction, from arbitrary pair of stereo views 16 30 42 -- Download Slide
    17 Human Cell Detection Using Very Few Samples 15 26 38 -- TBU
    18 Augmented Reality based apparel fitting - - - -- Download Slide

    * Get permission from course instructor for the novel plan of work.
    # Can be solved using shallow techniques of computer vision

    Tutorial

      Note: These dates are tentative.
    Tutorial No. Date Time
    1 16/08/2024   9:00-9:50  
    2 05/09/2024 9:00-9:50
    3 03/10/2024 9:00-9:50
    4 17/10/2024 9:00-9:50
    5 30/10/2024 9:00-9:50

    Schedule

    Marks Distribution

    Logistic Details


    Class Schedule (Slot G)
    Monday

    12:00-12:50pm
    Wednesday
    5:00-5:50pm
    Thursday
    10:00-10:50pm
    Friday
    9:00-9:50am


    Announcements

    Self-study


    Slides for Self-Study Content

    Sl. no. Content (pdf filename) Portion Link
    1 Neighborhood and Connectivity of pixels Entire pdf Download Slide
    2 Fourier Theory and Filtering in spatial and spectral domains Slides 1-27, 37-44

    Download Slide

    3 Enhancement Slides 21-27

    Download Slide

    4 Histogram based image processing First 23 slides

    Download Slide

    5 3D transformations and projection Slides 1-10

    Download Slide

    6 Concepts in Edge Detection Slides 57-67, 70-93(Adv. studies)

    Download Slide

    7 Hough Transform Slides 35-40

    Download Slide

    8 Pattern Recognition Slides 44-63

    Download Slide

    9 Local Feature Detectors and Descriptors First 25 slides

    Download Slide

        Note: